Many image inverse problems are ill-posed for no unique solutions. Most of them have incommensurable or mixed-type objectives. In this study, a multi-objective optimization framework is introduced to model such ill-po...Many image inverse problems are ill-posed for no unique solutions. Most of them have incommensurable or mixed-type objectives. In this study, a multi-objective optimization framework is introduced to model such ill-posed inverse problems. The conflicting objectives are designed according to the properties of ill-posedness and certain techniques. Multi-objective evolutionary algorithms have capability to optimize multiple objectives simultaneously and obtain a set of trade-off solutions. For that reason, we use multi-objective evolutionary algorithms to keep the trade-off between these objectives for image ill-posed problems. Two case studies of sparse reconstruction and change detection are imple- mented. In the case study of sparse reconstruction, the measurement error term and the sparsity term are optimized by multi-objective evolutionary algorithms, which aims at balancing the trade-off between enforcing sparsity and reducing measurement error. In the case study of image change detection, two conflicting objectives are constructed to keep the trade-off between robustness to noise and preserving the image details. Experimental results of the two case studies confirm the multi-objective optimization framework for ill-posed inverse problems in image processing is effective.展开更多
In the past decade,notable progress has been achieved in the development of the generalized finite difference method(GFDM).The underlying principle of GFDM involves dividing the domain into multiple sub-domains.Within...In the past decade,notable progress has been achieved in the development of the generalized finite difference method(GFDM).The underlying principle of GFDM involves dividing the domain into multiple sub-domains.Within each sub-domain,explicit formulas for the necessary partial derivatives of the partial differential equations(PDEs)can be obtained through the application of Taylor series expansion and moving-least square approximation methods.Consequently,the method generates a sparse coefficient matrix,exhibiting a banded structure,making it highly advantageous for large-scale engineering computations.In this study,we present the application of the GFDM to numerically solve inverse Cauchy problems in two-and three-dimensional piezoelectric structures.Through our preliminary numerical experiments,we demonstrate that the proposed GFDMapproach shows great promise for accurately simulating coupled electroelastic equations in inverse problems,even with 3%errors added to the input data.展开更多
To solve the Laplacian problems,we adopt a meshless method with the multiquadric radial basis function(MQRBF)as a basis whose center is distributed inside a circle with a fictitious radius.A maximal projection techniq...To solve the Laplacian problems,we adopt a meshless method with the multiquadric radial basis function(MQRBF)as a basis whose center is distributed inside a circle with a fictitious radius.A maximal projection technique is developed to identify the optimal shape factor and fictitious radius by minimizing a merit function.A sample function is interpolated by theMQ-RBF to provide a trial coefficient vector to compute the merit function.We can quickly determine the optimal values of the parameters within a preferred rage using the golden section search algorithm.The novel method provides the optimal values of parameters and,hence,an optimal MQ-RBF;the performance of the method is validated in numerical examples.Moreover,nonharmonic problems are transformed to the Poisson equation endowed with a homogeneous boundary condition;this can overcome the problem of these problems being ill-posed.The optimal MQ-RBF is extremely accurate.We further propose a novel optimal polynomial method to solve the nonharmonic problems,which achieves high precision up to an order of 10^(−11).展开更多
In this article,we consider the diffusion equation with multi-term time-fractional derivatives.We first derive,by a subordination principle for the solution,that the solution is positive when the initial value is non-...In this article,we consider the diffusion equation with multi-term time-fractional derivatives.We first derive,by a subordination principle for the solution,that the solution is positive when the initial value is non-negative.As an application,we prove the uniqueness of solution to an inverse problem of determination of the temporally varying source term by integral type information in a subdomain.Finally,several numerical experiments are presented to show the accuracy and efficiency of the algorithm.展开更多
In this paper, the inverse spectral problem of Sturm-Liouville operator with boundary conditions and jump conditions dependent on the spectral parameter is investigated. Firstly, the self-adjointness of the problem an...In this paper, the inverse spectral problem of Sturm-Liouville operator with boundary conditions and jump conditions dependent on the spectral parameter is investigated. Firstly, the self-adjointness of the problem and the eigenvalue properties are given, then the asymptotic formulas of eigenvalues and eigenfunctions are presented. Finally, the uniqueness theorems of the corresponding inverse problems are given by Weyl function theory and inverse spectral data approach.展开更多
