In this paper, a modified Newton type iterative method is considered for ap- proximately solving ill-posed nonlinear operator equations involving m-accretive mappings in Banach space. Convergence rate of the method is...In this paper, a modified Newton type iterative method is considered for ap- proximately solving ill-posed nonlinear operator equations involving m-accretive mappings in Banach space. Convergence rate of the method is obtained based on an a priori choice of the regularization parameter. Our analysis is not based on the sequential continuity of the normalized duality mapping.展开更多
Two dynamical system methods are studied for solving linear ill-posed problems with both operator and right-hand nonexact. The methods solve a Cauchy problem for a linear operator equation which possesses a global sol...Two dynamical system methods are studied for solving linear ill-posed problems with both operator and right-hand nonexact. The methods solve a Cauchy problem for a linear operator equation which possesses a global solution. The limit of the global solution at infinity solves the original linear equation. Moreover, we also present a convergent iterative process for solving the Cauchy problem.展开更多
In this paper we develop two multilevel iteration methods for solving linear systems resulting from the Galerkin method and Tikhonov regularization for linear ill-posed problems. The two algorithms and their convergen...In this paper we develop two multilevel iteration methods for solving linear systems resulting from the Galerkin method and Tikhonov regularization for linear ill-posed problems. The two algorithms and their convergence analyses are presented in an abstract framework.展开更多
It is considered that the Tikhonov regularization with closed operators for solving linear operator equations of the first kind in the presence of perturbed operators. A class of the regularization parameter choice st...It is considered that the Tikhonov regularization with closed operators for solving linear operator equations of the first kind in the presence of perturbed operators. A class of the regularization parameter choice strategies that lead to optimal convergence rates are proposed.展开更多
In this paper, we define a kind of new Sobolev spaces, the relative Sobolev spaces Wk,p0(Ω,∑). Then an elliptic partial differential equation of the second order with an ill-posed boundary is discussed. By utilizing...In this paper, we define a kind of new Sobolev spaces, the relative Sobolev spaces Wk,p0(Ω,∑). Then an elliptic partial differential equation of the second order with an ill-posed boundary is discussed. By utilizing the ideal of the generalized inverse of an operator, we introduce the generalized solution of the ill-posed boundary problem. Eventually, the connection between the generalized inverse and the generalized solution is studied. In this way, the non-instability of the minimal normal least square solution of the ill-posed boundary problem is avoided.展开更多
文摘In this paper, a modified Newton type iterative method is considered for ap- proximately solving ill-posed nonlinear operator equations involving m-accretive mappings in Banach space. Convergence rate of the method is obtained based on an a priori choice of the regularization parameter. Our analysis is not based on the sequential continuity of the normalized duality mapping.
基金Research was supported by the Jiang Xi Provincial Natural Science Foundation of China under Grant 0611005.
文摘Two dynamical system methods are studied for solving linear ill-posed problems with both operator and right-hand nonexact. The methods solve a Cauchy problem for a linear operator equation which possesses a global solution. The limit of the global solution at infinity solves the original linear equation. Moreover, we also present a convergent iterative process for solving the Cauchy problem.
基金The NSF(0611005)of Jiangxi Province and the SF(2007293)of Jiangxi Provincial Education Department.
文摘In this paper we develop two multilevel iteration methods for solving linear systems resulting from the Galerkin method and Tikhonov regularization for linear ill-posed problems. The two algorithms and their convergence analyses are presented in an abstract framework.
文摘It is considered that the Tikhonov regularization with closed operators for solving linear operator equations of the first kind in the presence of perturbed operators. A class of the regularization parameter choice strategies that lead to optimal convergence rates are proposed.
基金This work was supported by the National Natural Science Foundation of China(Grant No.10171087)the Science Foundation of Jiangsu Province(Grant No.01KJD110010).
文摘In this paper, we define a kind of new Sobolev spaces, the relative Sobolev spaces Wk,p0(Ω,∑). Then an elliptic partial differential equation of the second order with an ill-posed boundary is discussed. By utilizing the ideal of the generalized inverse of an operator, we introduce the generalized solution of the ill-posed boundary problem. Eventually, the connection between the generalized inverse and the generalized solution is studied. In this way, the non-instability of the minimal normal least square solution of the ill-posed boundary problem is avoided.
基金Supported by the National Natural Science Foundation of China(60572125)the Basic Scientific Research Foundation of Harbin Engineering University(002110260736)