期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于深度学习ImCascade R-CNN的小麦籽粒表形鉴定方法 被引量:1
1
作者 泮玮婷 孙梦丽 +1 位作者 员琰 刘平 《智慧农业(中英文)》 CSCD 2023年第3期110-120,共11页
[目的/意义]培育优质高产的小麦品种是小麦育种的主要目标,而小麦籽粒完整性直接影响小麦育种进程。完整籽粒与破损籽粒的部分特征差异较小,是限制基于深度学习识别破损小麦籽粒精准度的关键因素。[方法]为解决小麦籽粒检测精度低的问题... [目的/意义]培育优质高产的小麦品种是小麦育种的主要目标,而小麦籽粒完整性直接影响小麦育种进程。完整籽粒与破损籽粒的部分特征差异较小,是限制基于深度学习识别破损小麦籽粒精准度的关键因素。[方法]为解决小麦籽粒检测精度低的问题,本研究建立ImCascade R-CNN模型,提出小麦籽粒表形鉴定方法,精准检测小麦籽粒完整性、分割籽粒并获取完整籽粒表形参数。[结果和讨论]ImCascade R-CNN模型检测小麦籽粒完整性的平均精度为90.2%,与Cascade Mask R-CNN、Deeplabv3+模型相比,能更好地识别、定位、分割小麦籽粒,为籽粒表形参数地获取提供基础。该方法测量粒长、粒宽的平均误差率分别为2.15%和3.74%,测量长宽比的标准误差为0.15,与人工测量值具有较高的一致性。[结论]研究结果可快速精准检测籽粒完整性、获取完整籽粒表形数据,加速培育优质高产小麦品种。 展开更多
关键词 小麦育种 imcascade r-cnn模型 籽粒完整性 语义分割 籽粒表形参数 深度学习
下载PDF
A Study on Small Pest Detection Based on a CascadeR-CNN-Swin Model 被引量:1
2
作者 Man-Ting Li Sang-Hyun Lee 《Computers, Materials & Continua》 SCIE EI 2022年第9期6155-6165,共11页
This study aims to detect and prevent greening disease in citrus trees using a deep neural network.The process of collecting data on citrus greening disease is very difficult because the vector pests are too small.In ... This study aims to detect and prevent greening disease in citrus trees using a deep neural network.The process of collecting data on citrus greening disease is very difficult because the vector pests are too small.In this paper,since the amount of data collected for deep learning is insufficient,we intend to use the efficient feature extraction function of the neural network based on the Transformer algorithm.We want to use the Cascade Region-based Convolutional Neural Networks(Cascade R-CNN)Swin model,which is a mixture of the transformer model and Cascade R-CNN model to detect greening disease occurring in citrus.In this paper,we try to improve model safety by establishing a linear relationship between samples using Mixup and Cutmix algorithms,which are image processing-based data augmentation techniques.In addition,by using the ImageNet dataset,transfer learning,and stochastic weight averaging(SWA)methods,more accuracy can be obtained.This study compared the Faster Region-based Convolutional Neural Networks Residual Network101(Faster R-CNN ResNet101)model,Cascade Regionbased Convolutional Neural Networks Residual Network101(Cascade RCNN-ResNet101)model,and Cascade R-CNN Swin Model.As a result,the Faster R-CNN ResNet101 model came out as Average Precision(AP)(Intersection over Union(IoU)=0.5):88.2%,AP(IoU=0.75):62.8%,Recall:68.2%,and the Cascade R-CNN ResNet101 model was AP(IoU=0.5):91.5%,AP(IoU=0.75):67.2%,Recall:73.1%.Alternatively,the Cascade R-CNN Swin Model showed AP(IoU=0.5):94.9%,AP(IoU=0.75):79.8%and Recall:76.5%.Thus,the Cascade R-CNN Swin Model showed the best results for detecting citrus greening disease. 展开更多
关键词 Cascade r-cnn swin model cascade r-cnn resNet101 model faster r-cnn ResNet101 model mixup cutmix
下载PDF
A Study on Cascade R-CNN-Based Dangerous Goods Detection Using X-Ray Image
3
作者 Sang-Hyun Lee 《Computers, Materials & Continua》 SCIE EI 2022年第11期4245-4260,共16页
X-ray inspection equipment is divided into small baggage inspection equipment and large cargo inspection equipment.In the case of inspection using X-ray scanning equipment,it is possible to identify the contents of go... X-ray inspection equipment is divided into small baggage inspection equipment and large cargo inspection equipment.In the case of inspection using X-ray scanning equipment,it is possible to identify the contents of goods,unauthorized transport,or hidden goods in real-time by-passing cargo through X-rays without opening it.In this paper,we propose a system for detecting dangerous objects in X-ray images using the Cascade Region-based Convolutional Neural Network(Cascade R-CNN)model,and the data used for learning consists of dangerous goods,storage media,firearms,and knives.In addition,to minimize the overfitting problem caused by the lack of data to be used for artificial intelligence(AI)training,data samples are increased by using the CP(copy-paste)algorithm on the existing data.It also solves the data labeling problem by mixing supervised and semi-supervised learning.The four comparative models to be used in this study are Faster Regionbased Convolutional Neural Networks Residual2 Network-101(Faster R-CNN_Res2Net-101)supervised learning,Cascade R-CNN_Res2Net-101_supervised learning,Cascade Region-based Convolutional Neural Networks Composite Backbone Network V2(CBNetV2)Network-101(Cascade R-CNN_CBNetV2Net-101)_supervised learning,and Cascade RCNN_CBNetV2-101_semi-supervised learning which are then compared and evaluated.As a result of comparing the performance of the four models in this paper,in case of Cascade R-CNN_CBNetV2-101_semi-supervised learning,Average Precision(AP)(Intersection over Union(IoU)=0.5):0.7%,AP(IoU=0.75):1.0%than supervised learning,Recall:0.8%higher. 展开更多
关键词 Cascade r-cnn model faster r-cnn model X-ray screening equipment Res2Net supervised learning semi-supervised learning
下载PDF
Detection of Left Ventricular Cavity from Cardiac MRI Images Using Faster R-CNN
4
作者 Zakarya Farea Shaaf Muhammad Mahadi Abdul Jamil +3 位作者 Radzi Ambar Ahmed Abdu Alattab Anwar Ali Yahya Yousef Asiri 《Computers, Materials & Continua》 SCIE EI 2023年第1期1819-1835,共17页