This paper considers the estimation of an unknown function h that can be characterized as a solution to a nonlinear operator equation mapping between two infinite dimensional Hilbert spaces. The nonlinear operator is ...This paper considers the estimation of an unknown function h that can be characterized as a solution to a nonlinear operator equation mapping between two infinite dimensional Hilbert spaces. The nonlinear operator is unknown but can be consistently estimated, and its inverse is discontinuous, rendering the problem ill-posed. We establish the consistency for the class of estimators that are regularized using general lower semicompact penalty functions. We derive the optimal convergence rates of the estimators under the Hilbert scale norms. We apply our results to two important problems in economics and finance: (1) estimating the parameters of the pricing kernel of defaultable bonds; (2) recovering the volatility surface implied by option prices allowing for measurement error in the option prices and numerical error in the computation of the operator.展开更多
This study presents a method for the inverse analysis of fluid flow problems.The focus is put on accurately determining boundary conditions and characterizing the physical properties of granular media,such as permeabi...This study presents a method for the inverse analysis of fluid flow problems.The focus is put on accurately determining boundary conditions and characterizing the physical properties of granular media,such as permeability,and fluid components,like viscosity.The primary aim is to deduce either constant pressure head or pressure profiles,given the known velocity field at a steady-state flow through a conduit containing obstacles,including walls,spheres,and grains.The lattice Boltzmann method(LBM)combined with automatic differentiation(AD)(AD-LBM)is employed,with the help of the GPU-capable Taichi programming language.A lightweight tape is used to generate gradients for the entire LBM simulation,enabling end-to-end backpropagation.Our AD-LBM approach accurately estimates the boundary conditions for complex flow paths in porous media,leading to observed steady-state velocity fields and deriving macro-scale permeability and fluid viscosity.The method demonstrates significant advantages in terms of prediction accuracy and computational efficiency,making it a powerful tool for solving inverse fluid flow problems in various applications.展开更多
We consider the inverse electromagnetic scattering problem of determining the shape of a perfectly conducting core inside a penetrable chiral body. We prove the well-posedness of the corresponding direct scattering pr...We consider the inverse electromagnetic scattering problem of determining the shape of a perfectly conducting core inside a penetrable chiral body. We prove the well-posedness of the corresponding direct scattering problem by the variational method. We focus on a uniqueness result for the inverse scattering problem that is under what conditions an obstacle can be identified by the knowledge of the electric far-field pattern corresponding to all time-harmonic incident planes waves with a fixed wave number. To this end, we establish a chiral mixed reciprocity relation that connects the electric far-field pattern of a spherical wave with the scattered field of a plane wave.展开更多
A class of matrix inverse problems minimizing ‖A-‖ F on the linear manifold l A={A∈R n×m |‖AX-B‖ F=min} is considered. The perturbation analysis of the solution to these problems is carried out. Th...A class of matrix inverse problems minimizing ‖A-‖ F on the linear manifold l A={A∈R n×m |‖AX-B‖ F=min} is considered. The perturbation analysis of the solution to these problems is carried out. The perturbation upper bounds of the solution are given for both the consistent and inconsistent cases. The obtained preturbation upper bounds are with respect to the distance from the perturbed solution to the unperturbed manifold.展开更多
A novel method based on the relevance vector machine(RVM) for the inverse scattering problem is presented in this paper.The nonlinearity and the ill-posedness inherent in this problem are simultaneously considered.T...A novel method based on the relevance vector machine(RVM) for the inverse scattering problem is presented in this paper.The nonlinearity and the ill-posedness inherent in this problem are simultaneously considered.The nonlinearity is embodied in the relation between the scattered field and the target property,which can be obtained through the RVM training process.Besides,rather than utilizing regularization,the ill-posed nature of the inversion is naturally accounted for because the RVM can produce a probabilistic output.Simulation results reveal that the proposed RVM-based approach can provide comparative performances in terms of accuracy,convergence,robustness,generalization,and improved performance in terms of sparse property in comparison with the support vector machine(SVM) based approach.展开更多
