Dual-fuel premixed charge compression ignition (DF-PCCI) combustion has been proven to be a viable alternative to conventional diesel combustion in heavy-duty compression ignition engines due to its low nitrogen oxide...Dual-fuel premixed charge compression ignition (DF-PCCI) combustion has been proven to be a viable alternative to conventional diesel combustion in heavy-duty compression ignition engines due to its low nitrogen oxides (NOx) and particulate matter (PM) emissions. When natural gas (NG) is applied to a DF-PCCI engine, its low reactivity reduces the maximum pressure rise rate under high loads. However, the NG–diesel DF-PCCI engine suffers from low combustion efficiency under low loads. In this study, an injection strategy of fuel supply (NG and diesel) in a DF-PCCI engine was investigated in order to reduce both the fuel consumption and hydrocarbon (HC) and carbon monoxide (CO) emissions under low load conditions. A variation in the NG substitution and diesel start of energizing (SOE) was found to effectively control the formation of the fuel–air mixture. A double injection strategy of diesel was implemented to adjust the local reactivity of the mixture. Retardation of the diesel pilot SOE and a low fraction of the diesel pilot injection quantity were favorable for reducing the combustion loss. The introduction of exhaust gas recirculation (EGR) improved the fuel economy and reduced the NOx and PM emissions below Euro VI regulations by retarding the combustion phasing. The combination of an NG substitution of 40%, the double injection strategy of diesel, and a moderate EGR rate effectively improved the combustion efficiency and indicated efficiency, and reduced the HC and CO emissions under low load conditions.展开更多
Improved controllability and energy density of ignition agents are of great significance for the devel-opment of energetic composite materials.In this study,droplet microfluidics and emulsification tech-niques were co...Improved controllability and energy density of ignition agents are of great significance for the devel-opment of energetic composite materials.In this study,droplet microfluidics and emulsification tech-niques were combined to prepare HNS/CL-20 composite microspheres with polyglycidyl azide polymer(GAP)as the binder.The influence of binder content on the morphology of microspheres was investi-gated,and the microspheres were characterized and tested for particle size,crystal structure,thermal decomposition,dispersibility,mechanical sensitivity,combustion behavior and detonation performance.The results showed that microspheres prepared with a binder content of 3%had higher sphericity and particle size uniformity.The microspheres retained the crystal structure of both HNS and CL-20(ε-type).Compared with raw HNS,the microspheres had higher apparent activation energy,better safety per-formance,and good dispersibility.The ignition experiments and detonation performance tests show that HNS/CL-20 composite microspheres have excellent ignition performance,obvious combustion flame,and significant energy release effects,which are expected to achieve high energy and high-speed response of the igniter,thus improving the ignition reliability in special environments or systems.展开更多
Microsatellites have been widely applied in the fields of communication,remote sensing,navigation and science exploration due to its characteristics of low cost,flexible launch mode and short development period.Howeve...Microsatellites have been widely applied in the fields of communication,remote sensing,navigation and science exploration due to its characteristics of low cost,flexible launch mode and short development period.However,conventional solid-propellant have difficulties in starting and interrupting combustion because combustion is autonomously sustained after ignition Herein,we proposed a new type of solid-propellant named laser-controlled solid propellant,which is sensitive to laser irradiation and can be started or interrupted by switching on/off the continuous wave laser.To demonstrate the feasibility and investigate the controllable combustion behaviors under different laser on/off conditions,the combus tion parameters including burning rate,ignition delay time and platform pressure were tested using pressure sensor,high-speed camera and thermographic camera.The results showed that the increase of laser-on or laser-off duration both will lead to the decrease of propellant combustion performance during re-ignition and re-combustion process.This is mainly attributed to the laser attenuation caused by the accumulation of combustion residue and the change of chamber ambient temperature.Simultaneously the multiple ignition tests revealed that the increased chamber ambient temperature after combustion can make up for the energy loss of laser attenuation and expansion of chamber cavity.However,the laser-controlled combustion performance of solid propellant displayed a decrease trend with the addi-tion of ignition times.Nevertheless,the results still exchibited good laser-controlled agility of laser-controlled solid propellant and manifested its inspiring potential in many aspects of space missions.展开更多
