There are two aspects in the study of irregular mixed-layer clay minerals: one is the kinds and ratios of their basic structural unit layers and the other is the junction probabilities of the unit layers. Irregular mi...There are two aspects in the study of irregular mixed-layer clay minerals: one is the kinds and ratios of their basic structural unit layers and the other is the junction probabilities of the unit layers. Irregular mixed-layer illite/smectite clay minerals (I/S) are widespread in nature. While studying the clay minerals from the Permian-Triassic (P/T) boundary bed, the authors found that I/S clay minerals are developed in all P/T boundary clay layers in areas from the northwest to southeast of China. Systematic mineralogical studies of the I/S clay minerals from Hunan, Hubei, Sichuan and Zhejiang were made by means of X-ray, infrared spectroscopic, electron microscopic and chemical analyses and a deepened study of the stacking sequences of their structural unit layers was conducted by the MacEwan one—dimentional direct Fourier transform. It was found that the stacking of the illite and smectite crystal layers along the c axis can be derived from Fibonacci sequences. Hence, the authors propose that such I/S clay minerals are possessed of two—dimentional crystal lattice and one—dimentional quasicrystal lattice.展开更多
The clay mineralogy of the clay intervals interbedded with siliceous mudstones across the Permian-Triassic boundary (PTB) in Pengda, Guiyang, Guizhou province, was investigated by X-ray diffraction (XRD) and high reso...The clay mineralogy of the clay intervals interbedded with siliceous mudstones across the Permian-Triassic boundary (PTB) in Pengda, Guiyang, Guizhou province, was investigated by X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). The clay mineral assemblages of the sediments are mainly I/S clays and minor smectite, kaolinite, and illite as reveled by XRD analyses. The peak-shape parameters BB1 and BB2 of I/S clays of the representative clay bed PL-01 are 4.7° and 4.4°, and the peak position of the low angle reflection is at 6.8° 2θ (13.6 ), suggesting that the I/S clays has a IS type of ordering. However, the presence of multi-order reflections and their intensities are different from those of completely ordered 1∶1 mixed-layer I/S clay rectorite, indicating that I/S clays of the Pengda section have partially ordered IS structures. HRTEM observations show that most of the I/S clays exhibit an IS stacking ordering. However, in some areas within a IS particle, smectite layer is observed in doublets, triplets, and quartets, which are interstratified by various amounts of illite layers, suggesting the presence of other irregular stacking in addition to the major 1∶1 IS ordered stacking. Transformation of smectite layer into illite layers is also observed in the I/S clays, suggesting that the Pengda I/S clays are derived from smectite illitization, in good agreement with the clay mineral assemblage. The I/S clays of the Pengda section contain up to 45% to 95% smectite layer, the notably higher contents of smectite layer relative to those of other PTB stratigraphic sets in south China can be attributed to difference in alteration and smectite illitization processes due to different sedimentary environments.展开更多
X-ray diffraction methods for estimating the metamorphic grade of diagenetic, anchizone and epizone in metapelites are reviewed and applied to samples from a 7000 m+ borehole in western China and surface samples from...X-ray diffraction methods for estimating the metamorphic grade of diagenetic, anchizone and epizone in metapelites are reviewed and applied to samples from a 7000 m+ borehole in western China and surface samples from the surrounding Zoige area. Kiibler's illite crystallinity (IC) measurements provide more consistent results than calculated values of percentage of illite in the I/S mixed layers and percentage of I/S mixed layers. Down-borehole IC values display a typical burial metamorphic relationship between stratigraphic level and IC. A method for preparing very low grade metamorphic maps is described, and isograds plotted on a regional geological map at selected values of IC, delineating a high temperature diagenetic zone, an anchizone, and an epizone. The map shows that IC values are controlled by stratigraphic level in the north of the study area (i.e. burial metamorphism), and proximity to an igneous intrusive body in the south (i.e. contact metamorphism).展开更多
