The Ki67 index (KI) is a standard clinical marker for tumor proliferation;however, its application is hindered by intratumoral heterogeneity. In this study, we used digital image analysis to comprehensively analyze Ki...The Ki67 index (KI) is a standard clinical marker for tumor proliferation;however, its application is hindered by intratumoral heterogeneity. In this study, we used digital image analysis to comprehensively analyze Ki67 heterogeneity and distribution patterns in breast carcinoma. Using Smart Pathology software, we digitized and analyzed 42 excised breast carcinoma Ki67 slides. Boxplots, histograms, and heat maps were generated to illustrate the KI distribution. We found that 30% of cases (13/42) exhibited discrepancies between global and hotspot KI when using a 14% KI threshold for classification. Patients with higher global or hotspot KI values displayed greater heterogenicity. Ki67 distribution patterns were categorized as randomly distributed (52%, 22/42), peripheral (43%, 18/42), and centered (5%, 2/42). Our sampling simulator indicated analyzing more than 10 high-power fields was typically required to accurately estimate global KI, with sampling size being correlated with heterogeneity. In conclusion, using digital image analysis in whole-slide images allows for comprehensive Ki67 profile assessment, shedding light on heterogeneity and distribution patterns. This spatial information can facilitate KI surveys of breast cancer and other malignancies.展开更多
The continuous growth in the scale of unmanned aerial vehicle (UAV) applications in transmission line inspection has resulted in a corresponding increase in the demand for UAV inspection image processing. Owing to its...The continuous growth in the scale of unmanned aerial vehicle (UAV) applications in transmission line inspection has resulted in a corresponding increase in the demand for UAV inspection image processing. Owing to its excellent performance in computer vision, deep learning has been applied to UAV inspection image processing tasks such as power line identification and insulator defect detection. Despite their excellent performance, electric power UAV inspection image processing models based on deep learning face several problems such as a small application scope, the need for constant retraining and optimization, and high R&D monetary and time costs due to the black-box and scene data-driven characteristics of deep learning. In this study, an automated deep learning system for electric power UAV inspection image analysis and processing is proposed as a solution to the aforementioned problems. This system design is based on the three critical design principles of generalizability, extensibility, and automation. Pre-trained models, fine-tuning (downstream task adaptation), and automated machine learning, which are closely related to these design principles, are reviewed. In addition, an automated deep learning system architecture for electric power UAV inspection image analysis and processing is presented. A prototype system was constructed and experiments were conducted on the two electric power UAV inspection image analysis and processing tasks of insulator self-detonation and bird nest recognition. The models constructed using the prototype system achieved 91.36% and 86.13% mAP for insulator self-detonation and bird nest recognition, respectively. This demonstrates that the system design concept is reasonable and the system architecture feasible .展开更多
Medical image analysis is an active research topic,with thousands of studies published in the past few years.Transfer learning(TL)including convolutional neural networks(CNNs)focused to enhance efficiency on an innova...Medical image analysis is an active research topic,with thousands of studies published in the past few years.Transfer learning(TL)including convolutional neural networks(CNNs)focused to enhance efficiency on an innovative task using the knowledge of the same tasks learnt in advance.It has played a major role in medical image analysis since it solves the data scarcity issue along with that it saves hardware resources and time.This study develops an EnhancedTunicate SwarmOptimization withTransfer Learning EnabledMedical Image Analysis System(ETSOTL-MIAS).The goal of the ETSOTL-MIAS technique lies in the identification and classification of diseases through medical imaging.The ETSOTL-MIAS technique involves the Chan Vese segmentation technique to identify the affected regions in the medical image.For feature extraction purposes,the ETSOTL-MIAS technique designs a modified DarkNet-53 model.To avoid the manual hyperparameter adjustment process,the ETSOTLMIAS technique exploits the ETSO algorithm,showing the novelty of the work.Finally,the classification of medical images takes place by random forest(RF)classifier.The performance validation of the ETSOTL-MIAS technique is tested on a benchmark medical image database.The extensive experimental analysis showed the promising performance of the ETSOTL-MIAS technique under different measures.展开更多
Artificial Intelligence(AI)is being increasingly used for diagnosing Vision-Threatening Diabetic Retinopathy(VTDR),which is a leading cause of visual impairment and blindness worldwide.However,previous automated VTDR ...Artificial Intelligence(AI)is being increasingly used for diagnosing Vision-Threatening Diabetic Retinopathy(VTDR),which is a leading cause of visual impairment and blindness worldwide.However,previous automated VTDR detection methods have mainly relied on manual feature extraction and classification,leading to errors.This paper proposes a novel VTDR detection and classification model that combines different models through majority voting.Our proposed methodology involves preprocessing,data augmentation,feature extraction,and classification stages.We use a hybrid convolutional neural network-singular value decomposition(CNN-SVD)model for feature extraction and selection and an improved SVM-RBF with a Decision Tree(DT)and K-Nearest Neighbor(KNN)for classification.We tested our model on the IDRiD dataset and achieved an accuracy of 98.06%,a sensitivity of 83.67%,and a specificity of 100%for DR detection and evaluation tests,respectively.Our proposed approach outperforms baseline techniques and provides a more robust and accurate method for VTDR detection.展开更多
