[Objectives]To make full use of crop rhizosphere microbial resources.[Methods]Illumina NovaSeq sequencing platform was used to analyze the richness and diversity of microbial community structure in rhizosphere soil of...[Objectives]To make full use of crop rhizosphere microbial resources.[Methods]Illumina NovaSeq sequencing platform was used to analyze the richness and diversity of microbial community structure in rhizosphere soil of rice and maize crops in Baitu Town,Gaoyao District,Zhaoqing City.[Results]A total of 14936 OTUs of bacteria and 1905 OTUs of fungi were obtained from three samples of rice rhizosphere soil,and 13437 OTUs of bacteria and 1413 OTUs of fungi were obtained from three samples of maize rhizosphere soil.The diversity and richness of bacterial communities were higher than those of fungi.There are differences in soil bacterial and fungal communities among different crop samples.The analysis of species with bacteria difference at genus level among crop rhizosphere soil samples showed that 18 genera with significant differences were obtained from 6 samples;species analysis of fungi at the genus level showed that 3 genera with significant differences were obtained from 6 samples.[Conclusions]The research results of this paper have positive significance for the development and utilization of soil resources in Zhaoqing City and the full exploitation of rice and maize rhizosphere microbial resources.展开更多
BACKGROUND Gallbladder neuroendocrine carcinoma(NEC)represents a subtype of gallbladder malignancies characterized by a low incidence,aggressive nature,and poor prognosis.Despite its clinical severity,the genetic alte...BACKGROUND Gallbladder neuroendocrine carcinoma(NEC)represents a subtype of gallbladder malignancies characterized by a low incidence,aggressive nature,and poor prognosis.Despite its clinical severity,the genetic alterations,mechanisms,and signaling pathways underlying gallbladder NEC remain unclear.CASE SUMMARY This case study presents a rare instance of primary gallbladder NEC in a 73-year-old female patient,who underwent a radical cholecystectomy with hepatic hilar lymphadenectomy and resection of liver segments IV-B and V.Targeted gene sequencing and bioinformatics analysis tools,including STRING,GeneMANIA,Metascape,TRRUST,Sangerbox,cBioPortal and GSCA,were used to analyze the biological functions and features of mutated genes in gallbladder NEC.Twelve mutations(APC,ARID2,IFNA6,KEAP1,RB1,SMAD4,TP53,BTK,GATA1,GNAS,and PRDM3)were identified,and the tumor mutation burden was determined to be 9.52 muts/Mb via targeted gene sequencing.A protein-protein interaction network showed significant interactions among the twelve mutated genes.Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were used to assess mutation functions and pathways.The results revealed 40 tumor-related pathways.A key regulatory factor for gallbladder NEC-related genes was identified,and its biological functions and features were compared with those of gallbladder carcinoma.CONCLUSION Gallbladder NEC requires standardized treatment.Comparisons with other gallbladder carcinomas revealed clinical phenotypes,molecular alterations,functional characteristics,and enriched pathways.展开更多
Glial cells play crucial roles in regulating physiological and pathological functions,including sensation,the response to infection and acute injury,and chronic neurodegenerative disorders.Glial cells include astrocyt...Glial cells play crucial roles in regulating physiological and pathological functions,including sensation,the response to infection and acute injury,and chronic neurodegenerative disorders.Glial cells include astrocytes,microglia,and oligodendrocytes in the central nervous system,and satellite glial cells and Schwann cells in the peripheral nervous system.Despite the greater understanding of glial cell types and functional heterogeneity achieved through single-cell and single-nucleus RNA sequencing in animal models,few studies have investigated the transcriptomic profiles of glial cells in the human spinal cord.Here,we used high-throughput single-nucleus RNA sequencing and spatial transcriptomics to map the cellular and molecular heterogeneity of astrocytes,microglia,and oligodendrocytes in the human spinal cord.To explore the conservation and divergence across species,we compared these findings with those from mice.In the human spinal cord,astrocytes,microglia,and oligodendrocytes were each divided into six distinct transcriptomic subclusters.In the mouse spinal cord,astrocytes,microglia,and oligodendrocytes were divided into five,four,and five distinct transcriptomic subclusters,respectively.The comparative results revealed substantial heterogeneity in all glial cell types between humans and mice.Additionally,we detected sex differences in gene expression in human spinal cord glial cells.Specifically,in all astrocyte subtypes,the levels of NEAT1 and CHI3L1 were higher in males than in females,whereas the levels of CST3 were lower in males than in females.In all microglial subtypes,all differentially expressed genes were located on the sex chromosomes.In addition to sex-specific gene differences,the levels of MT-ND4,MT2A,MT-ATP6,MT-CO3,MT-ND2,MT-ND3,and MT-CO_(2) in all spinal cord oligodendrocyte subtypes were higher in females than in males.Collectively,the present dataset extensively characterizes glial cell heterogeneity and offers a valuable resource for exploring the cellular basis of spinal cordrelated illnesses,including chronic pain,amyotrophic lateral sclerosis,and multiple sclerosis.展开更多
Background:Dengue fever,an acute insect-borne infectious disease caused by the dengue virus(DENV),poses a great challenge to global public health.Hepatic involve-ment is the most common complication of severe dengue a...Background:Dengue fever,an acute insect-borne infectious disease caused by the dengue virus(DENV),poses a great challenge to global public health.Hepatic involve-ment is the most common complication of severe dengue and is closely related to the occurrence and development of disease.However,the features of adaptive immune responses associated with liver injury in severe dengue are not clear.Methods:We used single-cell sequencing to examine the liver tissues of mild or se-vere dengue mice model to analyze the changes in immune response of T cells in the liver after dengue virus infection,and the immune interaction between macrophages and T cells.Flow cytometry was used to detect T cells and macrophages in mouse liver and blood to verify the single-cell sequencing results.Results:Our result showed CTLs were significantly activated in the severe liver injury group but the immune function-related signal pathway was down-regulated.The rea-son may be that the excessive immune response in the severe group at the late stage of DENV infection induces the polarization of macrophages into M2 type,and the macrophages then inhibit T cell immunity through the TGF-βsignaling pathway.In ad-dition,the increased proportion of Treg cells suggested that Th17/Treg homeostasis was disrupted in the livers of severe liver injury mice.Conclusions:In this study,single-cell sequencing and flow cytometry revealed the characteristic changes of T cell immune response and the role of macrophages in the liver of severe dengue fever mice.Our study provides a better understanding of the pathogenesis of liver injury in dengue fever patients.展开更多