Model error is one of the key factors restricting the accuracy of numerical weather prediction (NWP). Considering the continuous evolution of the atmosphere, the observed data (ignoring the measurement error) can ...Model error is one of the key factors restricting the accuracy of numerical weather prediction (NWP). Considering the continuous evolution of the atmosphere, the observed data (ignoring the measurement error) can be viewed as a series of solutions of an accurate model governing the actual atmosphere. Model error is represented as an unknown term in the accurate model, thus NWP can be considered as an inverse problem to uncover the unknown error term. The inverse problem models can absorb long periods of observed data to generate model error correction procedures. They thus resolve the deficiency and faultiness of the NWP schemes employing only the initial-time data. In this study we construct two inverse problem models to estimate and extrapolate the time-varying and spatial-varying model errors in both the historical and forecast periods by using recent observations and analogue phenomena of the atmosphere. Numerical experiment on Burgers' equation has illustrated the substantial forecast improvement using inverse problem algorithms. The proposed inverse problem methods of suppressing NWP errors will be useful in future high accuracy applications of NWP.展开更多
This paper presents an inverse problem in analytical dynamics. The inverse problem is to construct the Lagrangian when the integrals of a system are given. Firstly, the differential equations are obtained by using the...This paper presents an inverse problem in analytical dynamics. The inverse problem is to construct the Lagrangian when the integrals of a system are given. Firstly, the differential equations are obtained by using the time derivative of the integrals. Secondly, the differential equations can be written in the Lagrange equations under certain conditions and the Lagrangian can be obtained. Finally, two examples are given to illustrate the application of the result.展开更多
Errors inevitably exist in numerical weather prediction (NWP) due to imperfect numeric and physical parameterizations. To eliminate these errors, by considering NWP as an inverse problem, an unknown term in the pred...Errors inevitably exist in numerical weather prediction (NWP) due to imperfect numeric and physical parameterizations. To eliminate these errors, by considering NWP as an inverse problem, an unknown term in the prediction equations can be estimated inversely by using the past data, which are presumed to represent the imperfection of the NWP model (model error, denoted as ME). In this first paper of a two-part series, an iteration method for obtaining the MEs in past intervals is presented, and the results from testing its convergence in idealized experiments are reported. Moreover, two batches of iteration tests were applied in the global forecast system of the Global and Regional Assimilation and Prediction System (GRAPES-GFS) for July-August 2009 and January-February 2010. The datasets associated with the initial conditions and sea surface temperature (SST) were both based on NCEP (National Centers for Environmental Prediction) FNL (final) data. The results showed that 6th h forecast errors were reduced to 10% of their original value after a 20-step iteration. Then, off-line forecast error corrections were estimated linearly based on the 2-month mean MEs and compared with forecast errors. The estimated error corrections agreed well with the forecast errors, but the linear growth rate of the estimation was steeper than the forecast error. The advantage of this iteration method is that the MEs can provide the foundation for online correction. A larger proportion of the forecast errors can be expected to be canceled out by properly introducing the model error correction into GRAPES-GFS.展开更多
The spectral distribution exp( ), where {} are the eigenvalues of the negative Laplacian -△=- in the (x^1,x^2)-plane, is studied for a variety of domains, where -∞< t <∞ and i=(1/2)(-1) . The dependence of (...The spectral distribution exp( ), where {} are the eigenvalues of the negative Laplacian -△=- in the (x^1,x^2)-plane, is studied for a variety of domains, where -∞< t <∞ and i=(1/2)(-1) . The dependence of (t)on the connectivity of a domain and the boundary conditions are analyzed. Particular attention is given to a general bounded domain Ω in R^2 with a smooth boundary Ω, where a finite number of piecewise smooth Dirichlet, Neumann and Robin boundary conditions on the piecewise smooth parts Γj(j = 1,……,n) of Ω are considered such that Some geometrical properties of Ω(e.g., the area of Ω, the total lengths of the boundary, the curvature of its boundary, etc.) are determined, from the asymptotic expansions of (t) for |t| → 0.展开更多
Wavelet network, a class of neural network consisting of wavelets, is proposed to solve the inverse kinematics problem in robotic manipulator. A wavelet network suitable for dealing with multi-input and multi-output s...Wavelet network, a class of neural network consisting of wavelets, is proposed to solve the inverse kinematics problem in robotic manipulator. A wavelet network suitable for dealing with multi-input and multi-output system is constructed. The network is optimized by reducing the number of wavelets handling large dimension problem according to the sample data. The algorithms for sparseness analysis of input data and fitting wavelets to the output data with orthogonal method are introduced. Then Levenberg-Marquardt algorithm is used to train the network. Simulation results showed that this method is capable of solving the inverse kinematics problem for PUMA560.展开更多