Biomedical image processing is widely utilized for disease detection and classification of biomedical images.Tongue color image analysis is an effective and non-invasive tool for carrying out secondary detection at an...Biomedical image processing is widely utilized for disease detection and classification of biomedical images.Tongue color image analysis is an effective and non-invasive tool for carrying out secondary detection at anytime and anywhere.For removing the qualitative aspect,tongue images are quantitatively inspected,proposing a novel disease classification model in an automated way is preferable.This article introduces a novel political optimizer with deep learning enabled tongue color image analysis(PODL-TCIA)technique.The presented PODL-TCIA model purposes to detect the occurrence of the disease by examining the color of the tongue.To attain this,the PODL-TCIA model initially performs image pre-processing to enhance medical image quality.Followed by,Inception with ResNet-v2 model is employed for feature extraction.Besides,political optimizer(PO)with twin support vector machine(TSVM)model is exploited for image classification process,shows the novelty of the work.The design of PO algorithm assists in the optimal parameter selection of the TSVM model.For ensuring the enhanced outcomes of the PODL-TCIA model,a wide-ranging experimental analysis was applied and the outcomes reported the betterment of the PODL-TCIA model over the recent approaches.展开更多
Malaria is an important and worldwide fatal disease that has been widely reported by the World Health Organization(WHO),and it has about 219 million cases worldwide,with 435,000 of those mortal.The common malaria diag...Malaria is an important and worldwide fatal disease that has been widely reported by the World Health Organization(WHO),and it has about 219 million cases worldwide,with 435,000 of those mortal.The common malaria diagnosis approach is heavily reliant on highly trained experts,who use a microscope to examine the samples.Therefore,there is a need to create an automated solution for the diagnosis of malaria.One of the main objectives of this work is to create a design tool that could be used to diagnose malaria from the image of a blood sample.In this paper,we firstly developed a graphical user interface that could be used to help segment red blood cells and infected cells and allow the users to analyze the blood samples.Secondly,a Feed-forward Neural Network(FNN)is designed to classify the cells into two classes.The achieved results show that the proposed techniques can be used to detect malaria,as it has achieved 92%accuracy with a database that contains 27,560 benchmark images.展开更多
In this paper,an Automated Brain Image Analysis(ABIA)system that classifies the Magnetic Resonance Imaging(MRI)of human brain is presented.The classification of MRI images into normal or low grade or high grade plays ...In this paper,an Automated Brain Image Analysis(ABIA)system that classifies the Magnetic Resonance Imaging(MRI)of human brain is presented.The classification of MRI images into normal or low grade or high grade plays a vital role for the early diagnosis.The Non-Subsampled Shearlet Transform(NSST)that captures more visual information than conventional wavelet transforms is employed for feature extraction.As the feature space of NSST is very high,a statistical t-test is applied to select the dominant directional sub-bands at each level of NSST decomposition based on sub-band energies.A combination of features that includes Gray Level Co-occurrence Matrix(GLCM)based features,Histograms of Positive Shearlet Coefficients(HPSC),and Histograms of Negative Shearlet Coefficients(HNSC)are estimated.The combined feature set is utilized in the classification phase where a hybrid approach is designed with three classifiers;k-Nearest Neighbor(kNN),Naive Bayes(NB)and Support Vector Machine(SVM)classifiers.The output of individual trained classifiers for a testing input is hybridized to take a final decision.The quantitative results of ABIA system on Repository of Molecular Brain Neoplasia Data(REMBRANDT)database show the overall improved performance in comparison with a single classifier model with accuracy of 99% for normal/abnormal classification and 98% for low and high risk classification.展开更多
Facial beauty analysis is an important topic in human society.It may be used as a guidance for face beautification applications such as cosmetic surgery.Deep neural networks(DNNs)have recently been adopted for facial ...Facial beauty analysis is an important topic in human society.It may be used as a guidance for face beautification applications such as cosmetic surgery.Deep neural networks(DNNs)have recently been adopted for facial beauty analysis and have achieved remarkable performance.However,most existing DNN-based models regard facial beauty analysis as a normal classification task.They ignore important prior knowledge in traditional machine learning models which illustrate the significant contribution of the geometric features in facial beauty analysis.To be specific,landmarks of the whole face and facial organs are introduced to extract geometric features to make the decision.Inspired by this,we introduce a novel dual-branch network for facial beauty analysis:one branch takes the Swin Transformer as the backbone to model the full face and global patterns,and another branch focuses on the masked facial organs with the residual network to model the local patterns of certain facial parts.Additionally,the designed multi-scale feature fusion module can further facilitate our network to learn complementary semantic information between the two branches.In model optimisation,we propose a hybrid loss function,where especially geometric regulation is introduced by regressing the facial landmarks and it can force the extracted features to convey facial geometric features.Experiments performed on the SCUT-FBP5500 dataset and the SCUT-FBP dataset demonstrate that our model outperforms the state-of-the-art convolutional neural networks models,which proves the effectiveness of the proposed geometric regularisation and dual-branch structure with the hybrid network.To the best of our knowledge,this is the first study to introduce a Vision Transformer into the facial beauty analysis task.展开更多
With the advancement of retinal imaging,hyperreflective foci(HRF)on optical coherence tomography(OCT)images have gained significant attention as potential biological biomarkers for retinal neuroinflammation.However,th...With the advancement of retinal imaging,hyperreflective foci(HRF)on optical coherence tomography(OCT)images have gained significant attention as potential biological biomarkers for retinal neuroinflammation.However,these biomarkers,represented by HRF,present pose challenges in terms of localization,quantification,and require substantial time and resources.In recent years,the progress and utilization of artificial intelligence(AI)have provided powerful tools for the analysis of biological markers.AI technology enables use machine learning(ML),deep learning(DL)and other technologies to precise characterization of changes in biological biomarkers during disease progression and facilitates quantitative assessments.Based on ophthalmic images,AI has significant implications for early screening,diagnostic grading,treatment efficacy evaluation,treatment recommendations,and prognosis development in common ophthalmic diseases.Moreover,it will help reduce the reliance of the healthcare system on human labor,which has the potential to simplify and expedite clinical trials,enhance the reliability and professionalism of disease management,and improve the prediction of adverse events.This article offers a comprehensive review of the application of AI in combination with HRF on OCT images in ophthalmic diseases including age-related macular degeneration(AMD),diabetic macular edema(DME),retinal vein occlusion(RVO)and other retinal diseases and presents prospects for their utilization.展开更多
