背景:溶质载体家族1成员5(solute carrier family 1 member 5,SLC1A5)在多种疾病中发挥了潜在作用,但确切作用机制尚不清楚。构建稳定的SLC1A5过表达和敲低细胞模型可为深入研究SLC1A5在疾病中的确切作用机制以及发现潜在治疗靶点提供...背景:溶质载体家族1成员5(solute carrier family 1 member 5,SLC1A5)在多种疾病中发挥了潜在作用,但确切作用机制尚不清楚。构建稳定的SLC1A5过表达和敲低细胞模型可为深入研究SLC1A5在疾病中的确切作用机制以及发现潜在治疗靶点提供有力的实验工具。目的:构建小鼠SLC1A5过表达和敲低的慢病毒载体,以建立稳定转染的RAW264.7细胞株,为深入探讨SLC1A5在炎症中的作用提供实验基础。方法:根据SLC1A5基因序列设计合成引物并使用聚合酶链反应扩增该基因片段。将目的基因定向接入经Age I/Nhe I酶切的载体质粒GV492中构建重组慢病毒质粒,对阳性克隆进一步筛选后测序比对结果;pHelper1.0质粒载体、pHelper2.0质粒载体、目的质粒载体与293T细胞共同培养并转染,获得慢病毒原液进行包装和滴度测定;在此基础上,通过体外培养RAW264.7细胞,确定嘌呤霉素工作质量浓度;不同滴度的慢病毒分别与RAW264.7细胞共同培养,根据荧光强度确定转染效率;用嘌呤霉素挑选出稳定转染细胞,实时荧光定量聚合酶链反应和蛋白免疫印迹方法检测稳定转染细胞株的SLC1A5基因和蛋白表达水平。结果与结论:(1)测序序列与目的序列一致提示重组慢病毒载体构建成功;(2)过表达SLC1A5慢病毒的滴度为1×10~9 TU/mL,敲低SLC1A5慢病毒的滴度为3×10~9 TU/mL;(3)确定RAW264.7细胞嘌呤霉素工作质量浓度为3μg/mL;(4)过表达/敲低SLC1A5慢病毒转染RAW264.7细胞的最佳条件皆为HiTransG P转染增强液且感染复数值等于50;(5)过表达SLC1A5稳转细胞株中SLC1A5基因和蛋白的表达量明显上调,而敲低SLC1A5稳转细胞株中SLC1A5基因和蛋白的表达量显著下调。结果表明,成功构建了小鼠SLC1A5过表达和敲低的慢病毒载体并获得稳定转染的RAW264.7细胞株。展开更多
Irisin is a myokine that is generated by cleavage of the membrane protein fibronectin type Ⅲ domain-containing protein 5(FNDC5) in response to physical exercise. Studies reveal that irisin/FNDC5 has neuroprotective f...Irisin is a myokine that is generated by cleavage of the membrane protein fibronectin type Ⅲ domain-containing protein 5(FNDC5) in response to physical exercise. Studies reveal that irisin/FNDC5 has neuroprotective functions against Alzheimer's disease, the most common form of dementia in the elderly, by improving cognitive function and reducing amyloid-β and tau pathologies as well as neuroinflammation in cell culture or animal models of Alzheimer's disease. Although current and ongoing studies on irisin/FNDC5 show promising results, further mechanistic studies are required to clarify its potential as a meaningful therapeutic target for alleviating Alzheimer's disease. We recently found that irisin treatment reduces amyloid-β pathology by increasing the activity/levels of amyloid-β-degrading enzyme neprilysin secreted from astrocytes. Herein, we present an overview of irisin/FNDC5's protective roles and mechanisms against Alzheimer's disease.展开更多
Rab5 is a GTPase protein that is involved in intracellular membrane trafficking. It functions by binding to various effector proteins and regulating cellular responses, including the formation of transport vesicles an...Rab5 is a GTPase protein that is involved in intracellular membrane trafficking. It functions by binding to various effector proteins and regulating cellular responses, including the formation of transport vesicles and their fusion with the cellular membrane. Rab5 has been reported to play an important role in the development of the zebrafish embryo;however, its role in axonal regeneration in the central nervous system remains unclear. In this study, we established a zebrafish Mauthner cell model of axonal injury using single-cell electroporation and two-photon axotomy techniques. We found that overexpression of Rab5 in single Mauthner cells promoted marked axonal regeneration and increased the number of intra-axonal transport vesicles. In contrast, treatment of zebrafish larvae with the Rab kinase inhibitor CID-1067700markedly inhibited axonal regeneration in Mauthner cells. We also found that Rab5 activated phosphatidylinositol 3-kinase(PI3K) during axonal repair of Mauthner cells and promoted the recovery of zebrafish locomotor function. Additionally, rapamycin, an inhibitor of the mechanistic target of rapamycin downstream of PI3K, markedly hindered axonal regeneration. These findings suggest that Rab5 promotes the axonal regeneration of injured zebrafish Mauthner cells by activating the PI3K signaling pathway.展开更多