In rice fields,rice plants usually grow alongside wild weeds and are attacked by various invertebrate species.Viruses are abundant in plants and invertebrates,playing crucial ecological roles in controlling microbial ...In rice fields,rice plants usually grow alongside wild weeds and are attacked by various invertebrate species.Viruses are abundant in plants and invertebrates,playing crucial ecological roles in controlling microbial abundance and maintaining community structures.To date,only 16 rice viruses have been documented in rice-growing regions.These viruses pose serious threats to rice production and have traditionally been identified only from rice plants and insect vectors by isolation techniques.Advances in next-generation sequencing(NGS)have made it feasible to discover viruses on a global scale.Recently,numerous viruses have been identified in plants and invertebrates using NGS technologies.In this review,we discuss viral studies in rice plants,invertebrate species,and weeds in rice fields.Many novel viruses have been discovered in rice ecosystems through NGS technologies,with some also detected using metatranscriptomic and small RNA sequencing.These analyses greatly expand our understanding of viruses in rice fields and provide valuable insights for developing efficient strategies to manage insect pests and virus-mediated rice diseases.展开更多
In this review,the advantages and advances in applying high-throughput sequencing(HTS)in the management of viral diseases in citrus,along with some challenges,are discussed to provide perspectives on future prospects....In this review,the advantages and advances in applying high-throughput sequencing(HTS)in the management of viral diseases in citrus,along with some challenges,are discussed to provide perspectives on future prospects.Since the initial implementation of HTS in citrus virology,a substantial number of citrus viruses have been identified,with a notable increase in the last 7 years.The acquisition of viral genomes and various HTS-based omics analyses serve as crucial pillars for advancing research in the etiology,epidemiology,pathology,evolution,ecology,and biotechnology of citrus viruses.HTS has notably contributed to disease diagnosis,such as the diagnoses of concave gum and impietratura,as well as to the surveillance of new virus risks and the preparation of virus-free materials.However,certain inherent defects in HTS and coupled bioinformatics analysis,such as challenges with sequence assembly and the detection of viral dark matter,require improvement to enhance practical efficiency.In addition,the utilization of HTS for the systematic management of citrus viral diseases remains limited,and drawing insights from other virus-plant pathosystems while integrating emerging compatible techniques and ideas may broaden its specific applications.展开更多
Objective To establish and validate a novel diabetic retinopathy(DR)risk-prediction model using a whole-exome sequencing(WES)-based machine learning(ML)method.Methods WES was performed to identify potential single nuc...Objective To establish and validate a novel diabetic retinopathy(DR)risk-prediction model using a whole-exome sequencing(WES)-based machine learning(ML)method.Methods WES was performed to identify potential single nucleotide polymorphism(SNP)or mutation sites in a DR pedigree comprising 10 members.A prediction model was established and validated in a cohort of 420 type 2 diabetic patients based on both genetic and demographic features.The contribution of each feature was assessed using Shapley Additive explanation analysis.The efficacies of the models with and without SNP were compared.Results WES revealed that seven SNPs/mutations(rs116911833 in TRIM7,1997T>C in LRBA,1643T>C in PRMT10,rs117858678 in C9orf152,rs201922794 in CLDN25,rs146694895 in SH3GLB2,and rs201407189 in FANCC)were associated with DR.Notably,the model including rs146694895 and rs201407189 achieved better performance in predicting DR(accuracy:80.2%;sensitivity:83.3%;specificity:76.7%;area under the receiver operating characteristic curve[AUC]:80.0%)than the model without these SNPs(accuracy:79.4%;sensitivity:80.3%;specificity:78.3%;AUC:79.3%).Conclusion Novel SNP sites associated with DR were identified in the DR pedigree.Inclusion of rs146694895 and rs201407189 significantly enhanced the performance of the ML-based DR prediction model.展开更多
BACKGROUND Gastric cancer(GC)poses a substantial risk to human health due to its high prevalence and mortality rates.Nevertheless,current therapeutic strategies remain insufficient.Single-cell RNA sequencing(scRNA-seq...BACKGROUND Gastric cancer(GC)poses a substantial risk to human health due to its high prevalence and mortality rates.Nevertheless,current therapeutic strategies remain insufficient.Single-cell RNA sequencing(scRNA-seq)offers the potential to provide comprehensive insights into GC pathogenesis.AIM To explore the distribution and dynamic changes of cell populations in the GC tumor microenvironment using scRNA-seq techniques.METHODS Cancerous tissues and paracancerous tissues were obtained from patients diagnosed with GC at various stages(I,II,III,and IV).Single-cell suspensions were prepared and analyzed using scRNA-seq to examine transcriptome profiles and cell-cell interactions.Additionally,quantitative real-time polymerase chain reaction(qRT-PCR)and flow cytometry were applied for measuring the expression of cluster of differentiation(CD)2,CD3D,CD3E,cytokeratin 19,cytokeratin 8,and epithelial cell adhesion molecules.RESULTS Transcriptome data from 73645 single cells across eight tissues of four patients were categorized into 25 distinct cell clusters,representing 10 different cell types.Variations were observed in these cell type distribution.The adjacent epithelial cells in stages II and III exhibited a degenerative trend.Additionally,the quantity of CD4 T cells and CD8 T cells were evidently elevated in cancerous tissues.Interaction analysis displayed a remarkable increase in interaction between B cells and other mast cells in stages II,III,and IV of GC.These findings were further validated through qRT-PCR and flow cytometry,demonstrating elevated T cells and declined epithelial cells within the cancerous tissues.CONCLUSION This study provides a comprehensive analysis of cell dynamics across GC stages,highlighting key interactions within the tumor microenvironment.These findings offer valuable insights for developing novel therapeutic strategies.展开更多
AIM To investigate gut microbial diversity and the interventional effect of Xiaoyaosan(XYS) in a rat model of functional dyspepsia(FD) with liver depression-spleen deficiency syndrome. METHODS The FD with liver depres...AIM To investigate gut microbial diversity and the interventional effect of Xiaoyaosan(XYS) in a rat model of functional dyspepsia(FD) with liver depression-spleen deficiency syndrome. METHODS The FD with liver depression-spleen deficiency syndrome rat model was established through classic chronic mild unpredictable stimulation every day. XYS group rats received XYS 1 h before the stimulation. The models were assessed by parameters including state ofthe rat, weight, sucrose test result and open-field test result. After 3 wk, the stools of rats were collected and genomic DNA was extracted. PCR products of the V4 region of 16 S rD NA were sequenced using a barcoded Illumina paired-end sequencing technique. The primary composition of the microbiome in the stool samples was determined and analyzed by cluster analysis.RESULTS Rat models were successfully established, per data from rat state, weight and open-field test. The microbiomes contained 20 phyla from all samples. Firmicutes, Bacteroidetes, Proteobacteria, Cyanobacteria and Tenericutes were the most abundant taxonomic groups. The relative abundance of Firmicutes, Proteobacteria and Cyanobacteria in the model group was higher than that in the normal group. On the contrary, the relative abundance of Bacteroidetes in the model group was lower than that in the normal group. Upon XYS treatment, the relative abundance of all dysregulated phyla was restored to levels similar to those observed in the normal group. Abundance clustering heat map of phyla corroborated the taxonomic distribution. CONCLUSION The microbiome relative abundance of FD rats with liver depression-spleen deficiency syndrome was significantly different from the normal cohort. XYS intervention may effectively adjust the gut dysbacteriosis in FD.展开更多