Background Document images such as statistical reports and scientific journals are widely used in information technology.Accurate detection of table areas in document images is an essential prerequisite for tasks such...Background Document images such as statistical reports and scientific journals are widely used in information technology.Accurate detection of table areas in document images is an essential prerequisite for tasks such as information extraction.However,because of the diversity in the shapes and sizes of tables,existing table detection methods adapted from general object detection algorithms,have not yet achieved satisfactory results.Incorrect detection results might lead to the loss of critical information.Methods Therefore,we propose a novel end-to-end trainable deep network combined with a self-supervised pretraining transformer for feature extraction to minimize incorrect detections.To better deal with table areas of different shapes and sizes,we added a dualbranch context content attention module(DCCAM)to high-dimensional features to extract context content information,thereby enhancing the network's ability to learn shape features.For feature fusion at different scales,we replaced the original 3×3 convolution with a multilayer residual module,which contains enhanced gradient flow information to improve the feature representation and extraction capability.Results We evaluated our method on public document datasets and compared it with previous methods,which achieved state-of-the-art results in terms of evaluation metrics such as recall and F1-score.https://github.com/Yong Z-Lee/TD-DCCAM.展开更多
Methods and procedures of three-dimensional (3D) characterization of the pore structure features in the packed ore particle bed are focused. X-ray computed tomography was applied to deriving the cross-sectional imag...Methods and procedures of three-dimensional (3D) characterization of the pore structure features in the packed ore particle bed are focused. X-ray computed tomography was applied to deriving the cross-sectional images of specimens with single particle size of 1-2, 2-3, 3-4, 4-5, 5-6, 6-7, 7-8, 8-9, 9-10 ram. Based on the in-house developed 3D image analysis programs using Matlab, the volume porosity, pore size distribution and degree of connectivity were calculated and analyzed in detail. The results indicate that the volume porosity, the mean diameter of pores and the effective pore size (d50) increase with the increasing of particle size. Lognormal distribution or Gauss distribution is mostly suitable to model the pore size distribution. The degree of connectivity investigated on the basis of cluster-labeling algorithm also increases with increasing the particle size approximately.展开更多
Mineral dissemination and pore space distribution in ore particles are important features that influence heap leaching performance. To quantify the mineral dissemination and pore space distribution of an ore particle,...Mineral dissemination and pore space distribution in ore particles are important features that influence heap leaching performance. To quantify the mineral dissemination and pore space distribution of an ore particle, a cylindrical copper oxide ore sample (I center dot 4.6 mm x 5.6 mm) was scanned using high-resolution X-ray computed tomography (HRXCT), a nondestructive imaging technology, at a spatial resolution of 4.85 mu m. Combined with three-dimensional (3D) image analysis techniques, the main mineral phases and pore space were segmented and the volume fraction of each phase was calculated. In addition, the mass fraction of each mineral phase was estimated and the result was validated with that obtained using traditional techniques. Furthermore, the pore phase features, including the pore size distribution, pore surface area, pore fractal dimension, pore centerline, and the pore connectivity, were investigated quantitatively. The pore space analysis results indicate that the pore size distribution closely fits a log-normal distribution and that the pore space morphology is complicated, with a large surface area and low connectivity. This study demonstrates that the combination of HRXCT and 3D image analysis is an effective tool for acquiring 3D mineralogical and pore structural data.展开更多
With the wide use of high-resolution remotely sensed imagery, the object-oriented remotely sensed informa- tion classification pattern has been intensively studied. Starting with the definition of object-oriented remo...With the wide use of high-resolution remotely sensed imagery, the object-oriented remotely sensed informa- tion classification pattern has been intensively studied. Starting with the definition of object-oriented remotely sensed information classification pattern and a literature review of related research progress, this paper sums up 4 developing phases of object-oriented classification pattern during the past 20 years. Then, we discuss the three aspects of method- ology in detail, namely remotely sensed imagery segmentation, feature analysis and feature selection, and classification rule generation, through comparing them with remotely sensed information classification method based on per-pixel. At last, this paper presents several points that need to be paid attention to in the future studies on object-oriented RS in- formation classification pattern: 1) developing robust and highly effective image segmentation algorithm for multi-spectral RS imagery; 2) improving the feature-set including edge, spatial-adjacent and temporal characteristics; 3) discussing the classification rule generation classifier based on the decision tree; 4) presenting evaluation methods for classification result by object-oriented classification pattern.展开更多