TAU is a microtubule-associated protein that promotes microtubule assembly and stability in the axon.TAU is missorted and aggregated in an array of diseases known as tauopathies.Microtubules are essential for neuronal...TAU is a microtubule-associated protein that promotes microtubule assembly and stability in the axon.TAU is missorted and aggregated in an array of diseases known as tauopathies.Microtubules are essential for neuronal function and regulated via a complex set of post-translational modifications,changes of which affect microtubule stability and dynamics,microtubule interaction with other proteins and cellular structures,and mediate recruitment of microtubule-severing enzymes.As impairment of microtubule dynamics causes neuronal dysfunction,we hypothesize cognitive impairment in human disease to be impacted by impairment of microtubule dynamics.We therefore aimed to study the effects of a disease-causing mutation of TAU(P301L)on the levels and localization of microtubule post-translational modifications indicative of microtubule stability and dynamics,to assess whether P301L-TAU causes stability-changing modifications to microtubules.To investigate TAU localization,phosphorylation,and effects on tubulin post-translational modifications,we expressed wild-type or P301L-TAU in human MAPT-KO induced pluripotent stem cell-derived neurons(i Neurons)and studied TAU in neurons in the hippocampus of mice transgenic for human P301L-TAU(p R5 mice).Human neurons expressing the longest TAU isoform(2N4R)with the P301L mutation showed increased TAU phosphorylation at the AT8,but not the p-Ser-262 epitope,and increased polyglutamylation and acetylation of microtubules compared with endogenous TAU-expressing neurons.P301L-TAU showed pronounced somatodendritic presence,but also successful axonal enrichment and a similar axodendritic distribution comparable to exogenously expressed 2N4R-wildtype-TAU.P301L-TAU-expressing hippocampal neurons in transgenic mice showed prominent missorting and tauopathy-typical AT8-phosphorylation of TAU and increased polyglutamylation,but reduced acetylation,of microtubules compared with non-transgenic littermates.In sum,P301L-TAU results in changes in microtubule PTMs,suggestive of impairment of microtubule stability.This is accompanied by missorting and aggregation of TAU in mice but not in i Neurons.Microtubule PTMs/impairment may be of key importance in tauopathies.展开更多
Salsolinol(1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline,Sal)is a catechol isoquinoline that causes neurotoxicity and shares structural similarity with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine,an environme...Salsolinol(1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline,Sal)is a catechol isoquinoline that causes neurotoxicity and shares structural similarity with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine,an environmental toxin that causes Parkinson's disease.However,the mechanism by which Sal mediates dopaminergic neuronal death remains unclear.In this study,we found that Sal significantly enhanced the global level of N~6-methyladenosine(m~6A)RNA methylation in PC12 cells,mainly by inducing the downregulation of the expression of m~6A demethylases fat mass and obesity-associated protein(FTO)and alk B homolog 5(ALKBH5).RNA sequencing analysis showed that Sal downregulated the Hippo signaling pathway.The m~6A reader YTH domain-containing family protein 2(YTHDF2)promoted the degradation of m~6A-containing Yes-associated protein 1(YAP1)mRNA,which is a downstream key effector in the Hippo signaling pathway.Additionally,downregulation of YAP1 promoted autophagy,indicating that the mutual regulation between YAP1 and autophagy can lead to neurotoxicity.These findings reveal the role of Sal on m~6A RNA methylation and suggest that Sal may act as an RNA methylation inducer mediating dopaminergic neuronal death through YAP1 and autophagy.Our results provide greater insights into the neurotoxic effects of catechol isoquinolines compared with other studies and may be a reference for assessing the involvement of RNA methylation in the pathogenesis of Parkinson's disease.展开更多