Aureococcus anophagefferens caused brown tides for three consecutive years from 2009 to 2011 in the coastal waters of Qinhuangdao, China, with numerous, widespread ecological and economic impact on ecosystems. To unde...Aureococcus anophagefferens caused brown tides for three consecutive years from 2009 to 2011 in the coastal waters of Qinhuangdao, China, with numerous, widespread ecological and economic impact on ecosystems. To understand the population dy- namics of nanoplankton during the brown tides, sequences of the V9 region of the 18S rDNA gene, used as a marker, were analyzed by Illumina sequencing to assess nanoplankton biomass, and real-time fluorescence quantitative PCR was performed to analyze spa- tial variation in the 18S rDNA copy concentrations of nanoplankton off the Qinhuangdao coast in July, 2011. The results showed that A. anophagefferens and Minutocellus polymorphus were the dominant species in the local phytoplankton community during the brown tide in July 2011. The highest 18S rDNA copy concentrations of A. anophagefferens and M. polymorphus were detected at stations SHG and FN, respectively. The central area most strongly affected by the brown tide migrated southward from 2011 to 2013. Redundancy analysis (RDA) showed that the decreasing NOx concentration might provide suitable nutrient conditions for the A. anophagefferens outbreak. During the brown tide caused by A. anophagefferens, other phytoplankton, such as diatoms, cryptophytes, chlorophytes, dinoflagellates and other flagellates, could co-occur with it. For zooplankton, due to less selective feeding behavior, Amoebozoa was the most abundant zooplankton at station SHG, while Ciliophora was the most abundant zooplankton at other sta- tions for its more selective feeding.展开更多
Chinese leek(Allium tuberosum Rottler ex Sprengel) is a common vegetable in China. In our previous study, Chinese leek in rotation was found to have significant antifungal and nematicidal activity. This study's aim...Chinese leek(Allium tuberosum Rottler ex Sprengel) is a common vegetable in China. In our previous study, Chinese leek in rotation was found to have significant antifungal and nematicidal activity. This study's aim was to investigate the potential antifungal and nematicidal activity associated with rhizosphere or endophytic microbes of Chinese leek. Thus, a total of 79 261 high-quality sequences were obtained from Chinese leek rhizosphere soil, leaf and root samples. In the rhizosphere soil, the bacterial community comprised five dominant phyla: Proteobacteria(37.85%), Acidobacteria(10.99%), Bacteroidetes(8.24%), Cyanobacteria(7.79%) and Planctomycetes(7.1%). The leaf and root bacterial communities comprised two dominant phyla: Cyanobacteria(83.42% in leaf and 75.44% in root) and Proteobacteria(14.75% in leaf and 21.04% in root). Microbial diversity, richness and evenness in the rhizosphere soil bacterial community were higher than that in the endophytic bacterial communities. The rhizosphere bacterial community was significantly different from the endophytic bacterial communities. The endophytic bacterial communities from the leaf and the root were slightly, but not significantly different from each other. This study's findings would contribute to the isolation and identification of nematicidal and antifungal bacterial communities in Chinese leek.展开更多
BACKGROUND A palatal radicular groove is an unusual developmental deformity of the tooth,which may serve as a channel linking the periodontal and periapical inflammation,and yet no literature could be obtained analyzi...BACKGROUND A palatal radicular groove is an unusual developmental deformity of the tooth,which may serve as a channel linking the periodontal and periapical inflammation,and yet no literature could be obtained analyzing microbiota within the palatal radicular grooves.CASE SUMMARY Four patients diagnosed with palatal radicular groove and concomitant periodontal-endodontic deformity in permanent maxillary lateral incisors were enrolled in this work.Twelve bacterial samples from 4 patients were collected from different parts of the palatal radicular groove during intentional replantation surgery.Illumina sequencing was performed to analyze the taxonomical composition and microbiome structure inside the palatal grooves,and 1162 operational taxonomic units were obtained.The phyla of Firmicutes and Proteobacteria predominated in most of the samples.An unknown genus from the Bacillaceae family,Lactococcus,and Porphyromonas were the most abundant genera identified.There was no difference in the microbiota richness and diversity in three sections of the groove.CONCLUSION The unique ecological niches inside the palatal grooves harbored bacterial communities that shared some component features of both the endodontic and periodontal infections.The existence of palatal groove may play an interaction bridge between the root apex and tooth cervix and thus impair the outcome of traditional therapeutic methods such as root canal treatment and periodontal management.展开更多
MicroRNAs(miRNAs) are an abundant class of conserved, non-coding small RNAs that play important role in gene regulation at post translational level. There have been no reports on the miRNAs of the Antarctic krill E up...MicroRNAs(miRNAs) are an abundant class of conserved, non-coding small RNAs that play important role in gene regulation at post translational level. There have been no reports on the miRNAs of the Antarctic krill E uphausia superba despite the species' crucial position in Antarctic food webs. Two small RNA libraries were constructed from eyestalk and muscle, subsequently, and deep sequencing analysis was performed to investigate and profile E. superba miRNAs. A total of 19 304 586 and 23 005 104 unique sequences were obtained from the eyestalk and muscle, respectively. After compared the small RNA sequences with the Rfam database, 12 342 039 and 7 907 477 reads in eyestalk and muscle were matched to the transcriptome sequence of E. superba. A total of 236 distinct miRNAs were identified after annotation to known animal miRNAs registered in miRBase 21. In both libraries, the most abundant known miRNA were miR-750 with 92 583 reads in muscle and miR-1304-3 p with 56 386 reads in eyestalk while the average value was less than 106, revealing a wide range of different expression levels. In addition, miR-277 a enriched in both libraries and may be involved in modulating Krebs cycle by targeting to Vimar. Differential expression analysis showed that 56 mature miRNAs were significantly up/down regulated according to expression fold change. It appeared that the expression of several abundant miRNAs maybe tissue-specific or tissue-bias. Notably, the expression pattern of miR-750 and miR-1 family, which was suggested as the crucial candidates, involved in muscle development. Taken together, this study provides the first miRNA profile of E. superba and some of these miRNAs were expected to play important role in immune response, reproduction, energy metabolism, and muscle development and so on. Thus, the results provides a reference for functional studies of miRNAs in E. superba.展开更多
为了研究大型肉牛比利时蓝牛生长发育的遗传规律,筛选优异基因,试验基于Illumina Bovine SNP 50K芯片数据,采用PLINK软件对270头比利时蓝牛常染色体数据进行基因组长纯合片段(ROH)检测并基于选择信号分析,通过核苷酸多态性检测取前5%的...为了研究大型肉牛比利时蓝牛生长发育的遗传规律,筛选优异基因,试验基于Illumina Bovine SNP 50K芯片数据,采用PLINK软件对270头比利时蓝牛常染色体数据进行基因组长纯合片段(ROH)检测并基于选择信号分析,通过核苷酸多态性检测取前5%的单核苷酸多态性(single nucleotide polymorphism,SNP)位点,基于牛参考基因组(ARS-UCD1.2)对结果SNPs进行基因注释,对候选基因进行GO功能注释与KEGG信号通路富集分析,并计算染色体上ROH长度占基因组总长度的比例(FROH)。结果表明:在全部270个个体数据中共检测出1893个ROH片段,平均长度13.2311 Mb,平均FROH为0.0392;得到与生长发育相性状相关的基因有NEB、TET2、NEK11、NCKAP1、MYH15、EIF4A2、bta-miR-1248-1、DCAF8、PRORP、DOCK3、SYT15、MYEF2、ZDHHC13,与公牛生育能力相关的基因有CFAP61、DNAL1、BAG1。说明通过对比利时蓝牛生长发育性状相关分子标记的解析可以为比利时蓝牛遗传改良提供理论指导。展开更多