This paper researches the following inverse eigenvalue problem for arrow-like matrices. Give two characteristic pairs, get a generalized arrow-like matrix, let the two characteristic pairs are the characteristic pairs...This paper researches the following inverse eigenvalue problem for arrow-like matrices. Give two characteristic pairs, get a generalized arrow-like matrix, let the two characteristic pairs are the characteristic pairs of this generalized arrow-like matrix. The expression and an algorithm of the solution of the problem is given, and a numerical example is provided.展开更多
Newton type methods are one kind of the efficient methods to solve nonlinear ill-posed problems, which have attracted extensive attention. However, computational cost of Newton type methods is high because practical p...Newton type methods are one kind of the efficient methods to solve nonlinear ill-posed problems, which have attracted extensive attention. However, computational cost of Newton type methods is high because practical problems are complicated. We propose a mixed Newton-Tikhonov method, i.e., one step Newton-Tikhonov method with several other steps of simplified Newton-Tikhonov method. Convergence and stability of this method are proved under some conditions. Numerical experiments show that the proposed method has obvious advantages over the classical Newton method in terms of computational costs.展开更多
To determine the wall thickness, conductivity and permeability of a ferromagnetic plate, an inverse problem is established with measured values and calculated values of time-domain induced voltage in pulsed eddy curre...To determine the wall thickness, conductivity and permeability of a ferromagnetic plate, an inverse problem is established with measured values and calculated values of time-domain induced voltage in pulsed eddy current testing on the plate. From time-domain analytical expressions of the partial derivatives of induced voltage with respect to parameters,it is deduced that the partial derivatives are approximately linearly dependent. Then the constraints of these parameters are obtained by solving a partial linear differential equation. It is indicated that only the product of conductivity and wall thickness, and the product of relative permeability and wall thickness can be determined accurately through the inverse problem with time-domain induced voltage. In the practical testing, supposing the conductivity of the ferromagnetic plate under test is a fixed value, and then the relative variation of wall thickness between two testing points can be calculated via the ratio of the corresponding inversion results of the product of conductivity and wall thickness. Finally, this method for wall thickness measurement is verified by the experiment results of a carbon steel plate.展开更多
This paper is concerned with the inverse scattering problems for Schrdinger equations with compactly supported potentials.For purpose of reconstructing the support of the potential,we derive a factorization of the sca...This paper is concerned with the inverse scattering problems for Schrdinger equations with compactly supported potentials.For purpose of reconstructing the support of the potential,we derive a factorization of the scattering amplitude operator A and prove that the ranges of (A* A) ^1/4 and G which maps more general incident fields than plane waves into the scattering amplitude coincide.As an application we characterize the support of the potential using only the spectral data of the operator A.展开更多
In an indentation test,the effective Young's modulus of a film/substrate bilayer heterostructure varies with the indentation depth,a phenomenon known as the substrate effect.In previous studies investigating this,...In an indentation test,the effective Young's modulus of a film/substrate bilayer heterostructure varies with the indentation depth,a phenomenon known as the substrate effect.In previous studies investigating this,only the Young's modulus of the film was unknown.Once the effective Young's modulus of a film/substrate structure is determined at a given contact depth,the Young's modulus of the film can be uniquely determined,i.e.,there is a one-to-one relation between the Young's modulus of the film and the film/substrate effective Young's modulus.However,at times it is extremely challenging or even impossible to measure the film thickness.Furthermore,the precise definition of the layer/film thickness for a two-dimensional material can be problematic.In the current study,therefore,the thickness of the film and its Young's modulus are treated as two unknowns that must be determined.Unlike the case with one unknown,there are infinite combinations of film thickness and Young's modulus which can yield the same effective Young's modulus for the film/substrate.An inverse problem is formulated and solved to extract the Young's modulus and thickness of the film from the indentation depth-load curve.The accuracy and robustness of the inverse problem-solving method are also demonstrated.展开更多
基金This work was supported by the National Natural Science Foundation of China (Grant no. 61273317 and 61422209), the National Top Youth Talents Program of China, the Specialized Research Fund for the Doctoral Program of Higher Education (Grant no. 20130203110011) and the Fundamental Research Fund for the Central Universities (Grant no. K5051202053).