Dysregulation of neurotransmitter metabolism in the central nervous system contributes to mood disorders such as depression, anxiety, and post–traumatic stress disorder. Monoamines and amino acids are important types...Dysregulation of neurotransmitter metabolism in the central nervous system contributes to mood disorders such as depression, anxiety, and post–traumatic stress disorder. Monoamines and amino acids are important types of neurotransmitters. Our previous results have shown that disco-interacting protein 2 homolog A(Dip2a) knockout mice exhibit brain development disorders and abnormal amino acid metabolism in serum. This suggests that DIP2A is involved in the metabolism of amino acid–associated neurotransmitters. Therefore, we performed targeted neurotransmitter metabolomics analysis and found that Dip2a deficiency caused abnormal metabolism of tryptophan and thyroxine in the basolateral amygdala and medial prefrontal cortex. In addition, acute restraint stress induced a decrease in 5-hydroxytryptamine in the basolateral amygdala. Additionally, Dip2a was abundantly expressed in excitatory neurons of the basolateral amygdala, and deletion of Dip2a in these neurons resulted in hopelessness-like behavior in the tail suspension test. Altogether, these findings demonstrate that DIP2A in the basolateral amygdala may be involved in the regulation of stress susceptibility. This provides critical evidence implicating a role of DIP2A in affective disorders.展开更多
基金supported by Cure Alzheimer’s Fund (to RET and SHC)JPB Foundation (to RET),and R56AG072054 (to SHC)。
文摘Irisin is a myokine that is generated by cleavage of the membrane protein fibronectin type Ⅲ domain-containing protein 5(FNDC5) in response to physical exercise. Studies reveal that irisin/FNDC5 has neuroprotective functions against Alzheimer's disease, the most common form of dementia in the elderly, by improving cognitive function and reducing amyloid-β and tau pathologies as well as neuroinflammation in cell culture or animal models of Alzheimer's disease. Although current and ongoing studies on irisin/FNDC5 show promising results, further mechanistic studies are required to clarify its potential as a meaningful therapeutic target for alleviating Alzheimer's disease. We recently found that irisin treatment reduces amyloid-β pathology by increasing the activity/levels of amyloid-β-degrading enzyme neprilysin secreted from astrocytes. Herein, we present an overview of irisin/FNDC5's protective roles and mechanisms against Alzheimer's disease.
基金supported by the Research Funds of the Center for Advanced Interdisciplinary Science and Biomedicine of IHM,No.QYZD20220002the National Natural Science Foundation of China,No.82071357a grant from the Ministry of Science and Technology of China,No.2019YFA0405600 (all to BH)。
文摘Rab5 is a GTPase protein that is involved in intracellular membrane trafficking. It functions by binding to various effector proteins and regulating cellular responses, including the formation of transport vesicles and their fusion with the cellular membrane. Rab5 has been reported to play an important role in the development of the zebrafish embryo;however, its role in axonal regeneration in the central nervous system remains unclear. In this study, we established a zebrafish Mauthner cell model of axonal injury using single-cell electroporation and two-photon axotomy techniques. We found that overexpression of Rab5 in single Mauthner cells promoted marked axonal regeneration and increased the number of intra-axonal transport vesicles. In contrast, treatment of zebrafish larvae with the Rab kinase inhibitor CID-1067700markedly inhibited axonal regeneration in Mauthner cells. We also found that Rab5 activated phosphatidylinositol 3-kinase(PI3K) during axonal repair of Mauthner cells and promoted the recovery of zebrafish locomotor function. Additionally, rapamycin, an inhibitor of the mechanistic target of rapamycin downstream of PI3K, markedly hindered axonal regeneration. These findings suggest that Rab5 promotes the axonal regeneration of injured zebrafish Mauthner cells by activating the PI3K signaling pathway.