For homogeneous charge compression ignition (HCCI) combustion, the auto-ignition process is very sensitive to in-cylinder conditions, including in-cylinder temperature, in-cylinder components and concentrations. The...For homogeneous charge compression ignition (HCCI) combustion, the auto-ignition process is very sensitive to in-cylinder conditions, including in-cylinder temperature, in-cylinder components and concentrations. Therefore, accurate control is required for reliable and efficient HCCI combustion. This paper outlines a simplified gasoline-fueled HCCI engine model implemented in Simulink environment. The model is able to run in real-time and with fixed simulation steps with the aim of cycle-to-cycle control and hardware- in-the-loop simulation. With the aim of controlling the desired amount of the trapped exhaust gas recirculation (EGR) from the previous cycle, the phase of the intake and exhaust valves and the respective profiles are designed to vary in this model. The model is able to anticipate the auto-ignition timing and the in-cylinder pressure and temperature. The validation has been conducted using a comparison of the experimental results on Ricardo Hydro engine published in a research by Tianjin University and a JAGUAR V6 HCCI test engine at the University of Birmingham. The comparison shows the typical HCCI combustion and a fair agreement between the simulation and experimental results.展开更多
An evaluation method of engine cyclic variation is proposed based on fuzzy mathematics concept. The degree of engine cyclic variation is divided into 4 levels: stable, slight variation, moderate variation and serious ...An evaluation method of engine cyclic variation is proposed based on fuzzy mathematics concept. The degree of engine cyclic variation is divided into 4 levels: stable, slight variation, moderate variation and serious variation based on the statistic standard deviation of residual gas temperatures within the specified simulation cycles and the function of cyclic variation is also inducted for the cyclic variation control. Because the degree of engine cyclic variation can be estimated qualitatively, the effective control means can be applied to appease the undesired cyclic variation. Simulation result shows that for a very serious cyclic variation through the proper adjustment of the spark angle and the cyclic variation will disappear.展开更多
A controllable strategy for eliciting nuclear fusion is presented through ultra-intenselaser derived positron generation by a conceptual first physics perspective. The capability to generate positrons on demand in a c...A controllable strategy for eliciting nuclear fusion is presented through ultra-intenselaser derived positron generation by a conceptual first physics perspective. The capability to generate positrons on demand in a controlled manner through an ultra-intense laser incident on a high atomic number target, such as gold, is the intrinsic core to the foundation of controllable nuclear fusion. Positron antimatter generated from the periphery of the fusion fuel pellet provides the basis for initiating the fusion reaction, which is regulated by controlling the operation of the ultra-intense laser. A dual pulsed Fast Ignition mechanism is selected to achieve the fusion reaction. Based on first physics performance analysis the controllable strategy for eliciting nuclear fusion through ultra-intenselaser derived positron generation offers a realizable means for achieving regulated nuclear fusion. A future perspective of the controllable fusion strategy addresses the opportunities and concerns of a pathway toward regulated nuclear fusion.展开更多
基金the Global-Top Project,Development of Advanced Combustion Technology for Global Top Low Emission Vehicle(2016002070001)the Ministry of Environment(MOE)of Korea for financial support by the Center for Environmentally Friendly Vehicle(CEFV)
文摘Dual-fuel premixed charge compression ignition (DF-PCCI) combustion has been proven to be a viable alternative to conventional diesel combustion in heavy-duty compression ignition engines due to its low nitrogen oxides (NOx) and particulate matter (PM) emissions. When natural gas (NG) is applied to a DF-PCCI engine, its low reactivity reduces the maximum pressure rise rate under high loads. However, the NG–diesel DF-PCCI engine suffers from low combustion efficiency under low loads. In this study, an injection strategy of fuel supply (NG and diesel) in a DF-PCCI engine was investigated in order to reduce both the fuel consumption and hydrocarbon (HC) and carbon monoxide (CO) emissions under low load conditions. A variation in the NG substitution and diesel start of energizing (SOE) was found to effectively control the formation of the fuel–air mixture. A double injection strategy of diesel was implemented to adjust the local reactivity of the mixture. Retardation of the diesel pilot SOE and a low fraction of the diesel pilot injection quantity were favorable for reducing the combustion loss. The introduction of exhaust gas recirculation (EGR) improved the fuel economy and reduced the NOx and PM emissions below Euro VI regulations by retarding the combustion phasing. The combination of an NG substitution of 40%, the double injection strategy of diesel, and a moderate EGR rate effectively improved the combustion efficiency and indicated efficiency, and reduced the HC and CO emissions under low load conditions.
基金supported by National Natural Science Foundation of China(grant No.22005275).