The numbers of reads generated by second-generation sequencing technologies permit to establish in a single sequencing lane multiple microRNA (miRNA) expression profiles from small RNA-derived cDNA libraries tagged by...The numbers of reads generated by second-generation sequencing technologies permit to establish in a single sequencing lane multiple microRNA (miRNA) expression profiles from small RNA-derived cDNA libraries tagged by barcodes consisting of few bases. Multiplex sequencing allows sample size expansion and thus the statistical reliability of generated data. This allows the detection of discrete changes in miRNA expression levels that occur at the onset of cellular processes. With the development of the “by-amplification” strategy, tagging cDNA libraries is no more a source of technical variability. However, other specific features should be kept in mind when designing experiments aimed at profiling miRNA expression using Illumina sequencing technology, the most important being the substantial distortion between miRNA expression in sequencing data and the true miRNA abundancy. miRNAs of low expression in profiles may correspond to abundant miRNAs in samples and vice versa. We report here data obtained from rat cerebellum and liver that illustrate 1) the high 3’ adaptor dependency of miRNA expression profiles, 2) the impact of sample size when working with moderate (3 - 4 fold) changes of miRNA expression and 3) the impact of the statistical tools used to identify differentially expressed miRNAs.展开更多
Single-cell RNA sequencing(scRNA-seq)is one of the most advanced sequencing technologies for studying transcriptome landscape at the single-cell revolution.It provides numerous advantages over traditional RNA-seq.Sinc...Single-cell RNA sequencing(scRNA-seq)is one of the most advanced sequencing technologies for studying transcriptome landscape at the single-cell revolution.It provides numerous advantages over traditional RNA-seq.Since it was first used to profile single-cell transcriptome in plants in 2019,it has been extensively employed to perform different research in plants.Recently,scRNA-seq was also quickly adopted by the cotton research community to solve lots of scientific questions which have been never solved.In this comment,we highlighted the significant progress in employing scRNA-seq to cotton genetic and genomic study and its future potential applications.展开更多
BACKGROUND Pyroptosis impacts the development of malignant tumors,yet its role in colorectal cancer(CRC)prognosis remains uncertain.AIM To assess the prognostic significance of pyroptosis-related genes and their assoc...BACKGROUND Pyroptosis impacts the development of malignant tumors,yet its role in colorectal cancer(CRC)prognosis remains uncertain.AIM To assess the prognostic significance of pyroptosis-related genes and their association with CRC immune infiltration.METHODS Gene expression data were obtained from The Cancer Genome Atlas(TCGA)and single-cell RNA sequencing dataset GSE178341 from the Gene Expression Omnibus(GEO).Pyroptosis-related gene expression in cell clusters was analyzed,and enrichment analysis was conducted.A pyroptosis-related risk model was developed using the LASSO regression algorithm,with prediction accuracy assessed through K-M and receiver operating characteristic analyses.A nomo-gram predicting survival was created,and the correlation between the risk model and immune infiltration was analyzed using CIBERSORTx calculations.Finally,the differential expression of the 8 prognostic genes between CRC and normal samples was verified by analyzing TCGA-COADREAD data from the UCSC database.RESULTS An effective pyroptosis-related risk model was constructed using 8 genes-CHMP2B,SDHB,BST2,UBE2D2,GJA1,AIM2,PDCD6IP,and SEZ6L2(P<0.05).Seven of these genes exhibited differential expression between CRC and normal samples based on TCGA database analysis(P<0.05).Patients with higher risk scores demonstrated increased death risk and reduced overall survival(P<0.05).Significant differences in immune infiltration were observed between low-and high-risk groups,correlating with pyroptosis-related gene expression.CONCLUSION We developed a pyroptosis-related prognostic model for CRC,affirming its correlation with immune infiltration.This model may prove useful for CRC prognostic evaluation.展开更多
BACKGROUND This study aimed to identify characteristic gut genera in obese and normal-weight children(8-12 years old)using 16S rDNA sequencing.The research aimed to provide insights for mechanistic studies and prevent...BACKGROUND This study aimed to identify characteristic gut genera in obese and normal-weight children(8-12 years old)using 16S rDNA sequencing.The research aimed to provide insights for mechanistic studies and prevention strategies for childhood obesity.Thirty normal-weight and thirty age-and sex-matched obese children were included.Questionnaires and body measurements were collected,and fecal samples underwent 16S rDNA sequencing.Significant differences in body mass index(BMI)and body-fat percentage were observed between the groups.Analysis of gut microbiota diversity revealed lowerα-diversity in obese children.Differences in gut microbiota composition were found between the two groups.Prevotella and Firmicutes were more abundant in the obese group,while Bacteroides and Sanguibacteroides were more prevalent in the control group.AIM To identify the characteristic gut genera in obese and normal-weight children(8-12-year-old)using 16S rDNA sequencing,and provide a basis for subsequent mechanistic studies and prevention strategies for childhood obesity.METHODS Thirty each normal-weight,1:1 matched for age and sex,and obese children,with an obese status from 2020 to 2022,were included in the control and obese groups,respectively.Basic information was collected through questionnaires and body measurements were obtained from both obese and normal-weight children.Fecal samples were collected from both groups and subjected to 16S rDNA sequencing using an Illumina MiSeq sequencing platform for gut microbiota diversity analysis.RESULTS Significant differences in BMI and body-fat percentage were observed between the two groups.The Ace and Chao1 indices were significantly lower in the obese group than those in the control group,whereas differences were not significant in the Shannon and Simpson indices.Kruskal-Wallis tests indicated significant differences in unweighted and weighted UniFrac distances between the gut microbiota of normal-weight and obese children(P<0.01),suggesting substantial disparities in both the species and quantity of gut microbiota between the two groups.Prevotella,Firmicutes,Bacteroides,and Sanguibacteroides were more abundant in the obese and control groups,respectively.Heatmap results demonstrated significant differences in the gut microbiota composition between obese and normal-weight children.CONCLUSION Obese children exhibited lowerα-diversity in their gut microbiota than did the normal-weight children.Significant differences were observed in the composition of gut microbiota between obese and normal-weight children.展开更多
基金Supported by Guangdong Province Rural Science and Technology Commissioner Project(KTP20240693)Zhaoqing University Project(QN202329)+3 种基金Science and Technology Innovation Guidance Project of Zhaoqing(202304038001)Undergraduate Innovation and Entrepreneurship Training Program(202410580011&X202310580120)The Third Batch of Innovation Research Team of Zhaoqing University(05)Quality Engineering and Teaching Reform Project of Zhaoqing University(zlgc202229,zlgc202261).