Based on the analysis of high-speed video images, the detachment behavior of dust cake from the ceramic candle filter surface during pulse cleaning process is investigated. The influences of the dust cake loading,the ...Based on the analysis of high-speed video images, the detachment behavior of dust cake from the ceramic candle filter surface during pulse cleaning process is investigated. The influences of the dust cake loading,the reservoir pressure, and the filtration velocity on the cleaning effectiveness are analyzed. Experimental results show that there exists an optimum dust cake thickness for pulse-cleaning process. For thin dust cake, the patchy cleaning exists and the cleaning efficiency is low; if the dust cake is too thick, the pressure drop across the dust cake becomes higher and a higher reservoir pressure may be needed. At the same time there also exists an optimum reservoir pressure for a given filtration condition.展开更多
It is critical to establish a direct and precise method with a high sensitivity and selectivity in analytical chemistry. In this research, making use of a well known phenomenon of capillary flow, we have proposed an...It is critical to establish a direct and precise method with a high sensitivity and selectivity in analytical chemistry. In this research, making use of a well known phenomenon of capillary flow, we have proposed an image analysis method of nucleic acids at the price of a small amount of sample. When a droplet of the supramolecular complex solution, formed by neutral red and nucleic acids(NA) under an approximate neutral condition, was placed on the hydrophobic surface of dimethyl dichlorosilane pretreated glass slides, and it was evaporated, the supramolecular complex exhibited the periphery of the droplet due to the capillary effect, and accumulated there to form a red capillary flow directed assembly ring(CFDAR). A typical CFDAR has an outer diameter of (2 r ) about 1.18 mm and a ring width(2 δ ) of about 41 μm. Depending on the experimental conditions, a variety of CFDAR can be assembled. The experimental results are in agreement with our former theoretical discussion. It was found that when a droplet volume is 0.1 μL, the fluorescence intensity of the CFDAR formed by the NR NA is in proportion to the content of calf thymus DNA in the range of 0-0.28 ng, fish sperm DNA of 0-0.24 ng and yeast RNA of 0-0.16 ng with the limit of detection(3 σ ) of 1 7, 1.4 and 0.9 pg, respectively for the three nucleic acids.展开更多
The particle morphology and surface texture play a major role in influencing mechanical and hydraulic behaviors of sandy soils. This paper presents the use of digital image analysis combined with fractal theory as a t...The particle morphology and surface texture play a major role in influencing mechanical and hydraulic behaviors of sandy soils. This paper presents the use of digital image analysis combined with fractal theory as a tool to quantify the particle morphology and surface texture of two types of quartz sands widely used in the region of Vitória, Espírito Santo, southeast of Brazil. The two investigated sands are sampled from different locations. The purpose of this paper is to present a simple, straightforward,reliable and reproducible methodology that can identify representative sandy soil texture parameters.The test results of the soil samples of the two sands separated by sieving into six size fractions are presented and discussed. The main advantages of the adopted methodology are its simplicity, reliability of the results, and relatively low cost. The results show that sands from the coastal spit(BS) have a greater degree of roundness and a smoother surface texture than river sands(RS). The values obtained in the test are statistically analyzed, and again it is confirmed that the BS sand has a slightly greater degree of sphericity than that of the RS sand. Moreover, the RS sand with rough surface texture has larger specific surface area values than the similar BS sand, which agree with the obtained roughness fractal dimensions. The consistent experimental results demonstrate that image analysis combined with fractal theory is an accurate and efficient method to quantify the differences in particle morphology and surface texture of quartz sands.展开更多
Multi-modality medical image fusion has more and more important applications in medical image analysis and understanding. In this paper, we develop and apply a multi-resolution method based on wavelet pyramid to fuse ...Multi-modality medical image fusion has more and more important applications in medical image analysis and understanding. In this paper, we develop and apply a multi-resolution method based on wavelet pyramid to fuse medical images from different modalities such as PET-MRI and CT-MRI. In particular, we evaluate the different fusion results when applying different selection rules and obtain optimum combination of fusion parameters.展开更多
The degradation mechanisms of cementitious materials exposed to sulfate solutions have been controversial, despite considerable research. In this paper, two methodologies of image analysis based on scanning electron m...The degradation mechanisms of cementitious materials exposed to sulfate solutions have been controversial, despite considerable research. In this paper, two methodologies of image analysis based on scanning electron microscope and chemical mapping are used to analyse Portland cement mortars exposed to sodium sulfate solution. The effects of sulfate concentration in solution and water to cement ratio of mortar, which are considered as the most sensitive factors to sulfate attack, are investigated respectively by comparing the macro expansion with microstructure analysis. It is found that the sulfate concentration in pore solution, expressed as sulfate content in C-S-H, plays a critical role on the supersaturation with respect to ettringite and so on the expansion force generated.展开更多
文摘The Ki67 index (KI) is a standard clinical marker for tumor proliferation;however, its application is hindered by intratumoral heterogeneity. In this study, we used digital image analysis to comprehensively analyze Ki67 heterogeneity and distribution patterns in breast carcinoma. Using Smart Pathology software, we digitized and analyzed 42 excised breast carcinoma Ki67 slides. Boxplots, histograms, and heat maps were generated to illustrate the KI distribution. We found that 30% of cases (13/42) exhibited discrepancies between global and hotspot KI when using a 14% KI threshold for classification. Patients with higher global or hotspot KI values displayed greater heterogenicity. Ki67 distribution patterns were categorized as randomly distributed (52%, 22/42), peripheral (43%, 18/42), and centered (5%, 2/42). Our sampling simulator indicated analyzing more than 10 high-power fields was typically required to accurately estimate global KI, with sampling size being correlated with heterogeneity. In conclusion, using digital image analysis in whole-slide images allows for comprehensive Ki67 profile assessment, shedding light on heterogeneity and distribution patterns. This spatial information can facilitate KI surveys of breast cancer and other malignancies.
