A total 23 morphological traits, 19 AFLP-primer combinations, 80 RAPD primers and 32 SSR primer pair were used to compare the informativeness and efficiency of random amplified polymorphic DNA (RAPD), amplified frag...A total 23 morphological traits, 19 AFLP-primer combinations, 80 RAPD primers and 32 SSR primer pair were used to compare the informativeness and efficiency of random amplified polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers in establishing genetic relationships among 29 almond cultivars and three related wild species. SSRs presented a high level of polymorphism and greater information content, as assessed by the expected hetrozygosity, compared to AFLPs and RAPDs. The lowest values of expected hetrozygosity were obtained for AFLPs; however AFLPs showed the highest efficiency, owing to their capacity to reveal large numbers of bands per reaction, which led to high values for various types of indices of diversity. All the three techniques discriminated almond genotypes very effectively, except that SSRs failed to discriminate between 'Monagha' and 'Sefied' almond genotypes. The correlation coefficients of similarity were statistically significant for all the three marker systems, but were lower for the SSR data than for RAPDs and AFLPs. For all the markers, high similarity in dendrogram topologies was obtained, although some differences were observed. All the dendrograms, including that obtained by the combined use of all the marker data, reflect relationships for most of cultivars according to their geographic diffusion. AMOVA detected more variation among cultivated and related wild species of almond within each geographic group. Bootstrap analysis revealed that the number of markers used was sufficient for reliable estimation of genetic similarity and for meaningful comparisons of marker types.展开更多
A total 23 morphological traits, 19 AFLP-primer combinations, 80 RAPD primers and 32 SSR primer pair were used to compare the informativeness and efficiency of random amplified polymorphic DNA (RAPD), amplified fragme...A total 23 morphological traits, 19 AFLP-primer combinations, 80 RAPD primers and 32 SSR primer pair were used to compare the informativeness and efficiency of random amplified polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers in establishing genetic relationships among 29 almond cultivars and three related wild species. SSRs presented a high level of polymorphism and greater information content, as assessed by the expected hetrozygosity, compared to AFLPs and RAPDs. The lowest values of expected hetrozygosity were obtained for AFLPs; however AFLPs showed the highest efficiency, owing to their capacity to reveal large numbers of bands per reaction, which led to high values for various types of indices of diversity. All the three techniques discriminated almond genotypes very effectively, except that SSRs failed to discriminate between ‘Monagha’ and ‘Sefied’ almond genotypes. The correlation coefficients of similarity were statistically significant for all the three marker systems, but were lower for the SSR data than for RAPDs and AFLPs. For all the markers, high similarity in dendrogram topologies was obtained, although some differences were observed. All the dendrograms, including that obtained by the combined use of all the marker data, reflect relationships for most of cultivars according to their geographic diffusion. AMOVA detected more variation among cultivated and related wild species of almond within each geographic group. Bootstrap analysis revealed that the number of markers used was sufficient for reliable estimation of genetic similarity and for meaningful comparisons of marker types.展开更多
Photoperiod-sensitive genie male sterile (PSGMS) rice is a very useful germplasm for hybrid rice development. It was first found as a spontaneous mutant in a japonic a cultivar 'Nongken 58' . pms3 on chromosom...Photoperiod-sensitive genie male sterile (PSGMS) rice is a very useful germplasm for hybrid rice development. It was first found as a spontaneous mutant in a japonic a cultivar 'Nongken 58' . pms3 on chromosome 12 was determined to be the locus where the original PSGMS mutation occurred, changing the normal cultivar Nongken 58 to PSGMS Nongken 58S. Large amounts of RAPD and AFLP analyses were also conducted for the fine mapping of the pms3 genomic region, which resulted in 4 molecular markers linked to pms3. Although these markers somewhat increased the marker density of this region, the pms3 locus is still located in a marker-sparse region.展开更多
文摘A total 23 morphological traits, 19 AFLP-primer combinations, 80 RAPD primers and 32 SSR primer pair were used to compare the informativeness and efficiency of random amplified polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers in establishing genetic relationships among 29 almond cultivars and three related wild species. SSRs presented a high level of polymorphism and greater information content, as assessed by the expected hetrozygosity, compared to AFLPs and RAPDs. The lowest values of expected hetrozygosity were obtained for AFLPs; however AFLPs showed the highest efficiency, owing to their capacity to reveal large numbers of bands per reaction, which led to high values for various types of indices of diversity. All the three techniques discriminated almond genotypes very effectively, except that SSRs failed to discriminate between 'Monagha' and 'Sefied' almond genotypes. The correlation coefficients of similarity were statistically significant for all the three marker systems, but were lower for the SSR data than for RAPDs and AFLPs. For all the markers, high similarity in dendrogram topologies was obtained, although some differences were observed. All the dendrograms, including that obtained by the combined use of all the marker data, reflect relationships for most of cultivars according to their geographic diffusion. AMOVA detected more variation among cultivated and related wild species of almond within each geographic group. Bootstrap analysis revealed that the number of markers used was sufficient for reliable estimation of genetic similarity and for meaningful comparisons of marker types.
文摘A total 23 morphological traits, 19 AFLP-primer combinations, 80 RAPD primers and 32 SSR primer pair were used to compare the informativeness and efficiency of random amplified polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers in establishing genetic relationships among 29 almond cultivars and three related wild species. SSRs presented a high level of polymorphism and greater information content, as assessed by the expected hetrozygosity, compared to AFLPs and RAPDs. The lowest values of expected hetrozygosity were obtained for AFLPs; however AFLPs showed the highest efficiency, owing to their capacity to reveal large numbers of bands per reaction, which led to high values for various types of indices of diversity. All the three techniques discriminated almond genotypes very effectively, except that SSRs failed to discriminate between ‘Monagha’ and ‘Sefied’ almond genotypes. The correlation coefficients of similarity were statistically significant for all the three marker systems, but were lower for the SSR data than for RAPDs and AFLPs. For all the markers, high similarity in dendrogram topologies was obtained, although some differences were observed. All the dendrograms, including that obtained by the combined use of all the marker data, reflect relationships for most of cultivars according to their geographic diffusion. AMOVA detected more variation among cultivated and related wild species of almond within each geographic group. Bootstrap analysis revealed that the number of markers used was sufficient for reliable estimation of genetic similarity and for meaningful comparisons of marker types.
基金Project supported by the National Program of High Technology Development of China and the Rockefeller Foundation.
文摘Photoperiod-sensitive genie male sterile (PSGMS) rice is a very useful germplasm for hybrid rice development. It was first found as a spontaneous mutant in a japonic a cultivar 'Nongken 58' . pms3 on chromosome 12 was determined to be the locus where the original PSGMS mutation occurred, changing the normal cultivar Nongken 58 to PSGMS Nongken 58S. Large amounts of RAPD and AFLP analyses were also conducted for the fine mapping of the pms3 genomic region, which resulted in 4 molecular markers linked to pms3. Although these markers somewhat increased the marker density of this region, the pms3 locus is still located in a marker-sparse region.