The oil-rich Damintun Depression is located in the Liaohe Basin, Northeast China, and was formed during the Paleogene. The major oil-producing strata in the depression are mudstone and shale. To explore the burial dia...The oil-rich Damintun Depression is located in the Liaohe Basin, Northeast China, and was formed during the Paleogene. The major oil-producing strata in the depression are mudstone and shale. To explore the burial diagenetic history of the basin and the formation thresholds of hydrocarbons, the characters of the kaolinite subgroup minerals and mixed-layer illite/smectite in the mudstone and the shale are studied by using X-ray diffraction, electron probe, scanning electron microscope, and Fourier infrared spectrum. The kaolinite subgroup consists of kaolinite and halloysite. The kaolinite is flake-like or vermiform-like. The halloysite is in long tubular shape and its length is related to its iron content. A longer tube has lower iron content. The crystallinity of kaolinite is 0.40 ~20, and its degree of order increases from 0.03 to 1.17 with the burial depth. Kaolinite is in disorder when the buried depth is less than or equal to 2479 m, and it is partially ordered when the buried depth is greater than 2479 m. Kaolinite is supposed to turn into dickite when the depth is greater than 2550 m, but low penetrability and low poros- ity of the shale and mudstone prevent such a change. The mixed-layer illite/smectite changes from disorder to order continually as the buried depth increases. Its disorder (RoI/S), as defined by illite layer content (I%), is smaller than 50% at depths less than 2550.25 m. Based on Hoffman & Hower's model, the paleo-geothermal gradients of 3.37-3.76℃/100 m (3.57℃/100 m on average) can be derived in the Paleocene Damintun Depression, which is significantly higher than the present geothermal gradient (2.9℃00 m). The threshold depth of the oil formation in the depression is about 2550 m.展开更多
A series of mesoporous silicate adsorbents with superior adsorption performance for hazardous chlortetracycline(CTC) were sucessfully prepared via a facile one-pot hydrothermal reaction using low-cost illite/smectit...A series of mesoporous silicate adsorbents with superior adsorption performance for hazardous chlortetracycline(CTC) were sucessfully prepared via a facile one-pot hydrothermal reaction using low-cost illite/smectite(IS) clay,sodium silicate and magnesium sulfate as the starting materials.In this process,IS clay was "teared up" and then "rebuilt" as new porous silicate adsorbent with high specific surface area of 363.52 m^2/g(about 8.7 folds higher than that of IS clay) and very negative Zeta potential(- 34.5 mV).The inert Si- O- Si(Mg,Al) bonds in crystal framework of IS were broken to form Si(Al)- O^- groups with good adsorption activity,which greatly increased the adsorption sites served for holding much CTC molecules.Systematic evaluation on adsorption properties reveals the optimal silicate adsorbent can adsorb 408.81 mg/g of CTC(only 159.7 mg/g for raw IS clay) and remove 99.3%(only 46.5%for raw IS clay) of CTC from 100 mg/L initial solution(pH 3.51;adsorption temperature 30℃;adsorbent dosage,3 g/L).The adsorption behaviors of CTC onto the adsorbent follows the Langmuir isotherm model,Temkin equation and pseudo second-order kinetic model.The mesopore adsorption,electrostatic attraction and chemical association mainly contribute to the enhanced adsorption properties.As a whole,the high-efficient silicate adsorbent could be candidates to remove CTC from the wastewater with high amounts of CTC.展开更多
THE progressive transformation of smectite into illite via mixed-layer illite/smectite (I/S) phases occurs during hydrothermal alteration, burial diagenesis and regional metamorphism. The proportion of illite or smect...THE progressive transformation of smectite into illite via mixed-layer illite/smectite (I/S) phases occurs during hydrothermal alteration, burial diagenesis and regional metamorphism. The proportion of illite or smectite (also indicated by their expandability) and ordering of I/S, interpreted by X-ray powder diffraction (XRD) profiles, have long been used as geothermometers in sedimentary basins. It is found that R=1 ordering mixed-layer I/S still exists展开更多
The smectite to illite transformation in active geothermal systems of New Zealand can be simulated by a first_order reaction kinetic model, which provides direct estimates about the minumum ages of active geothermal s...The smectite to illite transformation in active geothermal systems of New Zealand can be simulated by a first_order reaction kinetic model, which provides direct estimates about the minumum ages of active geothermal systems themselves. The derived kinetic values show that the smectite to illite transformation is sensitive to both temperature and time.展开更多