基金This work was supported by Science and Technology Project of State Grid Corporation“Research on Key Technologies of Power Artificial Intelligence Open Platform”(5700-202155260A-0-0-00).
文摘The continuous growth in the scale of unmanned aerial vehicle (UAV) applications in transmission line inspection has resulted in a corresponding increase in the demand for UAV inspection image processing. Owing to its excellent performance in computer vision, deep learning has been applied to UAV inspection image processing tasks such as power line identification and insulator defect detection. Despite their excellent performance, electric power UAV inspection image processing models based on deep learning face several problems such as a small application scope, the need for constant retraining and optimization, and high R&D monetary and time costs due to the black-box and scene data-driven characteristics of deep learning. In this study, an automated deep learning system for electric power UAV inspection image analysis and processing is proposed as a solution to the aforementioned problems. This system design is based on the three critical design principles of generalizability, extensibility, and automation. Pre-trained models, fine-tuning (downstream task adaptation), and automated machine learning, which are closely related to these design principles, are reviewed. In addition, an automated deep learning system architecture for electric power UAV inspection image analysis and processing is presented. A prototype system was constructed and experiments were conducted on the two electric power UAV inspection image analysis and processing tasks of insulator self-detonation and bird nest recognition. The models constructed using the prototype system achieved 91.36% and 86.13% mAP for insulator self-detonation and bird nest recognition, respectively. This demonstrates that the system design concept is reasonable and the system architecture feasible .
基金support for this work from the Deanship of Scientific Research (DSR),University of Tabuk,Tabuk,Saudi Arabia,under grant number S-1440-0262.
文摘Medical image analysis is an active research topic,with thousands of studies published in the past few years.Transfer learning(TL)including convolutional neural networks(CNNs)focused to enhance efficiency on an innovative task using the knowledge of the same tasks learnt in advance.It has played a major role in medical image analysis since it solves the data scarcity issue along with that it saves hardware resources and time.This study develops an EnhancedTunicate SwarmOptimization withTransfer Learning EnabledMedical Image Analysis System(ETSOTL-MIAS).The goal of the ETSOTL-MIAS technique lies in the identification and classification of diseases through medical imaging.The ETSOTL-MIAS technique involves the Chan Vese segmentation technique to identify the affected regions in the medical image.For feature extraction purposes,the ETSOTL-MIAS technique designs a modified DarkNet-53 model.To avoid the manual hyperparameter adjustment process,the ETSOTLMIAS technique exploits the ETSO algorithm,showing the novelty of the work.Finally,the classification of medical images takes place by random forest(RF)classifier.The performance validation of the ETSOTL-MIAS technique is tested on a benchmark medical image database.The extensive experimental analysis showed the promising performance of the ETSOTL-MIAS technique under different measures.
基金This research was funded by the National Natural Science Foundation of China(Nos.71762010,62262019,62162025,61966013,12162012)the Hainan Provincial Natural Science Foundation of China(Nos.823RC488,623RC481,620RC603,621QN241,620RC602,121RC536)+1 种基金the Haikou Science and Technology Plan Project of China(No.2022-016)the Project supported by the Education Department of Hainan Province,No.Hnky2021-23.
文摘Artificial Intelligence(AI)is being increasingly used for diagnosing Vision-Threatening Diabetic Retinopathy(VTDR),which is a leading cause of visual impairment and blindness worldwide.However,previous automated VTDR detection methods have mainly relied on manual feature extraction and classification,leading to errors.This paper proposes a novel VTDR detection and classification model that combines different models through majority voting.Our proposed methodology involves preprocessing,data augmentation,feature extraction,and classification stages.We use a hybrid convolutional neural network-singular value decomposition(CNN-SVD)model for feature extraction and selection and an improved SVM-RBF with a Decision Tree(DT)and K-Nearest Neighbor(KNN)for classification.We tested our model on the IDRiD dataset and achieved an accuracy of 98.06%,a sensitivity of 83.67%,and a specificity of 100%for DR detection and evaluation tests,respectively.Our proposed approach outperforms baseline techniques and provides a more robust and accurate method for VTDR detection.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under grant number(RGP 2/158/43)Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R161)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4340237DSR11).