文摘Many image inverse problems are ill-posed for no unique solutions. Most of them have incommensurable or mixed-type objectives. In this study, a multi-objective optimization framework is introduced to model such ill-posed inverse problems. The conflicting objectives are designed according to the properties of ill-posedness and certain techniques. Multi-objective evolutionary algorithms have capability to optimize multiple objectives simultaneously and obtain a set of trade-off solutions. For that reason, we use multi-objective evolutionary algorithms to keep the trade-off between these objectives for image ill-posed problems. Two case studies of sparse reconstruction and change detection are imple- mented. In the case study of sparse reconstruction, the measurement error term and the sparsity term are optimized by multi-objective evolutionary algorithms, which aims at balancing the trade-off between enforcing sparsity and reducing measurement error. In the case study of image change detection, two conflicting objectives are constructed to keep the trade-off between robustness to noise and preserving the image details. Experimental results of the two case studies confirm the multi-objective optimization framework for ill-posed inverse problems in image processing is effective.
基金the Natural Science Foundation of Shandong Province of China(Grant No.ZR2022YQ06)the Development Plan of Youth Innovation Team in Colleges and Universities of Shandong Province(Grant No.2022KJ140)the Key Laboratory ofRoad Construction Technology and Equipment(Chang’an University,No.300102253502).
文摘In the past decade,notable progress has been achieved in the development of the generalized finite difference method(GFDM).The underlying principle of GFDM involves dividing the domain into multiple sub-domains.Within each sub-domain,explicit formulas for the necessary partial derivatives of the partial differential equations(PDEs)can be obtained through the application of Taylor series expansion and moving-least square approximation methods.Consequently,the method generates a sparse coefficient matrix,exhibiting a banded structure,making it highly advantageous for large-scale engineering computations.In this study,we present the application of the GFDM to numerically solve inverse Cauchy problems in two-and three-dimensional piezoelectric structures.Through our preliminary numerical experiments,we demonstrate that the proposed GFDMapproach shows great promise for accurately simulating coupled electroelastic equations in inverse problems,even with 3%errors added to the input data.
基金supported by the the National Science and Technology Council(Grant Number:NSTC 112-2221-E239-022).
文摘To solve the Laplacian problems,we adopt a meshless method with the multiquadric radial basis function(MQRBF)as a basis whose center is distributed inside a circle with a fictitious radius.A maximal projection technique is developed to identify the optimal shape factor and fictitious radius by minimizing a merit function.A sample function is interpolated by theMQ-RBF to provide a trial coefficient vector to compute the merit function.We can quickly determine the optimal values of the parameters within a preferred rage using the golden section search algorithm.The novel method provides the optimal values of parameters and,hence,an optimal MQ-RBF;the performance of the method is validated in numerical examples.Moreover,nonharmonic problems are transformed to the Poisson equation endowed with a homogeneous boundary condition;this can overcome the problem of these problems being ill-posed.The optimal MQ-RBF is extremely accurate.We further propose a novel optimal polynomial method to solve the nonharmonic problems,which achieves high precision up to an order of 10^(−11).
基金supported by National Natural Science Foundation of China(12271277)the Open Research Fund of Key Laboratory of Nonlinear Analysis&Applications(Central China Normal University),Ministry of Education,China.