Organic matter(OM)is intimately associated with minerals in clay-rich mudstones,leading to widespread organic-mineral interaction during hydrocarbon generation in argillaceous source rocks.What we are concerned is the...Organic matter(OM)is intimately associated with minerals in clay-rich mudstones,leading to widespread organic-mineral interaction during hydrocarbon generation in argillaceous source rocks.What we are concerned is the effects of the different mineral properties on hydrocarbon generation process and mechanism during mineral transformation.In this way,pyrolysis experiments with smectite-octadecanoic acid complexes(Sm-OA and Ex-Sm-OA)were conducted to analyze correlation of mineralogy and pyrolysis behaviors.Based on organicmineral interaction,hydrocarbon generation process was divided into three phases.At 200–300℃,collapse of smectite led to desorption of OM,resulting in high yield of resin and slight increase in saturates.Subsequently,enhanced smectite illitization at 350–450℃was accompanied with large amounts of saturates and a mere gaseous hydrocarbon.Featured by neoformed plagioclase,ankerite,and illite,500C saw plenty of asphaltene and methane-rich gaseous hydrocarbons,revealing cracking reactions of OM.Noteworthy is that saturated and gaseous hydrocarbons in Ex-Sm-OA were considerably more than that in Sm-OA during second and third phases.Quantitative calculation of hydrogen revealed organic hydrogen provided by cross-linking of OM could not balance hydrogen consumed by cracking reactions,but supply of inorganic hydrogen ensured cracking could readily occur and consequently greatly promoted hydrocarbon generation.Further investigating characteristics of mineralogy and pyrolytic products,as well as effects of solid acidity on hydrocarbon generation,we concluded desorption of OM and decarboxylation promoted by Lewis acid were dominated at 200–300C,resulting in lowdegree hydrocarbon generation.While high yield of saturated and gaseous hydrocarbons in second and third phases,together with occurrence of ankerite,indicated predominance of decarboxylation and hydrogenation promoted by Lewis and Brønsted acid,respectively.Variations in organic-mineral interactions indicated(1)the controls of mineral transformation on hydrocarbon generation process and mechanism include desorption,decarboxylation,and hydrogenation reactions;(2)clay minerals acted as reactants evolving together with OM rather than catalysts.These findings are profoundly significant for understanding the hydrocarbon generation mechanisms,organic-inorganic interactions,and carbon cycle.展开更多
In paper the role of excess pressures in cata- genic processes of the South-Caspian basin (SCB) is considered. The results of the carried out researches taking into account world ex- perience on the given problem allo...In paper the role of excess pressures in cata- genic processes of the South-Caspian basin (SCB) is considered. The results of the carried out researches taking into account world ex- perience on the given problem allow to con- clude, that SCB (mainly its deep-water part), as well as a number of other basins of the world with overpressures, is characterized by retarda- tion of processes cracking of kerogen and oil, and also reaction of transformation of clay minerals. Periodic intensification of these pro- cesses can provoke development of diapirs and mud volcanoes, which are the centers of pulse unloading of a hydrocarbon products from sys- tem. The conclusion about high prospects of revealing of hydrocarbon accumulations in deep buried deposits in overpressured basins is made.展开更多
Up till now all the clay mineral studies on the soils of the River Nile flood plain in Egypt could not trace the very rapid mineral change observed in these soils. So, the clay mineralogy of the River Nile flood plain...Up till now all the clay mineral studies on the soils of the River Nile flood plain in Egypt could not trace the very rapid mineral change observed in these soils. So, the clay mineralogy of the River Nile flood plain soils in Sohag region, Egypt, has been studied using the method of numerical analysis of X-ray diffraction recordings (curve decomposition) as a new, powerful tool for precise mineral identification. The X-ray patterns of the studied soil clay fraction show that 2:1 clay minerals are much more abundant than kaolinite and that this clay fraction contains fair amounts of K-feldspar and quartz. XRD pattems obtained on the 〈 2 μm fraction of the River Nile sediments indicate the presence of smectite, mixed-layer illite-expanding minerals, kaolinite, mica-illite and chlorite. The decomposed XRD patterns reveal significant changes in the mineralogy of the clays. The major clay phases present in the 4-11 20 range are well crystallized illite (10 A), poorly crystallized illite (10.2-10.4 A), two mixed-layer I-S (illite/smectite) minerals, one with a peak near 13.5 A (rich-smectite) and the other near 11 A (rich-illite).展开更多
基金A project supported by the National Natural Science Foundation of China (No. 4880082).