文摘Biomedical image processing is widely utilized for disease detection and classification of biomedical images.Tongue color image analysis is an effective and non-invasive tool for carrying out secondary detection at anytime and anywhere.For removing the qualitative aspect,tongue images are quantitatively inspected,proposing a novel disease classification model in an automated way is preferable.This article introduces a novel political optimizer with deep learning enabled tongue color image analysis(PODL-TCIA)technique.The presented PODL-TCIA model purposes to detect the occurrence of the disease by examining the color of the tongue.To attain this,the PODL-TCIA model initially performs image pre-processing to enhance medical image quality.Followed by,Inception with ResNet-v2 model is employed for feature extraction.Besides,political optimizer(PO)with twin support vector machine(TSVM)model is exploited for image classification process,shows the novelty of the work.The design of PO algorithm assists in the optimal parameter selection of the TSVM model.For ensuring the enhanced outcomes of the PODL-TCIA model,a wide-ranging experimental analysis was applied and the outcomes reported the betterment of the PODL-TCIA model over the recent approaches.
基金This work is partly supported by the Fundamental Research Funds for the Central Universities of China under grants GK202003080the Natural Science Foundation of Shaanxi Province under Grants 2021JM-205the UK Engineering and Physical Sciences Research Council through grants EP/V034111/1.
文摘Malaria is an important and worldwide fatal disease that has been widely reported by the World Health Organization(WHO),and it has about 219 million cases worldwide,with 435,000 of those mortal.The common malaria diagnosis approach is heavily reliant on highly trained experts,who use a microscope to examine the samples.Therefore,there is a need to create an automated solution for the diagnosis of malaria.One of the main objectives of this work is to create a design tool that could be used to diagnose malaria from the image of a blood sample.In this paper,we firstly developed a graphical user interface that could be used to help segment red blood cells and infected cells and allow the users to analyze the blood samples.Secondly,a Feed-forward Neural Network(FNN)is designed to classify the cells into two classes.The achieved results show that the proposed techniques can be used to detect malaria,as it has achieved 92%accuracy with a database that contains 27,560 benchmark images.
文摘In this paper,an Automated Brain Image Analysis(ABIA)system that classifies the Magnetic Resonance Imaging(MRI)of human brain is presented.The classification of MRI images into normal or low grade or high grade plays a vital role for the early diagnosis.The Non-Subsampled Shearlet Transform(NSST)that captures more visual information than conventional wavelet transforms is employed for feature extraction.As the feature space of NSST is very high,a statistical t-test is applied to select the dominant directional sub-bands at each level of NSST decomposition based on sub-band energies.A combination of features that includes Gray Level Co-occurrence Matrix(GLCM)based features,Histograms of Positive Shearlet Coefficients(HPSC),and Histograms of Negative Shearlet Coefficients(HNSC)are estimated.The combined feature set is utilized in the classification phase where a hybrid approach is designed with three classifiers;k-Nearest Neighbor(kNN),Naive Bayes(NB)and Support Vector Machine(SVM)classifiers.The output of individual trained classifiers for a testing input is hybridized to take a final decision.The quantitative results of ABIA system on Repository of Molecular Brain Neoplasia Data(REMBRANDT)database show the overall improved performance in comparison with a single classifier model with accuracy of 99% for normal/abnormal classification and 98% for low and high risk classification.
基金Shenzhen Science and Technology Program,Grant/Award Number:ZDSYS20211021111415025Shenzhen Institute of Artificial Intelligence and Robotics for SocietyYouth Science and Technology Talents Development Project of Guizhou Education Department,Grant/Award Number:QianJiaoheKYZi[2018]459。
文摘Facial beauty analysis is an important topic in human society.It may be used as a guidance for face beautification applications such as cosmetic surgery.Deep neural networks(DNNs)have recently been adopted for facial beauty analysis and have achieved remarkable performance.However,most existing DNN-based models regard facial beauty analysis as a normal classification task.They ignore important prior knowledge in traditional machine learning models which illustrate the significant contribution of the geometric features in facial beauty analysis.To be specific,landmarks of the whole face and facial organs are introduced to extract geometric features to make the decision.Inspired by this,we introduce a novel dual-branch network for facial beauty analysis:one branch takes the Swin Transformer as the backbone to model the full face and global patterns,and another branch focuses on the masked facial organs with the residual network to model the local patterns of certain facial parts.Additionally,the designed multi-scale feature fusion module can further facilitate our network to learn complementary semantic information between the two branches.In model optimisation,we propose a hybrid loss function,where especially geometric regulation is introduced by regressing the facial landmarks and it can force the extracted features to convey facial geometric features.Experiments performed on the SCUT-FBP5500 dataset and the SCUT-FBP dataset demonstrate that our model outperforms the state-of-the-art convolutional neural networks models,which proves the effectiveness of the proposed geometric regularisation and dual-branch structure with the hybrid network.To the best of our knowledge,this is the first study to introduce a Vision Transformer into the facial beauty analysis task.