文摘In this article,we consider the diffusion equation with multi-term time-fractional derivatives.We first derive,by a subordination principle for the solution,that the solution is positive when the initial value is non-negative.As an application,we prove the uniqueness of solution to an inverse problem of determination of the temporally varying source term by integral type information in a subdomain.Finally,several numerical experiments are presented to show the accuracy and efficiency of the algorithm.
文摘In this paper, the inverse spectral problem of Sturm-Liouville operator with boundary conditions and jump conditions dependent on the spectral parameter is investigated. Firstly, the self-adjointness of the problem and the eigenvalue properties are given, then the asymptotic formulas of eigenvalues and eigenfunctions are presented. Finally, the uniqueness theorems of the corresponding inverse problems are given by Weyl function theory and inverse spectral data approach.
基金supported by US National Science Foundation (Grant No. SES-0631613)the Cowles Foundation for Research in Economics
文摘This paper considers the estimation of an unknown function h that can be characterized as a solution to a nonlinear operator equation mapping between two infinite dimensional Hilbert spaces. The nonlinear operator is unknown but can be consistently estimated, and its inverse is discontinuous, rendering the problem ill-posed. We establish the consistency for the class of estimators that are regularized using general lower semicompact penalty functions. We derive the optimal convergence rates of the estimators under the Hilbert scale norms. We apply our results to two important problems in economics and finance: (1) estimating the parameters of the pricing kernel of defaultable bonds; (2) recovering the volatility surface implied by option prices allowing for measurement error in the option prices and numerical error in the computation of the operator.
文摘This study presents a method for the inverse analysis of fluid flow problems.The focus is put on accurately determining boundary conditions and characterizing the physical properties of granular media,such as permeability,and fluid components,like viscosity.The primary aim is to deduce either constant pressure head or pressure profiles,given the known velocity field at a steady-state flow through a conduit containing obstacles,including walls,spheres,and grains.The lattice Boltzmann method(LBM)combined with automatic differentiation(AD)(AD-LBM)is employed,with the help of the GPU-capable Taichi programming language.A lightweight tape is used to generate gradients for the entire LBM simulation,enabling end-to-end backpropagation.Our AD-LBM approach accurately estimates the boundary conditions for complex flow paths in porous media,leading to observed steady-state velocity fields and deriving macro-scale permeability and fluid viscosity.The method demonstrates significant advantages in terms of prediction accuracy and computational efficiency,making it a powerful tool for solving inverse fluid flow problems in various applications.
文摘We consider the inverse electromagnetic scattering problem of determining the shape of a perfectly conducting core inside a penetrable chiral body. We prove the well-posedness of the corresponding direct scattering problem by the variational method. We focus on a uniqueness result for the inverse scattering problem that is under what conditions an obstacle can be identified by the knowledge of the electric far-field pattern corresponding to all time-harmonic incident planes waves with a fixed wave number. To this end, we establish a chiral mixed reciprocity relation that connects the electric far-field pattern of a spherical wave with the scattered field of a plane wave.
文摘A class of matrix inverse problems minimizing ‖A-‖ F on the linear manifold l A={A∈R n×m |‖AX-B‖ F=min} is considered. The perturbation analysis of the solution to these problems is carried out. The perturbation upper bounds of the solution are given for both the consistent and inconsistent cases. The obtained preturbation upper bounds are with respect to the distance from the perturbed solution to the unperturbed manifold.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61071022)the Graduate Student Research and Innovation Program of Jiangsu Province,China (Grant No. CXZZ11-0381)
文摘A novel method based on the relevance vector machine(RVM) for the inverse scattering problem is presented in this paper.The nonlinearity and the ill-posedness inherent in this problem are simultaneously considered.The nonlinearity is embodied in the relation between the scattered field and the target property,which can be obtained through the RVM training process.Besides,rather than utilizing regularization,the ill-posed nature of the inversion is naturally accounted for because the RVM can produce a probabilistic output.Simulation results reveal that the proposed RVM-based approach can provide comparative performances in terms of accuracy,convergence,robustness,generalization,and improved performance in terms of sparse property in comparison with the support vector machine(SVM) based approach.