文摘There are two aspects in the study of irregular mixed-layer clay minerals: one is the kinds and ratios of their basic structural unit layers and the other is the junction probabilities of the unit layers. Irregular mixed-layer illite/smectite clay minerals (I/S) are widespread in nature. While studying the clay minerals from the Permian-Triassic (P/T) boundary bed, the authors found that I/S clay minerals are developed in all P/T boundary clay layers in areas from the northwest to southeast of China. Systematic mineralogical studies of the I/S clay minerals from Hunan, Hubei, Sichuan and Zhejiang were made by means of X-ray, infrared spectroscopic, electron microscopic and chemical analyses and a deepened study of the stacking sequences of their structural unit layers was conducted by the MacEwan one—dimentional direct Fourier transform. It was found that the stacking of the illite and smectite crystal layers along the c axis can be derived from Fibonacci sequences. Hence, the authors propose that such I/S clay minerals are possessed of two—dimentional crystal lattice and one—dimentional quasicrystal lattice.
文摘The clay mineralogy of the clay intervals interbedded with siliceous mudstones across the Permian-Triassic boundary (PTB) in Pengda, Guiyang, Guizhou province, was investigated by X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). The clay mineral assemblages of the sediments are mainly I/S clays and minor smectite, kaolinite, and illite as reveled by XRD analyses. The peak-shape parameters BB1 and BB2 of I/S clays of the representative clay bed PL-01 are 4.7° and 4.4°, and the peak position of the low angle reflection is at 6.8° 2θ (13.6 ), suggesting that the I/S clays has a IS type of ordering. However, the presence of multi-order reflections and their intensities are different from those of completely ordered 1∶1 mixed-layer I/S clay rectorite, indicating that I/S clays of the Pengda section have partially ordered IS structures. HRTEM observations show that most of the I/S clays exhibit an IS stacking ordering. However, in some areas within a IS particle, smectite layer is observed in doublets, triplets, and quartets, which are interstratified by various amounts of illite layers, suggesting the presence of other irregular stacking in addition to the major 1∶1 IS ordered stacking. Transformation of smectite layer into illite layers is also observed in the I/S clays, suggesting that the Pengda I/S clays are derived from smectite illitization, in good agreement with the clay mineral assemblage. The I/S clays of the Pengda section contain up to 45% to 95% smectite layer, the notably higher contents of smectite layer relative to those of other PTB stratigraphic sets in south China can be attributed to difference in alteration and smectite illitization processes due to different sedimentary environments.
基金SINOPEC Exploration Southern Company,part of the National Oil and Gas Special Project XQ-04the Special Fund for Basic Scientific Research of Central Colleges,Chang'an University(CHD2011JC185) for supporting this study
文摘X-ray diffraction methods for estimating the metamorphic grade of diagenetic, anchizone and epizone in metapelites are reviewed and applied to samples from a 7000 m+ borehole in western China and surface samples from the surrounding Zoige area. Kiibler's illite crystallinity (IC) measurements provide more consistent results than calculated values of percentage of illite in the I/S mixed layers and percentage of I/S mixed layers. Down-borehole IC values display a typical burial metamorphic relationship between stratigraphic level and IC. A method for preparing very low grade metamorphic maps is described, and isograds plotted on a regional geological map at selected values of IC, delineating a high temperature diagenetic zone, an anchizone, and an epizone. The map shows that IC values are controlled by stratigraphic level in the north of the study area (i.e. burial metamorphism), and proximity to an igneous intrusive body in the south (i.e. contact metamorphism).