基金Supported by Zhejiang Provincial Natural Science Foundation of China(No.LGF22H120013)the Ningbo Natural Science Foundation(No.2023J209,No.2021J023)+2 种基金Ningbo Medical Science and Technology Project(No.2021Y57)Ningbo Yinzhou District Agricultural Community Development Science and Technology Project(No.2022AS022)Ningbo Eye Hospital Scientific Technology Plan Project and Talent Introduction Start Subject(No.2022RC001).
文摘With the advancement of retinal imaging,hyperreflective foci(HRF)on optical coherence tomography(OCT)images have gained significant attention as potential biological biomarkers for retinal neuroinflammation.However,these biomarkers,represented by HRF,present pose challenges in terms of localization,quantification,and require substantial time and resources.In recent years,the progress and utilization of artificial intelligence(AI)have provided powerful tools for the analysis of biological markers.AI technology enables use machine learning(ML),deep learning(DL)and other technologies to precise characterization of changes in biological biomarkers during disease progression and facilitates quantitative assessments.Based on ophthalmic images,AI has significant implications for early screening,diagnostic grading,treatment efficacy evaluation,treatment recommendations,and prognosis development in common ophthalmic diseases.Moreover,it will help reduce the reliance of the healthcare system on human labor,which has the potential to simplify and expedite clinical trials,enhance the reliability and professionalism of disease management,and improve the prediction of adverse events.This article offers a comprehensive review of the application of AI in combination with HRF on OCT images in ophthalmic diseases including age-related macular degeneration(AMD),diabetic macular edema(DME),retinal vein occlusion(RVO)and other retinal diseases and presents prospects for their utilization.
文摘Background Document images such as statistical reports and scientific journals are widely used in information technology.Accurate detection of table areas in document images is an essential prerequisite for tasks such as information extraction.However,because of the diversity in the shapes and sizes of tables,existing table detection methods adapted from general object detection algorithms,have not yet achieved satisfactory results.Incorrect detection results might lead to the loss of critical information.Methods Therefore,we propose a novel end-to-end trainable deep network combined with a self-supervised pretraining transformer for feature extraction to minimize incorrect detections.To better deal with table areas of different shapes and sizes,we added a dualbranch context content attention module(DCCAM)to high-dimensional features to extract context content information,thereby enhancing the network's ability to learn shape features.For feature fusion at different scales,we replaced the original 3×3 convolution with a multilayer residual module,which contains enhanced gradient flow information to improve the feature representation and extraction capability.Results We evaluated our method on public document datasets and compared it with previous methods,which achieved state-of-the-art results in terms of evaluation metrics such as recall and F1-score.https://github.com/Yong Z-Lee/TD-DCCAM.
基金Projects(50934002,51074013,51304076,51104100)supported by the National Natural Science Foundation of ChinaProject(IRT0950)supported by the Program for Changjiang Scholars Innovative Research Team in Universities,ChinaProject(2012M510007)supported by China Postdoctoral Science Foundation
文摘Methods and procedures of three-dimensional (3D) characterization of the pore structure features in the packed ore particle bed are focused. X-ray computed tomography was applied to deriving the cross-sectional images of specimens with single particle size of 1-2, 2-3, 3-4, 4-5, 5-6, 6-7, 7-8, 8-9, 9-10 ram. Based on the in-house developed 3D image analysis programs using Matlab, the volume porosity, pore size distribution and degree of connectivity were calculated and analyzed in detail. The results indicate that the volume porosity, the mean diameter of pores and the effective pore size (d50) increase with the increasing of particle size. Lognormal distribution or Gauss distribution is mostly suitable to model the pore size distribution. The degree of connectivity investigated on the basis of cluster-labeling algorithm also increases with increasing the particle size approximately.
基金financially supported by the National Natural Science Foundation of China(No.51304076)the Natural Science Foundation of Hunan Province,China(No.14JJ4064)
文摘Mineral dissemination and pore space distribution in ore particles are important features that influence heap leaching performance. To quantify the mineral dissemination and pore space distribution of an ore particle, a cylindrical copper oxide ore sample (I center dot 4.6 mm x 5.6 mm) was scanned using high-resolution X-ray computed tomography (HRXCT), a nondestructive imaging technology, at a spatial resolution of 4.85 mu m. Combined with three-dimensional (3D) image analysis techniques, the main mineral phases and pore space were segmented and the volume fraction of each phase was calculated. In addition, the mass fraction of each mineral phase was estimated and the result was validated with that obtained using traditional techniques. Furthermore, the pore phase features, including the pore size distribution, pore surface area, pore fractal dimension, pore centerline, and the pore connectivity, were investigated quantitatively. The pore space analysis results indicate that the pore size distribution closely fits a log-normal distribution and that the pore space morphology is complicated, with a large surface area and low connectivity. This study demonstrates that the combination of HRXCT and 3D image analysis is an effective tool for acquiring 3D mineralogical and pore structural data.