文摘[Objectives]To make full use of crop rhizosphere microbial resources.[Methods]Illumina NovaSeq sequencing platform was used to analyze the richness and diversity of microbial community structure in rhizosphere soil of rice and maize crops in Baitu Town,Gaoyao District,Zhaoqing City.[Results]A total of 14936 OTUs of bacteria and 1905 OTUs of fungi were obtained from three samples of rice rhizosphere soil,and 13437 OTUs of bacteria and 1413 OTUs of fungi were obtained from three samples of maize rhizosphere soil.The diversity and richness of bacterial communities were higher than those of fungi.There are differences in soil bacterial and fungal communities among different crop samples.The analysis of species with bacteria difference at genus level among crop rhizosphere soil samples showed that 18 genera with significant differences were obtained from 6 samples;species analysis of fungi at the genus level showed that 3 genera with significant differences were obtained from 6 samples.[Conclusions]The research results of this paper have positive significance for the development and utilization of soil resources in Zhaoqing City and the full exploitation of rice and maize rhizosphere microbial resources.
基金Supported by School-Level Key Projects at Bengbu Medical College,No.2021byzd109.
文摘BACKGROUND Gallbladder neuroendocrine carcinoma(NEC)represents a subtype of gallbladder malignancies characterized by a low incidence,aggressive nature,and poor prognosis.Despite its clinical severity,the genetic alterations,mechanisms,and signaling pathways underlying gallbladder NEC remain unclear.CASE SUMMARY This case study presents a rare instance of primary gallbladder NEC in a 73-year-old female patient,who underwent a radical cholecystectomy with hepatic hilar lymphadenectomy and resection of liver segments IV-B and V.Targeted gene sequencing and bioinformatics analysis tools,including STRING,GeneMANIA,Metascape,TRRUST,Sangerbox,cBioPortal and GSCA,were used to analyze the biological functions and features of mutated genes in gallbladder NEC.Twelve mutations(APC,ARID2,IFNA6,KEAP1,RB1,SMAD4,TP53,BTK,GATA1,GNAS,and PRDM3)were identified,and the tumor mutation burden was determined to be 9.52 muts/Mb via targeted gene sequencing.A protein-protein interaction network showed significant interactions among the twelve mutated genes.Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were used to assess mutation functions and pathways.The results revealed 40 tumor-related pathways.A key regulatory factor for gallbladder NEC-related genes was identified,and its biological functions and features were compared with those of gallbladder carcinoma.CONCLUSION Gallbladder NEC requires standardized treatment.Comparisons with other gallbladder carcinomas revealed clinical phenotypes,molecular alterations,functional characteristics,and enriched pathways.
基金supported by the National Natural Science Foundation of China,No.82301403(to DZ)。
文摘Glial cells play crucial roles in regulating physiological and pathological functions,including sensation,the response to infection and acute injury,and chronic neurodegenerative disorders.Glial cells include astrocytes,microglia,and oligodendrocytes in the central nervous system,and satellite glial cells and Schwann cells in the peripheral nervous system.Despite the greater understanding of glial cell types and functional heterogeneity achieved through single-cell and single-nucleus RNA sequencing in animal models,few studies have investigated the transcriptomic profiles of glial cells in the human spinal cord.Here,we used high-throughput single-nucleus RNA sequencing and spatial transcriptomics to map the cellular and molecular heterogeneity of astrocytes,microglia,and oligodendrocytes in the human spinal cord.To explore the conservation and divergence across species,we compared these findings with those from mice.In the human spinal cord,astrocytes,microglia,and oligodendrocytes were each divided into six distinct transcriptomic subclusters.In the mouse spinal cord,astrocytes,microglia,and oligodendrocytes were divided into five,four,and five distinct transcriptomic subclusters,respectively.The comparative results revealed substantial heterogeneity in all glial cell types between humans and mice.Additionally,we detected sex differences in gene expression in human spinal cord glial cells.Specifically,in all astrocyte subtypes,the levels of NEAT1 and CHI3L1 were higher in males than in females,whereas the levels of CST3 were lower in males than in females.In all microglial subtypes,all differentially expressed genes were located on the sex chromosomes.In addition to sex-specific gene differences,the levels of MT-ND4,MT2A,MT-ATP6,MT-CO3,MT-ND2,MT-ND3,and MT-CO_(2) in all spinal cord oligodendrocyte subtypes were higher in females than in males.Collectively,the present dataset extensively characterizes glial cell heterogeneity and offers a valuable resource for exploring the cellular basis of spinal cordrelated illnesses,including chronic pain,amyotrophic lateral sclerosis,and multiple sclerosis.
基金Chinese Academy of Medical Sciences Initiative for Innovative Medicine,Grant/Award Number:2021-I2M-1-035 and 2022-I2M-1-011。
文摘Background:Dengue fever,an acute insect-borne infectious disease caused by the dengue virus(DENV),poses a great challenge to global public health.Hepatic involve-ment is the most common complication of severe dengue and is closely related to the occurrence and development of disease.However,the features of adaptive immune responses associated with liver injury in severe dengue are not clear.Methods:We used single-cell sequencing to examine the liver tissues of mild or se-vere dengue mice model to analyze the changes in immune response of T cells in the liver after dengue virus infection,and the immune interaction between macrophages and T cells.Flow cytometry was used to detect T cells and macrophages in mouse liver and blood to verify the single-cell sequencing results.Results:Our result showed CTLs were significantly activated in the severe liver injury group but the immune function-related signal pathway was down-regulated.The rea-son may be that the excessive immune response in the severe group at the late stage of DENV infection induces the polarization of macrophages into M2 type,and the macrophages then inhibit T cell immunity through the TGF-βsignaling pathway.In ad-dition,the increased proportion of Treg cells suggested that Th17/Treg homeostasis was disrupted in the livers of severe liver injury mice.Conclusions:In this study,single-cell sequencing and flow cytometry revealed the characteristic changes of T cell immune response and the role of macrophages in the liver of severe dengue fever mice.Our study provides a better understanding of the pathogenesis of liver injury in dengue fever patients.