文摘Improved controllability and energy density of ignition agents are of great significance for the devel-opment of energetic composite materials.In this study,droplet microfluidics and emulsification tech-niques were combined to prepare HNS/CL-20 composite microspheres with polyglycidyl azide polymer(GAP)as the binder.The influence of binder content on the morphology of microspheres was investi-gated,and the microspheres were characterized and tested for particle size,crystal structure,thermal decomposition,dispersibility,mechanical sensitivity,combustion behavior and detonation performance.The results showed that microspheres prepared with a binder content of 3%had higher sphericity and particle size uniformity.The microspheres retained the crystal structure of both HNS and CL-20(ε-type).Compared with raw HNS,the microspheres had higher apparent activation energy,better safety per-formance,and good dispersibility.The ignition experiments and detonation performance tests show that HNS/CL-20 composite microspheres have excellent ignition performance,obvious combustion flame,and significant energy release effects,which are expected to achieve high energy and high-speed response of the igniter,thus improving the ignition reliability in special environments or systems.
基金This work was supported by the Shanghai Aerospace Science&Technology Innovation Fund[grant number SAST201363],and the Fundamental Research Funds for the Central Universities[grant number 30919012102 in part]We gratefully acknowledge the technical support provided by Hao-yu Wang,Wei-kang Chen and Zhi-jing Xu(Shanghai Space Propulsion Technology Research Institute,China).
文摘Microsatellites have been widely applied in the fields of communication,remote sensing,navigation and science exploration due to its characteristics of low cost,flexible launch mode and short development period.However,conventional solid-propellant have difficulties in starting and interrupting combustion because combustion is autonomously sustained after ignition Herein,we proposed a new type of solid-propellant named laser-controlled solid propellant,which is sensitive to laser irradiation and can be started or interrupted by switching on/off the continuous wave laser.To demonstrate the feasibility and investigate the controllable combustion behaviors under different laser on/off conditions,the combus tion parameters including burning rate,ignition delay time and platform pressure were tested using pressure sensor,high-speed camera and thermographic camera.The results showed that the increase of laser-on or laser-off duration both will lead to the decrease of propellant combustion performance during re-ignition and re-combustion process.This is mainly attributed to the laser attenuation caused by the accumulation of combustion residue and the change of chamber ambient temperature.Simultaneously the multiple ignition tests revealed that the increased chamber ambient temperature after combustion can make up for the energy loss of laser attenuation and expansion of chamber cavity.However,the laser-controlled combustion performance of solid propellant displayed a decrease trend with the addi-tion of ignition times.Nevertheless,the results still exchibited good laser-controlled agility of laser-controlled solid propellant and manifested its inspiring potential in many aspects of space missions.
文摘For homogeneous charge compression ignition (HCCI) combustion, the auto-ignition process is very sensitive to in-cylinder conditions, including in-cylinder temperature, in-cylinder components and concentrations. Therefore, accurate control is required for reliable and efficient HCCI combustion. This paper outlines a simplified gasoline-fueled HCCI engine model implemented in Simulink environment. The model is able to run in real-time and with fixed simulation steps with the aim of cycle-to-cycle control and hardware- in-the-loop simulation. With the aim of controlling the desired amount of the trapped exhaust gas recirculation (EGR) from the previous cycle, the phase of the intake and exhaust valves and the respective profiles are designed to vary in this model. The model is able to anticipate the auto-ignition timing and the in-cylinder pressure and temperature. The validation has been conducted using a comparison of the experimental results on Ricardo Hydro engine published in a research by Tianjin University and a JAGUAR V6 HCCI test engine at the University of Birmingham. The comparison shows the typical HCCI combustion and a fair agreement between the simulation and experimental results.
文摘An evaluation method of engine cyclic variation is proposed based on fuzzy mathematics concept. The degree of engine cyclic variation is divided into 4 levels: stable, slight variation, moderate variation and serious variation based on the statistic standard deviation of residual gas temperatures within the specified simulation cycles and the function of cyclic variation is also inducted for the cyclic variation control. Because the degree of engine cyclic variation can be estimated qualitatively, the effective control means can be applied to appease the undesired cyclic variation. Simulation result shows that for a very serious cyclic variation through the proper adjustment of the spark angle and the cyclic variation will disappear.
文摘A controllable strategy for eliciting nuclear fusion is presented through ultra-intenselaser derived positron generation by a conceptual first physics perspective. The capability to generate positrons on demand in a controlled manner through an ultra-intense laser incident on a high atomic number target, such as gold, is the intrinsic core to the foundation of controllable nuclear fusion. Positron antimatter generated from the periphery of the fusion fuel pellet provides the basis for initiating the fusion reaction, which is regulated by controlling the operation of the ultra-intense laser. A dual pulsed Fast Ignition mechanism is selected to achieve the fusion reaction. Based on first physics performance analysis the controllable strategy for eliciting nuclear fusion through ultra-intenselaser derived positron generation offers a realizable means for achieving regulated nuclear fusion. A future perspective of the controllable fusion strategy addresses the opportunities and concerns of a pathway toward regulated nuclear fusion.