Illegal construction has caused serious harm around the world. However, current methods are difficult to detect illegal construction activities in time, and the calculation complexity and the parameters of them are la...Illegal construction has caused serious harm around the world. However, current methods are difficult to detect illegal construction activities in time, and the calculation complexity and the parameters of them are large. To solve these challenges, a new and unique detection method is proposed, which detects objects related to illegal buildings in time to discover illegal construction activities. Meanwhile, a new dataset and a high-precision and lightweight detector are proposed. The proposed detector is based on the algorithm You Only Look Once (YOLOv4). The use of DenseNet as the backbone of YDHNet enables better feature transfer and reuse, improves detection accuracy, and reduces computational costs. Meanwhile, depthwise separable convolution is employed to lightweight the neck and head to further reduce computational costs. Furthermore, H-swish is utilized to enhance non-linear feature extraction and improve detection accuracy. Experimental results illustrate that YDHNet realizes a mean average precision of 89.60% on the proposed dataset, which is 3.78% higher than YOLOv4. The computational cost and parameter count of YDHNet are 26.22 GFLOPs and 16.18 MB, respectively. Compared to YOLOv4 and other detectors, YDHNet not only has lower computational costs and higher detection accuracy, but also timely identifies illegal construction objects and automatically detects illegal construction activities.展开更多
基金supported in part by the National Natural Science Foundation of China(Nos.62177034 and 61972046).
文摘Illegal construction has caused serious harm around the world. However, current methods are difficult to detect illegal construction activities in time, and the calculation complexity and the parameters of them are large. To solve these challenges, a new and unique detection method is proposed, which detects objects related to illegal buildings in time to discover illegal construction activities. Meanwhile, a new dataset and a high-precision and lightweight detector are proposed. The proposed detector is based on the algorithm You Only Look Once (YOLOv4). The use of DenseNet as the backbone of YDHNet enables better feature transfer and reuse, improves detection accuracy, and reduces computational costs. Meanwhile, depthwise separable convolution is employed to lightweight the neck and head to further reduce computational costs. Furthermore, H-swish is utilized to enhance non-linear feature extraction and improve detection accuracy. Experimental results illustrate that YDHNet realizes a mean average precision of 89.60% on the proposed dataset, which is 3.78% higher than YOLOv4. The computational cost and parameter count of YDHNet are 26.22 GFLOPs and 16.18 MB, respectively. Compared to YOLOv4 and other detectors, YDHNet not only has lower computational costs and higher detection accuracy, but also timely identifies illegal construction objects and automatically detects illegal construction activities.