基金supported by the National Natural Science Foundation of China(Grant Nos.31972983 and 32072487)the Key Technology R&D Program of Zhejiang Province,China(Grant No.2021C02006)the Zhejiang Provincial Natural Science Foundation of China(Grant No.LY23C140001).
文摘In rice fields,rice plants usually grow alongside wild weeds and are attacked by various invertebrate species.Viruses are abundant in plants and invertebrates,playing crucial ecological roles in controlling microbial abundance and maintaining community structures.To date,only 16 rice viruses have been documented in rice-growing regions.These viruses pose serious threats to rice production and have traditionally been identified only from rice plants and insect vectors by isolation techniques.Advances in next-generation sequencing(NGS)have made it feasible to discover viruses on a global scale.Recently,numerous viruses have been identified in plants and invertebrates using NGS technologies.In this review,we discuss viral studies in rice plants,invertebrate species,and weeds in rice fields.Many novel viruses have been discovered in rice ecosystems through NGS technologies,with some also detected using metatranscriptomic and small RNA sequencing.These analyses greatly expand our understanding of viruses in rice fields and provide valuable insights for developing efficient strategies to manage insect pests and virus-mediated rice diseases.
基金supported by National Natural Science Foundation of China(Grant Nos.32370005,32072389)Chongqing Science Funds for Distinguished Young Scientists(Grant No.CSTB2022NSCQ-JQX0027)+3 种基金Innovation Research 2035 Pilot Plan of Southwest University(Grant Nos.SWU-XDPY22002,SWUXDZD22002)Special Fund for Youth Team of Southwest University(Grant No.SWU-XJLJ202310)Chongqing Talents of Exceptional Young Talents Project(Grant No.cstc2022ycjh-bgzxm0143)Chongqing Municipal Training Program of Innovation and Entrepreneurship for Undergraduates(Grant No.S202310635160)。
文摘In this review,the advantages and advances in applying high-throughput sequencing(HTS)in the management of viral diseases in citrus,along with some challenges,are discussed to provide perspectives on future prospects.Since the initial implementation of HTS in citrus virology,a substantial number of citrus viruses have been identified,with a notable increase in the last 7 years.The acquisition of viral genomes and various HTS-based omics analyses serve as crucial pillars for advancing research in the etiology,epidemiology,pathology,evolution,ecology,and biotechnology of citrus viruses.HTS has notably contributed to disease diagnosis,such as the diagnoses of concave gum and impietratura,as well as to the surveillance of new virus risks and the preparation of virus-free materials.However,certain inherent defects in HTS and coupled bioinformatics analysis,such as challenges with sequence assembly and the detection of viral dark matter,require improvement to enhance practical efficiency.In addition,the utilization of HTS for the systematic management of citrus viral diseases remains limited,and drawing insights from other virus-plant pathosystems while integrating emerging compatible techniques and ideas may broaden its specific applications.
基金supported by the National Natural Science Foundation of China[Grant No.62206185]。
文摘Objective To establish and validate a novel diabetic retinopathy(DR)risk-prediction model using a whole-exome sequencing(WES)-based machine learning(ML)method.Methods WES was performed to identify potential single nucleotide polymorphism(SNP)or mutation sites in a DR pedigree comprising 10 members.A prediction model was established and validated in a cohort of 420 type 2 diabetic patients based on both genetic and demographic features.The contribution of each feature was assessed using Shapley Additive explanation analysis.The efficacies of the models with and without SNP were compared.Results WES revealed that seven SNPs/mutations(rs116911833 in TRIM7,1997T>C in LRBA,1643T>C in PRMT10,rs117858678 in C9orf152,rs201922794 in CLDN25,rs146694895 in SH3GLB2,and rs201407189 in FANCC)were associated with DR.Notably,the model including rs146694895 and rs201407189 achieved better performance in predicting DR(accuracy:80.2%;sensitivity:83.3%;specificity:76.7%;area under the receiver operating characteristic curve[AUC]:80.0%)than the model without these SNPs(accuracy:79.4%;sensitivity:80.3%;specificity:78.3%;AUC:79.3%).Conclusion Novel SNP sites associated with DR were identified in the DR pedigree.Inclusion of rs146694895 and rs201407189 significantly enhanced the performance of the ML-based DR prediction model.
基金Supported by Xinjiang Uygur Autonomous Region Natural Science Foundation,No.2020D01C199.
文摘BACKGROUND Gastric cancer(GC)poses a substantial risk to human health due to its high prevalence and mortality rates.Nevertheless,current therapeutic strategies remain insufficient.Single-cell RNA sequencing(scRNA-seq)offers the potential to provide comprehensive insights into GC pathogenesis.AIM To explore the distribution and dynamic changes of cell populations in the GC tumor microenvironment using scRNA-seq techniques.METHODS Cancerous tissues and paracancerous tissues were obtained from patients diagnosed with GC at various stages(I,II,III,and IV).Single-cell suspensions were prepared and analyzed using scRNA-seq to examine transcriptome profiles and cell-cell interactions.Additionally,quantitative real-time polymerase chain reaction(qRT-PCR)and flow cytometry were applied for measuring the expression of cluster of differentiation(CD)2,CD3D,CD3E,cytokeratin 19,cytokeratin 8,and epithelial cell adhesion molecules.RESULTS Transcriptome data from 73645 single cells across eight tissues of four patients were categorized into 25 distinct cell clusters,representing 10 different cell types.Variations were observed in these cell type distribution.The adjacent epithelial cells in stages II and III exhibited a degenerative trend.Additionally,the quantity of CD4 T cells and CD8 T cells were evidently elevated in cancerous tissues.Interaction analysis displayed a remarkable increase in interaction between B cells and other mast cells in stages II,III,and IV of GC.These findings were further validated through qRT-PCR and flow cytometry,demonstrating elevated T cells and declined epithelial cells within the cancerous tissues.CONCLUSION This study provides a comprehensive analysis of cell dynamics across GC stages,highlighting key interactions within the tumor microenvironment.These findings offer valuable insights for developing novel therapeutic strategies.