基金supported by National Natural Science Foundation of China (Grant No. 40772027)
文摘The oil-rich Damintun Depression is located in the Liaohe Basin, Northeast China, and was formed during the Paleogene. The major oil-producing strata in the depression are mudstone and shale. To explore the burial diagenetic history of the basin and the formation thresholds of hydrocarbons, the characters of the kaolinite subgroup minerals and mixed-layer illite/smectite in the mudstone and the shale are studied by using X-ray diffraction, electron probe, scanning electron microscope, and Fourier infrared spectrum. The kaolinite subgroup consists of kaolinite and halloysite. The kaolinite is flake-like or vermiform-like. The halloysite is in long tubular shape and its length is related to its iron content. A longer tube has lower iron content. The crystallinity of kaolinite is 0.40 ~20, and its degree of order increases from 0.03 to 1.17 with the burial depth. Kaolinite is in disorder when the buried depth is less than or equal to 2479 m, and it is partially ordered when the buried depth is greater than 2479 m. Kaolinite is supposed to turn into dickite when the depth is greater than 2550 m, but low penetrability and low poros- ity of the shale and mudstone prevent such a change. The mixed-layer illite/smectite changes from disorder to order continually as the buried depth increases. Its disorder (RoI/S), as defined by illite layer content (I%), is smaller than 50% at depths less than 2550.25 m. Based on Hoffman & Hower's model, the paleo-geothermal gradients of 3.37-3.76℃/100 m (3.57℃/100 m on average) can be derived in the Paleocene Damintun Depression, which is significantly higher than the present geothermal gradient (2.9℃00 m). The threshold depth of the oil formation in the depression is about 2550 m.
基金the National Natural Science Foundation of China(Nos.51403221 and 21377135)the Jiangsu Provincial Joint Innovation and Research Funding of Enterprises,Colleges and Institutes(No.BY2015056-01)+1 种基金the Huai'an Cooperative Research Project of the Enterprises,Colleges and Institutes(No.HAC2015005)the Youth Innovation Promotion Association CAS(No.2016370)for financial support of this research
文摘A series of mesoporous silicate adsorbents with superior adsorption performance for hazardous chlortetracycline(CTC) were sucessfully prepared via a facile one-pot hydrothermal reaction using low-cost illite/smectite(IS) clay,sodium silicate and magnesium sulfate as the starting materials.In this process,IS clay was "teared up" and then "rebuilt" as new porous silicate adsorbent with high specific surface area of 363.52 m^2/g(about 8.7 folds higher than that of IS clay) and very negative Zeta potential(- 34.5 mV).The inert Si- O- Si(Mg,Al) bonds in crystal framework of IS were broken to form Si(Al)- O^- groups with good adsorption activity,which greatly increased the adsorption sites served for holding much CTC molecules.Systematic evaluation on adsorption properties reveals the optimal silicate adsorbent can adsorb 408.81 mg/g of CTC(only 159.7 mg/g for raw IS clay) and remove 99.3%(only 46.5%for raw IS clay) of CTC from 100 mg/L initial solution(pH 3.51;adsorption temperature 30℃;adsorbent dosage,3 g/L).The adsorption behaviors of CTC onto the adsorbent follows the Langmuir isotherm model,Temkin equation and pseudo second-order kinetic model.The mesopore adsorption,electrostatic attraction and chemical association mainly contribute to the enhanced adsorption properties.As a whole,the high-efficient silicate adsorbent could be candidates to remove CTC from the wastewater with high amounts of CTC.
文摘THE progressive transformation of smectite into illite via mixed-layer illite/smectite (I/S) phases occurs during hydrothermal alteration, burial diagenesis and regional metamorphism. The proportion of illite or smectite (also indicated by their expandability) and ordering of I/S, interpreted by X-ray powder diffraction (XRD) profiles, have long been used as geothermometers in sedimentary basins. It is found that R=1 ordering mixed-layer I/S still exists
文摘The smectite to illite transformation in active geothermal systems of New Zealand can be simulated by a first_order reaction kinetic model, which provides direct estimates about the minumum ages of active geothermal systems themselves. The derived kinetic values show that the smectite to illite transformation is sensitive to both temperature and time.