基金Project supported by the Special Scientific Research Project for Public Interest(Grant No.GYHY201206009)the Fundamental Research Funds for the Central Universities,China(Grant Nos.lzujbky-2012-13 and lzujbky-2013-11)the National Basic Research Program of China(Grant Nos.2012CB955902 and 2013CB430204)
文摘Model error is one of the key factors restricting the accuracy of numerical weather prediction (NWP). Considering the continuous evolution of the atmosphere, the observed data (ignoring the measurement error) can be viewed as a series of solutions of an accurate model governing the actual atmosphere. Model error is represented as an unknown term in the accurate model, thus NWP can be considered as an inverse problem to uncover the unknown error term. The inverse problem models can absorb long periods of observed data to generate model error correction procedures. They thus resolve the deficiency and faultiness of the NWP schemes employing only the initial-time data. In this study we construct two inverse problem models to estimate and extrapolate the time-varying and spatial-varying model errors in both the historical and forecast periods by using recent observations and analogue phenomena of the atmosphere. Numerical experiment on Burgers' equation has illustrated the substantial forecast improvement using inverse problem algorithms. The proposed inverse problem methods of suppressing NWP errors will be useful in future high accuracy applications of NWP.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10272021, 10572021) and the Doctoral Programme Foundation of Institution of Higher Education of China (Grant No 20040007022).
文摘This paper presents an inverse problem in analytical dynamics. The inverse problem is to construct the Lagrangian when the integrals of a system are given. Firstly, the differential equations are obtained by using the time derivative of the integrals. Secondly, the differential equations can be written in the Lagrange equations under certain conditions and the Lagrangian can be obtained. Finally, two examples are given to illustrate the application of the result.
基金funded by the National Natural Science Foundation Science Fund for Youth (Grant No.41405095)the Key Projects in the National Science and Technology Pillar Program during the Twelfth Fiveyear Plan Period (Grant No.2012BAC22B02)the National Natural Science Foundation Science Fund for Creative Research Groups (Grant No.41221064)
文摘Errors inevitably exist in numerical weather prediction (NWP) due to imperfect numeric and physical parameterizations. To eliminate these errors, by considering NWP as an inverse problem, an unknown term in the prediction equations can be estimated inversely by using the past data, which are presumed to represent the imperfection of the NWP model (model error, denoted as ME). In this first paper of a two-part series, an iteration method for obtaining the MEs in past intervals is presented, and the results from testing its convergence in idealized experiments are reported. Moreover, two batches of iteration tests were applied in the global forecast system of the Global and Regional Assimilation and Prediction System (GRAPES-GFS) for July-August 2009 and January-February 2010. The datasets associated with the initial conditions and sea surface temperature (SST) were both based on NCEP (National Centers for Environmental Prediction) FNL (final) data. The results showed that 6th h forecast errors were reduced to 10% of their original value after a 20-step iteration. Then, off-line forecast error corrections were estimated linearly based on the 2-month mean MEs and compared with forecast errors. The estimated error corrections agreed well with the forecast errors, but the linear growth rate of the estimation was steeper than the forecast error. The advantage of this iteration method is that the MEs can provide the foundation for online correction. A larger proportion of the forecast errors can be expected to be canceled out by properly introducing the model error correction into GRAPES-GFS.
文摘The spectral distribution exp( ), where {} are the eigenvalues of the negative Laplacian -△=- in the (x^1,x^2)-plane, is studied for a variety of domains, where -∞< t <∞ and i=(1/2)(-1) . The dependence of (t)on the connectivity of a domain and the boundary conditions are analyzed. Particular attention is given to a general bounded domain Ω in R^2 with a smooth boundary Ω, where a finite number of piecewise smooth Dirichlet, Neumann and Robin boundary conditions on the piecewise smooth parts Γj(j = 1,……,n) of Ω are considered such that Some geometrical properties of Ω(e.g., the area of Ω, the total lengths of the boundary, the curvature of its boundary, etc.) are determined, from the asymptotic expansions of (t) for |t| → 0.