基金Supported by National Natural Science Foundation of China,No.81273919 and No.81673727National Basic Research Program of China(973 Program)No.2013CB531703
文摘AIM To investigate gut microbial diversity and the interventional effect of Xiaoyaosan(XYS) in a rat model of functional dyspepsia(FD) with liver depression-spleen deficiency syndrome. METHODS The FD with liver depression-spleen deficiency syndrome rat model was established through classic chronic mild unpredictable stimulation every day. XYS group rats received XYS 1 h before the stimulation. The models were assessed by parameters including state ofthe rat, weight, sucrose test result and open-field test result. After 3 wk, the stools of rats were collected and genomic DNA was extracted. PCR products of the V4 region of 16 S rD NA were sequenced using a barcoded Illumina paired-end sequencing technique. The primary composition of the microbiome in the stool samples was determined and analyzed by cluster analysis.RESULTS Rat models were successfully established, per data from rat state, weight and open-field test. The microbiomes contained 20 phyla from all samples. Firmicutes, Bacteroidetes, Proteobacteria, Cyanobacteria and Tenericutes were the most abundant taxonomic groups. The relative abundance of Firmicutes, Proteobacteria and Cyanobacteria in the model group was higher than that in the normal group. On the contrary, the relative abundance of Bacteroidetes in the model group was lower than that in the normal group. Upon XYS treatment, the relative abundance of all dysregulated phyla was restored to levels similar to those observed in the normal group. Abundance clustering heat map of phyla corroborated the taxonomic distribution. CONCLUSION The microbiome relative abundance of FD rats with liver depression-spleen deficiency syndrome was significantly different from the normal cohort. XYS intervention may effectively adjust the gut dysbacteriosis in FD.
基金supported by the Public Science and Technology Research Funds Projects of Ocean (No. 201205031)the National Natural Science Foundation of China (No. 41521064)the Scientific and Technological Innovation Project of the Qingdao National Laboratory for Marine Science and Technology (No. 2016ASKJ02)
文摘Aureococcus anophagefferens caused brown tides for three consecutive years from 2009 to 2011 in the coastal waters of Qinhuangdao, China, with numerous, widespread ecological and economic impact on ecosystems. To understand the population dy- namics of nanoplankton during the brown tides, sequences of the V9 region of the 18S rDNA gene, used as a marker, were analyzed by Illumina sequencing to assess nanoplankton biomass, and real-time fluorescence quantitative PCR was performed to analyze spa- tial variation in the 18S rDNA copy concentrations of nanoplankton off the Qinhuangdao coast in July, 2011. The results showed that A. anophagefferens and Minutocellus polymorphus were the dominant species in the local phytoplankton community during the brown tide in July 2011. The highest 18S rDNA copy concentrations of A. anophagefferens and M. polymorphus were detected at stations SHG and FN, respectively. The central area most strongly affected by the brown tide migrated southward from 2011 to 2013. Redundancy analysis (RDA) showed that the decreasing NOx concentration might provide suitable nutrient conditions for the A. anophagefferens outbreak. During the brown tide caused by A. anophagefferens, other phytoplankton, such as diatoms, cryptophytes, chlorophytes, dinoflagellates and other flagellates, could co-occur with it. For zooplankton, due to less selective feeding behavior, Amoebozoa was the most abundant zooplankton at station SHG, while Ciliophora was the most abundant zooplankton at other sta- tions for its more selective feeding.
基金supported by the National Natural Science Foundation of China (31471864 and 31272151)the Qingdao Agricultural University High-level Personnel Startup Fund, China (6631115024)
文摘Chinese leek(Allium tuberosum Rottler ex Sprengel) is a common vegetable in China. In our previous study, Chinese leek in rotation was found to have significant antifungal and nematicidal activity. This study's aim was to investigate the potential antifungal and nematicidal activity associated with rhizosphere or endophytic microbes of Chinese leek. Thus, a total of 79 261 high-quality sequences were obtained from Chinese leek rhizosphere soil, leaf and root samples. In the rhizosphere soil, the bacterial community comprised five dominant phyla: Proteobacteria(37.85%), Acidobacteria(10.99%), Bacteroidetes(8.24%), Cyanobacteria(7.79%) and Planctomycetes(7.1%). The leaf and root bacterial communities comprised two dominant phyla: Cyanobacteria(83.42% in leaf and 75.44% in root) and Proteobacteria(14.75% in leaf and 21.04% in root). Microbial diversity, richness and evenness in the rhizosphere soil bacterial community were higher than that in the endophytic bacterial communities. The rhizosphere bacterial community was significantly different from the endophytic bacterial communities. The endophytic bacterial communities from the leaf and the root were slightly, but not significantly different from each other. This study's findings would contribute to the isolation and identification of nematicidal and antifungal bacterial communities in Chinese leek.
基金Supported by National Natural Science Foundation of China,No.82001037the Research and Develop Program,West China Hospital of Stomatology,Sichuan University,No.RD-02-202007.
文摘BACKGROUND A palatal radicular groove is an unusual developmental deformity of the tooth,which may serve as a channel linking the periodontal and periapical inflammation,and yet no literature could be obtained analyzing microbiota within the palatal radicular grooves.CASE SUMMARY Four patients diagnosed with palatal radicular groove and concomitant periodontal-endodontic deformity in permanent maxillary lateral incisors were enrolled in this work.Twelve bacterial samples from 4 patients were collected from different parts of the palatal radicular groove during intentional replantation surgery.Illumina sequencing was performed to analyze the taxonomical composition and microbiome structure inside the palatal grooves,and 1162 operational taxonomic units were obtained.The phyla of Firmicutes and Proteobacteria predominated in most of the samples.An unknown genus from the Bacillaceae family,Lactococcus,and Porphyromonas were the most abundant genera identified.There was no difference in the microbiota richness and diversity in three sections of the groove.CONCLUSION The unique ecological niches inside the palatal grooves harbored bacterial communities that shared some component features of both the endodontic and periodontal infections.The existence of palatal groove may play an interaction bridge between the root apex and tooth cervix and thus impair the outcome of traditional therapeutic methods such as root canal treatment and periodontal management.