基金supported by the Koeln Fortune Program/Faculty of Medicine,University of Cologne,the Alzheimer Forschung Initiative e.V.(grant#22039,to HZ)open-access funding from the DFG/GRC issued to the University of CologneAlzheimer Forschung Initiative e.V.for Open Access Publishing(a publication grant#P2401,to MAAK)。
文摘TAU is a microtubule-associated protein that promotes microtubule assembly and stability in the axon.TAU is missorted and aggregated in an array of diseases known as tauopathies.Microtubules are essential for neuronal function and regulated via a complex set of post-translational modifications,changes of which affect microtubule stability and dynamics,microtubule interaction with other proteins and cellular structures,and mediate recruitment of microtubule-severing enzymes.As impairment of microtubule dynamics causes neuronal dysfunction,we hypothesize cognitive impairment in human disease to be impacted by impairment of microtubule dynamics.We therefore aimed to study the effects of a disease-causing mutation of TAU(P301L)on the levels and localization of microtubule post-translational modifications indicative of microtubule stability and dynamics,to assess whether P301L-TAU causes stability-changing modifications to microtubules.To investigate TAU localization,phosphorylation,and effects on tubulin post-translational modifications,we expressed wild-type or P301L-TAU in human MAPT-KO induced pluripotent stem cell-derived neurons(i Neurons)and studied TAU in neurons in the hippocampus of mice transgenic for human P301L-TAU(p R5 mice).Human neurons expressing the longest TAU isoform(2N4R)with the P301L mutation showed increased TAU phosphorylation at the AT8,but not the p-Ser-262 epitope,and increased polyglutamylation and acetylation of microtubules compared with endogenous TAU-expressing neurons.P301L-TAU showed pronounced somatodendritic presence,but also successful axonal enrichment and a similar axodendritic distribution comparable to exogenously expressed 2N4R-wildtype-TAU.P301L-TAU-expressing hippocampal neurons in transgenic mice showed prominent missorting and tauopathy-typical AT8-phosphorylation of TAU and increased polyglutamylation,but reduced acetylation,of microtubules compared with non-transgenic littermates.In sum,P301L-TAU results in changes in microtubule PTMs,suggestive of impairment of microtubule stability.This is accompanied by missorting and aggregation of TAU in mice but not in i Neurons.Microtubule PTMs/impairment may be of key importance in tauopathies.
基金supported by the National Natural Science Foundation of China,Nos.82271283(to XC),91854115(to JW),31970044(to JW)the Natural Science Foundation of Beijing,No.7202001(to XC)the Scientific Research Project of Beijing Educational Committee,No.KM202010005022(to XC)。
文摘Salsolinol(1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline,Sal)is a catechol isoquinoline that causes neurotoxicity and shares structural similarity with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine,an environmental toxin that causes Parkinson's disease.However,the mechanism by which Sal mediates dopaminergic neuronal death remains unclear.In this study,we found that Sal significantly enhanced the global level of N~6-methyladenosine(m~6A)RNA methylation in PC12 cells,mainly by inducing the downregulation of the expression of m~6A demethylases fat mass and obesity-associated protein(FTO)and alk B homolog 5(ALKBH5).RNA sequencing analysis showed that Sal downregulated the Hippo signaling pathway.The m~6A reader YTH domain-containing family protein 2(YTHDF2)promoted the degradation of m~6A-containing Yes-associated protein 1(YAP1)mRNA,which is a downstream key effector in the Hippo signaling pathway.Additionally,downregulation of YAP1 promoted autophagy,indicating that the mutual regulation between YAP1 and autophagy can lead to neurotoxicity.These findings reveal the role of Sal on m~6A RNA methylation and suggest that Sal may act as an RNA methylation inducer mediating dopaminergic neuronal death through YAP1 and autophagy.Our results provide greater insights into the neurotoxic effects of catechol isoquinolines compared with other studies and may be a reference for assessing the involvement of RNA methylation in the pathogenesis of Parkinson's disease.
基金supported by the STI 2030—Major Projects 2021ZD0204000,No.2021ZD0204003 (to XZ)the National Natural Science Foundation of China,Nos.32170973 (to XZ),32071018 (to ZH)。
文摘Dysregulation of neurotransmitter metabolism in the central nervous system contributes to mood disorders such as depression, anxiety, and post–traumatic stress disorder. Monoamines and amino acids are important types of neurotransmitters. Our previous results have shown that disco-interacting protein 2 homolog A(Dip2a) knockout mice exhibit brain development disorders and abnormal amino acid metabolism in serum. This suggests that DIP2A is involved in the metabolism of amino acid–associated neurotransmitters. Therefore, we performed targeted neurotransmitter metabolomics analysis and found that Dip2a deficiency caused abnormal metabolism of tryptophan and thyroxine in the basolateral amygdala and medial prefrontal cortex. In addition, acute restraint stress induced a decrease in 5-hydroxytryptamine in the basolateral amygdala. Additionally, Dip2a was abundantly expressed in excitatory neurons of the basolateral amygdala, and deletion of Dip2a in these neurons resulted in hopelessness-like behavior in the tail suspension test. Altogether, these findings demonstrate that DIP2A in the basolateral amygdala may be involved in the regulation of stress susceptibility. This provides critical evidence implicating a role of DIP2A in affective disorders.