基金Under the auspices of the National Natural Science Foundation of China (No. 40301038), Talents Recruitment Foun-dation of Nanjing University
文摘With the wide use of high-resolution remotely sensed imagery, the object-oriented remotely sensed informa- tion classification pattern has been intensively studied. Starting with the definition of object-oriented remotely sensed information classification pattern and a literature review of related research progress, this paper sums up 4 developing phases of object-oriented classification pattern during the past 20 years. Then, we discuss the three aspects of method- ology in detail, namely remotely sensed imagery segmentation, feature analysis and feature selection, and classification rule generation, through comparing them with remotely sensed information classification method based on per-pixel. At last, this paper presents several points that need to be paid attention to in the future studies on object-oriented RS in- formation classification pattern: 1) developing robust and highly effective image segmentation algorithm for multi-spectral RS imagery; 2) improving the feature-set including edge, spatial-adjacent and temporal characteristics; 3) discussing the classification rule generation classifier based on the decision tree; 4) presenting evaluation methods for classification result by object-oriented classification pattern.
基金Supported by the National Natural Science Foundation of China (No. 50376042)Doctoral Program Foundation of Institute of Higher Education of China (20040425007).
文摘Based on the analysis of high-speed video images, the detachment behavior of dust cake from the ceramic candle filter surface during pulse cleaning process is investigated. The influences of the dust cake loading,the reservoir pressure, and the filtration velocity on the cleaning effectiveness are analyzed. Experimental results show that there exists an optimum dust cake thickness for pulse-cleaning process. For thin dust cake, the patchy cleaning exists and the cleaning efficiency is low; if the dust cake is too thick, the pressure drop across the dust cake becomes higher and a higher reservoir pressure may be needed. At the same time there also exists an optimum reservoir pressure for a given filtration condition.
基金Supported by the NationalNaturalScience Foundation of China( No. 2 0 175 0 1) and U niversity Key Teachers Programdirected under the Ministry of Education ofP.R.China( No. 2 0 0 0 - 6 5 )
文摘It is critical to establish a direct and precise method with a high sensitivity and selectivity in analytical chemistry. In this research, making use of a well known phenomenon of capillary flow, we have proposed an image analysis method of nucleic acids at the price of a small amount of sample. When a droplet of the supramolecular complex solution, formed by neutral red and nucleic acids(NA) under an approximate neutral condition, was placed on the hydrophobic surface of dimethyl dichlorosilane pretreated glass slides, and it was evaporated, the supramolecular complex exhibited the periphery of the droplet due to the capillary effect, and accumulated there to form a red capillary flow directed assembly ring(CFDAR). A typical CFDAR has an outer diameter of (2 r ) about 1.18 mm and a ring width(2 δ ) of about 41 μm. Depending on the experimental conditions, a variety of CFDAR can be assembled. The experimental results are in agreement with our former theoretical discussion. It was found that when a droplet volume is 0.1 μL, the fluorescence intensity of the CFDAR formed by the NR NA is in proportion to the content of calf thymus DNA in the range of 0-0.28 ng, fish sperm DNA of 0-0.24 ng and yeast RNA of 0-0.16 ng with the limit of detection(3 σ ) of 1 7, 1.4 and 0.9 pg, respectively for the three nucleic acids.
文摘The particle morphology and surface texture play a major role in influencing mechanical and hydraulic behaviors of sandy soils. This paper presents the use of digital image analysis combined with fractal theory as a tool to quantify the particle morphology and surface texture of two types of quartz sands widely used in the region of Vitória, Espírito Santo, southeast of Brazil. The two investigated sands are sampled from different locations. The purpose of this paper is to present a simple, straightforward,reliable and reproducible methodology that can identify representative sandy soil texture parameters.The test results of the soil samples of the two sands separated by sieving into six size fractions are presented and discussed. The main advantages of the adopted methodology are its simplicity, reliability of the results, and relatively low cost. The results show that sands from the coastal spit(BS) have a greater degree of roundness and a smoother surface texture than river sands(RS). The values obtained in the test are statistically analyzed, and again it is confirmed that the BS sand has a slightly greater degree of sphericity than that of the RS sand. Moreover, the RS sand with rough surface texture has larger specific surface area values than the similar BS sand, which agree with the obtained roughness fractal dimensions. The consistent experimental results demonstrate that image analysis combined with fractal theory is an accurate and efficient method to quantify the differences in particle morphology and surface texture of quartz sands.
基金the National Natural Science Foundation of China (No. 19675005).
文摘Multi-modality medical image fusion has more and more important applications in medical image analysis and understanding. In this paper, we develop and apply a multi-resolution method based on wavelet pyramid to fuse medical images from different modalities such as PET-MRI and CT-MRI. In particular, we evaluate the different fusion results when applying different selection rules and obtain optimum combination of fusion parameters.
基金Founded by National Basic Research Program of China(973 Program)(No.2009CB623203)National Natural Science Foundation of China(No.51078186)Jiangsu Natural Science Foundation(No.BK2010071)
文摘The degradation mechanisms of cementitious materials exposed to sulfate solutions have been controversial, despite considerable research. In this paper, two methodologies of image analysis based on scanning electron microscope and chemical mapping are used to analyse Portland cement mortars exposed to sodium sulfate solution. The effects of sulfate concentration in solution and water to cement ratio of mortar, which are considered as the most sensitive factors to sulfate attack, are investigated respectively by comparing the macro expansion with microstructure analysis. It is found that the sulfate concentration in pore solution, expressed as sulfate content in C-S-H, plays a critical role on the supersaturation with respect to ettringite and so on the expansion force generated.