基金Supported by the Sub-project under National Science&Technology Support Plan(No.2013BAD13B03)the Special Fund for Agroscientific Research in the Public Interest(No.201203018)
文摘MicroRNAs(miRNAs) are an abundant class of conserved, non-coding small RNAs that play important role in gene regulation at post translational level. There have been no reports on the miRNAs of the Antarctic krill E uphausia superba despite the species' crucial position in Antarctic food webs. Two small RNA libraries were constructed from eyestalk and muscle, subsequently, and deep sequencing analysis was performed to investigate and profile E. superba miRNAs. A total of 19 304 586 and 23 005 104 unique sequences were obtained from the eyestalk and muscle, respectively. After compared the small RNA sequences with the Rfam database, 12 342 039 and 7 907 477 reads in eyestalk and muscle were matched to the transcriptome sequence of E. superba. A total of 236 distinct miRNAs were identified after annotation to known animal miRNAs registered in miRBase 21. In both libraries, the most abundant known miRNA were miR-750 with 92 583 reads in muscle and miR-1304-3 p with 56 386 reads in eyestalk while the average value was less than 106, revealing a wide range of different expression levels. In addition, miR-277 a enriched in both libraries and may be involved in modulating Krebs cycle by targeting to Vimar. Differential expression analysis showed that 56 mature miRNAs were significantly up/down regulated according to expression fold change. It appeared that the expression of several abundant miRNAs maybe tissue-specific or tissue-bias. Notably, the expression pattern of miR-750 and miR-1 family, which was suggested as the crucial candidates, involved in muscle development. Taken together, this study provides the first miRNA profile of E. superba and some of these miRNAs were expected to play important role in immune response, reproduction, energy metabolism, and muscle development and so on. Thus, the results provides a reference for functional studies of miRNAs in E. superba.
文摘The numbers of reads generated by second-generation sequencing technologies permit to establish in a single sequencing lane multiple microRNA (miRNA) expression profiles from small RNA-derived cDNA libraries tagged by barcodes consisting of few bases. Multiplex sequencing allows sample size expansion and thus the statistical reliability of generated data. This allows the detection of discrete changes in miRNA expression levels that occur at the onset of cellular processes. With the development of the “by-amplification” strategy, tagging cDNA libraries is no more a source of technical variability. However, other specific features should be kept in mind when designing experiments aimed at profiling miRNA expression using Illumina sequencing technology, the most important being the substantial distortion between miRNA expression in sequencing data and the true miRNA abundancy. miRNAs of low expression in profiles may correspond to abundant miRNAs in samples and vice versa. We report here data obtained from rat cerebellum and liver that illustrate 1) the high 3’ adaptor dependency of miRNA expression profiles, 2) the impact of sample size when working with moderate (3 - 4 fold) changes of miRNA expression and 3) the impact of the statistical tools used to identify differentially expressed miRNAs.
文摘Single-cell RNA sequencing(scRNA-seq)is one of the most advanced sequencing technologies for studying transcriptome landscape at the single-cell revolution.It provides numerous advantages over traditional RNA-seq.Since it was first used to profile single-cell transcriptome in plants in 2019,it has been extensively employed to perform different research in plants.Recently,scRNA-seq was also quickly adopted by the cotton research community to solve lots of scientific questions which have been never solved.In this comment,we highlighted the significant progress in employing scRNA-seq to cotton genetic and genomic study and its future potential applications.
基金Supported by the National Natural Science Foundation of China,No.81960100Applied Basic Foundation of Yunnan Province,No.202001AY070001-192+2 种基金Young and Middle-aged Academic and Technical Leaders Reserve Talents Program in Yunnan Province,No.202305AC160018Yunnan Revitalization Talent Support Program,No.RLQB20200004 and No.RLMY20220013and Yunnan Health Training Project of High-Level Talents,No.H-2017002。
文摘BACKGROUND Pyroptosis impacts the development of malignant tumors,yet its role in colorectal cancer(CRC)prognosis remains uncertain.AIM To assess the prognostic significance of pyroptosis-related genes and their association with CRC immune infiltration.METHODS Gene expression data were obtained from The Cancer Genome Atlas(TCGA)and single-cell RNA sequencing dataset GSE178341 from the Gene Expression Omnibus(GEO).Pyroptosis-related gene expression in cell clusters was analyzed,and enrichment analysis was conducted.A pyroptosis-related risk model was developed using the LASSO regression algorithm,with prediction accuracy assessed through K-M and receiver operating characteristic analyses.A nomo-gram predicting survival was created,and the correlation between the risk model and immune infiltration was analyzed using CIBERSORTx calculations.Finally,the differential expression of the 8 prognostic genes between CRC and normal samples was verified by analyzing TCGA-COADREAD data from the UCSC database.RESULTS An effective pyroptosis-related risk model was constructed using 8 genes-CHMP2B,SDHB,BST2,UBE2D2,GJA1,AIM2,PDCD6IP,and SEZ6L2(P<0.05).Seven of these genes exhibited differential expression between CRC and normal samples based on TCGA database analysis(P<0.05).Patients with higher risk scores demonstrated increased death risk and reduced overall survival(P<0.05).Significant differences in immune infiltration were observed between low-and high-risk groups,correlating with pyroptosis-related gene expression.CONCLUSION We developed a pyroptosis-related prognostic model for CRC,affirming its correlation with immune infiltration.This model may prove useful for CRC prognostic evaluation.
文摘BACKGROUND This study aimed to identify characteristic gut genera in obese and normal-weight children(8-12 years old)using 16S rDNA sequencing.The research aimed to provide insights for mechanistic studies and prevention strategies for childhood obesity.Thirty normal-weight and thirty age-and sex-matched obese children were included.Questionnaires and body measurements were collected,and fecal samples underwent 16S rDNA sequencing.Significant differences in body mass index(BMI)and body-fat percentage were observed between the groups.Analysis of gut microbiota diversity revealed lowerα-diversity in obese children.Differences in gut microbiota composition were found between the two groups.Prevotella and Firmicutes were more abundant in the obese group,while Bacteroides and Sanguibacteroides were more prevalent in the control group.AIM To identify the characteristic gut genera in obese and normal-weight children(8-12-year-old)using 16S rDNA sequencing,and provide a basis for subsequent mechanistic studies and prevention strategies for childhood obesity.METHODS Thirty each normal-weight,1:1 matched for age and sex,and obese children,with an obese status from 2020 to 2022,were included in the control and obese groups,respectively.Basic information was collected through questionnaires and body measurements were obtained from both obese and normal-weight children.Fecal samples were collected from both groups and subjected to 16S rDNA sequencing using an Illumina MiSeq sequencing platform for gut microbiota diversity analysis.RESULTS Significant differences in BMI and body-fat percentage were observed between the two groups.The Ace and Chao1 indices were significantly lower in the obese group than those in the control group,whereas differences were not significant in the Shannon and Simpson indices.Kruskal-Wallis tests indicated significant differences in unweighted and weighted UniFrac distances between the gut microbiota of normal-weight and obese children(P<0.01),suggesting substantial disparities in both the species and quantity of gut microbiota between the two groups.Prevotella,Firmicutes,Bacteroides,and Sanguibacteroides were more abundant in the obese and control groups,respectively.Heatmap results demonstrated significant differences in the gut microbiota composition between obese and normal-weight children.CONCLUSION Obese children exhibited lowerα-diversity in their gut microbiota than did the normal-weight children.Significant differences were observed in the composition of gut microbiota between obese and normal-weight children.