The automatic localization of the left ventricle(LV)in short-axis magnetic resonance(MR)images is a required step to process cardiac images using convolutional neural networks for the extraction of a region of interes... The automatic localization of the left ventricle(LV)in short-axis magnetic resonance(MR)images is a required step to process cardiac images using convolutional neural networks for the extraction of a region of interest(ROI).The precise extraction of the LV’s ROI from cardiac MRI images is crucial for detecting heart disorders via cardiac segmentation or registration.Nevertheless,this task appears to be intricate due to the diversities in the size and shape of the LV and the scattering of surrounding tissues across different slices.Thus,this study proposed a region-based convolutional network(Faster R-CNN)for the LV localization from short-axis cardiac MRI images using a region proposal network(RPN)integrated with deep feature classification and regression.Themodel was trained using images with corresponding bounding boxes(labels)around the LV,and various experiments were applied to select the appropriate layers and set the suitable hyper-parameters.The experimental findings showthat the proposed modelwas adequate,with accuracy,precision,recall,and F1 score values of 0.91,0.94,0.95,and 0.95,respectively.This model also allows the cropping of the detected area of LV,which is vital in reducing the computational cost and time during segmentation and classification procedures.Therefore,itwould be an ideal model and clinically applicable for diagnosing cardiac diseases. 展开更多
关键词 Cardiac short-axis MRI images automatic left ventricle localization deep learning models faster r-cnn
下载PDF
Mask R-CNN and multifeature clustering model for catenary insulator recognition and defect detection 被引量:3
5
作者 Ping TAN Xu-feng LI +5 位作者 Jin DING Zhi-sheng CUI Ji-en MA Yue-lan SUN Bing-qiang HUANG You-tong FANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2022年第9期745-756,共12页
Rod insulators are vital parts of the catenary of high speed railways(HSRs).There are many different catenary insulators,and the background of the insulator image is complicated.It is difficult to recognise insulators... Rod insulators are vital parts of the catenary of high speed railways(HSRs).There are many different catenary insulators,and the background of the insulator image is complicated.It is difficult to recognise insulators and detect defects automatically.In this paper,we propose a catenary intelligent defect detection algorithm based on Mask region-convolutional neural network(R-CNN)and an image processing model.Vertical projection technology is used to achieve single shed positioning and precise cutting of the insulator.Gradient,texture,and gray feature fusion(GTGFF)and a K-means clustering analysis model(KCAM)are proposed to detect broken insulators,dirt,foreign bodies,and flashover.Using this model,insulator recognition and defect detection can achieve a high recall rate and accuracy,and generalized defect detection.The algorithm is tested and verified on a dataset of realistic insulator images,and the accuracy and reliability of the algorithm satisfy current requirements for HSR catenary automatic inspection and intelligent maintenance. 展开更多
关键词 High speed railway(HSR)catenary insulator Mask region-convolutional neural network(r-cnn) Multifeature fusion K-means clustering analysis model(KCAM) Defect detection
原文传递
Deep-reinforcement-learning-based UAV autonomous navigation and collision avoidance in unknown environments
6
作者 Fei WANG Xiaoping ZHU +1 位作者 Zhou ZHOU Yang TANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第3期237-257,共21页
In some military application scenarios,Unmanned Aerial Vehicles(UAVs)need to perform missions with the assistance of on-board cameras when radar is not available and communication is interrupted,which brings challenge... In some military application scenarios,Unmanned Aerial Vehicles(UAVs)need to perform missions with the assistance of on-board cameras when radar is not available and communication is interrupted,which brings challenges for UAV autonomous navigation and collision avoidance.In this paper,an improved deep-reinforcement-learning algorithm,Deep Q-Network with a Faster R-CNN model and a Data Deposit Mechanism(FRDDM-DQN),is proposed.A Faster R-CNN model(FR)is introduced and optimized to obtain the ability to extract obstacle information from images,and a new replay memory Data Deposit Mechanism(DDM)is designed to train an agent with a better performance.During training,a two-part training approach is used to reduce the time spent on training as well as retraining when the scenario changes.In order to verify the performance of the proposed method,a series of experiments,including training experiments,test experiments,and typical episodes experiments,is conducted in a 3D simulation environment.Experimental results show that the agent trained by the proposed FRDDM-DQN has the ability to navigate autonomously and avoid collisions,and performs better compared to the FRDQN,FR-DDQN,FR-Dueling DQN,YOLO-based YDDM-DQN,and original FR outputbased FR-ODQN. 展开更多
关键词 Faster r-cnn model Replay memory Data Deposit Mechanism(DDM) Two-part training approach Image-based Autonomous Navigation and Collision Avoidance(ANCA) Unmanned Aerial Vehicle(UAV)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部