期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Full well capacity and quantum efficiency optimization for small size backside illuminated CMOS image pixels with a new photodiode structure 被引量:4
1
作者 孙羽 张平 +2 位作者 徐江涛 高志远 徐超 《Journal of Semiconductors》 EI CAS CSCD 2012年第12期42-48,共7页
To improve the full well capacity (FWC) of a small size backside illuminated (BSI) CMOS image sensor (CIS), the effect of photodiode capacitance (Cpo) on FWC is studied, and a reformed pinned photodiode (PPD... To improve the full well capacity (FWC) of a small size backside illuminated (BSI) CMOS image sensor (CIS), the effect of photodiode capacitance (Cpo) on FWC is studied, and a reformed pinned photodiode (PPD) structure is proposed. Two procedures are implemented for the optimization. The first is to form a varying doping concentration and depth stretched new N region, which is implemented by an additional higher-energy and lower-dose N type implant beneath the original N region. The FWC of this structure is increased by extending the side wall junctions in the substrate. Secondly, in order to help the enlarged well capacity achieve full depletion, two step P-type implants with different implant energies are introduced to form a P-type insertion region in the interior of the stretched N region. This vertical inserted P region guarantees that the proposed new PD structure achieves full depletion in the reset period. The simulation results show that the FWC can be improved from 1289e- to 6390e-, and this improvement does not sacrifice any image lag performance. Additionally, quantum efficiency (QE) is enhanced in the full wavelength range, especially 6.3% at 520 nm wavelength. This technique can not only be used in such BSI structures, but also adopted in an FSI pixel with any photodiode-type readout scheme. 展开更多
关键词 backside illuminated CMOS image sensor PHOTODIODE full well capacity quantum efficiency small size pixel
原文传递
Sidelobe suppression in light-sheet fluorescence microscopy with Bessel beam plane illumination using subtractive imaging 被引量:3
2
作者 邓素辉 肖轶平 +3 位作者 胡杰 陈建芳 王玉皞 刘明萍 《Chinese Optics Letters》 SCIE EI CAS CSCD 2018年第11期61-65,共5页
The fluorescence from the out-of-focus region excited by the sidelobes of a Bessel beam is the major concern for light-sheet fluorescence microscopy (LSFM) with Bessel beam plane illumination. Here, we propose a met... The fluorescence from the out-of-focus region excited by the sidelobes of a Bessel beam is the major concern for light-sheet fluorescence microscopy (LSFM) with Bessel beam plane illumination. Here, we propose a method of applying the subtractive imaging to overcome the limitation of the conventional LSFM with Bessel beam plane illumination. In the proposed method, the sample is imaged twice by line scanning using the extended solid Bessel beam and the ring-like Bessel beam. By subtracting between the two images with similar out-of-focus blur, the improved image quality with the suppression of the Bessel beam sidelobes and enhanced sectioning ability with improved contrast are demonstrated. 展开更多
关键词 Sidelobe suppression in light-sheet fluorescence microscopy with Bessel beam plane illumination using subtractive imaging
原文传递
High-speed 3D imaging based on structured illumination and electrically tunable lens 被引量:1
3
作者 王东平 孟云龙 +2 位作者 陈頔瀚 任揚 陳世祈 《Chinese Optics Letters》 SCIE EI CAS CSCD 2017年第9期12-15,共4页
In this Letter, we present a high-speed volumetric imaging system based on structured illumination and an electrically tunable lens(ETL), where the ETL performs fast axial scanning at hundreds of Hz. In the system,a... In this Letter, we present a high-speed volumetric imaging system based on structured illumination and an electrically tunable lens(ETL), where the ETL performs fast axial scanning at hundreds of Hz. In the system,a digital micro-mirror device(DMD) is utilized to rapidly generate structured images at the focal plane in synchronization with the axial scanning unit. The scanning characteristics of the ETL are investigated theoretically and experimentally. Imaging experiments on pollen samples are performed to verify the optical cross-sectioning and fast axial scanning capabilities. The results show that our system can perform fast axial scanning and threedimensional(3D) imaging when paired with a high-speed camera, presenting an economic solution for advanced biological imaging applications. 展开更多
关键词 ETL High-speed 3D imaging based on structured illumination and electrically tunable lens
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部