文摘Wavelet network, a class of neural network consisting of wavelets, is proposed to solve the inverse kinematics problem in robotic manipulator. A wavelet network suitable for dealing with multi-input and multi-output system is constructed. The network is optimized by reducing the number of wavelets handling large dimension problem according to the sample data. The algorithms for sparseness analysis of input data and fitting wavelets to the output data with orthogonal method are introduced. Then Levenberg-Marquardt algorithm is used to train the network. Simulation results showed that this method is capable of solving the inverse kinematics problem for PUMA560.
文摘This paper researches the following inverse eigenvalue problem for arrow-like matrices. Give two characteristic pairs, get a generalized arrow-like matrix, let the two characteristic pairs are the characteristic pairs of this generalized arrow-like matrix. The expression and an algorithm of the solution of the problem is given, and a numerical example is provided.
基金supported by the Key Disciplines of Shanghai Municipality (Operations Research & Cybernetics, No. S30104)Shanghai Leading Academic Discipline Project (No. J50101)
文摘Newton type methods are one kind of the efficient methods to solve nonlinear ill-posed problems, which have attracted extensive attention. However, computational cost of Newton type methods is high because practical problems are complicated. We propose a mixed Newton-Tikhonov method, i.e., one step Newton-Tikhonov method with several other steps of simplified Newton-Tikhonov method. Convergence and stability of this method are proved under some conditions. Numerical experiments show that the proposed method has obvious advantages over the classical Newton method in terms of computational costs.
基金supported by the National Defense Basic Technology Research Program of China(Grant No.Z132013T001)
文摘To determine the wall thickness, conductivity and permeability of a ferromagnetic plate, an inverse problem is established with measured values and calculated values of time-domain induced voltage in pulsed eddy current testing on the plate. From time-domain analytical expressions of the partial derivatives of induced voltage with respect to parameters,it is deduced that the partial derivatives are approximately linearly dependent. Then the constraints of these parameters are obtained by solving a partial linear differential equation. It is indicated that only the product of conductivity and wall thickness, and the product of relative permeability and wall thickness can be determined accurately through the inverse problem with time-domain induced voltage. In the practical testing, supposing the conductivity of the ferromagnetic plate under test is a fixed value, and then the relative variation of wall thickness between two testing points can be calculated via the ratio of the corresponding inversion results of the product of conductivity and wall thickness. Finally, this method for wall thickness measurement is verified by the experiment results of a carbon steel plate.
基金The Major State Basic Research Development Program Grant (2005CB321701)the Heilongjiang Education Committee Grant (11551364) of China
文摘This paper is concerned with the inverse scattering problems for Schrdinger equations with compactly supported potentials.For purpose of reconstructing the support of the potential,we derive a factorization of the scattering amplitude operator A and prove that the ranges of (A* A) ^1/4 and G which maps more general incident fields than plane waves into the scattering amplitude coincide.As an application we characterize the support of the potential using only the spectral data of the operator A.
基金This research was supported by the National Natural Science Foundation of China(11772335,21622304,61674045,and 21203038)by the Ministry of Science and Technology(MOST)of China(2016YFA0200700).Z.H.Cheng was supported by the Distinguished Technical Talents Project and the Youth Innovation Promotion Association of Chinese Academy of Sciences.
文摘In an indentation test,the effective Young's modulus of a film/substrate bilayer heterostructure varies with the indentation depth,a phenomenon known as the substrate effect.In previous studies investigating this,only the Young's modulus of the film was unknown.Once the effective Young's modulus of a film/substrate structure is determined at a given contact depth,the Young's modulus of the film can be uniquely determined,i.e.,there is a one-to-one relation between the Young's modulus of the film and the film/substrate effective Young's modulus.However,at times it is extremely challenging or even impossible to measure the film thickness.Furthermore,the precise definition of the layer/film thickness for a two-dimensional material can be problematic.In the current study,therefore,the thickness of the film and its Young's modulus are treated as two unknowns that must be determined.Unlike the case with one unknown,there are infinite combinations of film thickness and Young's modulus which can yield the same effective Young's modulus for the film/substrate.An inverse problem is formulated and solved to extract the Young's modulus and thickness of the film from the indentation depth-load curve.The accuracy and robustness of the inverse problem-solving method are also demonstrated.