基金the National Natural Science Foundation of China(Grant Nos.41672115 and 41972126)the National Oil and Gas Special Fund(Grant No.2016ZX05006001-003).
文摘Organic matter(OM)is intimately associated with minerals in clay-rich mudstones,leading to widespread organic-mineral interaction during hydrocarbon generation in argillaceous source rocks.What we are concerned is the effects of the different mineral properties on hydrocarbon generation process and mechanism during mineral transformation.In this way,pyrolysis experiments with smectite-octadecanoic acid complexes(Sm-OA and Ex-Sm-OA)were conducted to analyze correlation of mineralogy and pyrolysis behaviors.Based on organicmineral interaction,hydrocarbon generation process was divided into three phases.At 200–300℃,collapse of smectite led to desorption of OM,resulting in high yield of resin and slight increase in saturates.Subsequently,enhanced smectite illitization at 350–450℃was accompanied with large amounts of saturates and a mere gaseous hydrocarbon.Featured by neoformed plagioclase,ankerite,and illite,500C saw plenty of asphaltene and methane-rich gaseous hydrocarbons,revealing cracking reactions of OM.Noteworthy is that saturated and gaseous hydrocarbons in Ex-Sm-OA were considerably more than that in Sm-OA during second and third phases.Quantitative calculation of hydrogen revealed organic hydrogen provided by cross-linking of OM could not balance hydrogen consumed by cracking reactions,but supply of inorganic hydrogen ensured cracking could readily occur and consequently greatly promoted hydrocarbon generation.Further investigating characteristics of mineralogy and pyrolytic products,as well as effects of solid acidity on hydrocarbon generation,we concluded desorption of OM and decarboxylation promoted by Lewis acid were dominated at 200–300C,resulting in lowdegree hydrocarbon generation.While high yield of saturated and gaseous hydrocarbons in second and third phases,together with occurrence of ankerite,indicated predominance of decarboxylation and hydrogenation promoted by Lewis and Brønsted acid,respectively.Variations in organic-mineral interactions indicated(1)the controls of mineral transformation on hydrocarbon generation process and mechanism include desorption,decarboxylation,and hydrogenation reactions;(2)clay minerals acted as reactants evolving together with OM rather than catalysts.These findings are profoundly significant for understanding the hydrocarbon generation mechanisms,organic-inorganic interactions,and carbon cycle.
文摘In paper the role of excess pressures in cata- genic processes of the South-Caspian basin (SCB) is considered. The results of the carried out researches taking into account world ex- perience on the given problem allow to con- clude, that SCB (mainly its deep-water part), as well as a number of other basins of the world with overpressures, is characterized by retarda- tion of processes cracking of kerogen and oil, and also reaction of transformation of clay minerals. Periodic intensification of these pro- cesses can provoke development of diapirs and mud volcanoes, which are the centers of pulse unloading of a hydrocarbon products from sys- tem. The conclusion about high prospects of revealing of hydrocarbon accumulations in deep buried deposits in overpressured basins is made.
文摘Up till now all the clay mineral studies on the soils of the River Nile flood plain in Egypt could not trace the very rapid mineral change observed in these soils. So, the clay mineralogy of the River Nile flood plain soils in Sohag region, Egypt, has been studied using the method of numerical analysis of X-ray diffraction recordings (curve decomposition) as a new, powerful tool for precise mineral identification. The X-ray patterns of the studied soil clay fraction show that 2:1 clay minerals are much more abundant than kaolinite and that this clay fraction contains fair amounts of K-feldspar and quartz. XRD pattems obtained on the 〈 2 μm fraction of the River Nile sediments indicate the presence of smectite, mixed-layer illite-expanding minerals, kaolinite, mica-illite and chlorite. The decomposed XRD patterns reveal significant changes in the mineralogy of the clays. The major clay phases present in the 4-11 20 range are well crystallized illite (10 A), poorly crystallized illite (10.2-10.4 A), two mixed-layer I-S (illite/smectite) minerals, one with a peak near 13.5 A (rich-smectite) and the other near 11 A (rich-illite).