The large concentration of human population,industry and services in the Metropolitan Area of Barcelona has to confront scarce water resources,serious seasonal and inter-annual variations and quality deficiencies in t...The large concentration of human population,industry and services in the Metropolitan Area of Barcelona has to confront scarce water resources,serious seasonal and inter-annual variations and quality deficiencies in the sources.A large fraction of these water resources are in the medium-size Llobregat River basin and the remaining ones correspond to a surface water transfer,seawater desalination and wastewater reclamation.Groundwater dominated water resources availability before 1950.Afterwards,water supply has evolved progressively to integrated water resources management,which includes serious water quality concerns to deal with population density,river pollution,seawater intrusion in the main aquifer,and brine generation in the mid Llobregat basin due to old mining of saline minerals.The role of the alluvial aquifers has progressively evolved from being the main water source to reserve storage to cope with seasonal and drought water resources availability.River-enhanced recharge and artificial recharge are needed to assure enough groundwater storage before surface water becomes scarce and/or suffers a serious temporal loss of quality.Enhanced river recharge started in 1950.Treated river water injection in dual-purpose wells was put into operation in the early 1970s.Basin and pond recharge was added later,as well as a deep well injection barrier along the coast to reduce seawater intrusion and to allow increased groundwater abstraction in moments of water scarcity.There is a progressive evolution from solving water quantity problems to consideration of water quality improvement during recharge,with attention to emergent concern pollutants in river water and in reclaimed water to be considered for artificial recharge.Improvement of artificial recharge operation activities has been introduced and research is being carried out on the difficult behavior to degrade organic pollutants during infiltration and in the terrain.This paper presents the different activities carried out and presents the research activities,and comments on the economic,social and administrative issues involved as well.展开更多
Three sets of satellite data were utilized to outline and monitor the waterlogging problems along the Wadi El Tumilate basin. These data include Thematic Mapper image for year 1984, Enhanced Landsat Thematic Mapper im...Three sets of satellite data were utilized to outline and monitor the waterlogging problems along the Wadi El Tumilate basin. These data include Thematic Mapper image for year 1984, Enhanced Landsat Thematic Mapper image for year 2000 and SPOT-4 image for year 2008. Supervised classification using the maximum likelihood approach has been performed. A number of 6 classes were observed at the study sites including, Niledeposits and cultivated areas, surface water and water logged areas, salt crust, Quaternary playa deposits, fluviatile and lacustrine deposits and Miocene (gypsum and carbonate) deposits. Water logged areas expanded from9.1 km2 inyear 1984 to18.8 km2 inyear 2000 to25.3 km2 inyear 2008, with a rate of0.7 km2/year. At the same time, vegetation cover shows an increase from453 km2 inyear 1984 to719 km2 inyear 2008. The integrated data used by Geographic Information Systems specified factors controlling waterlogging problems, which are: topography, drainage pattern and water flow direction, excess of irrigation water, deficiency of drainage system, presence of impermeable clay lenses and lineaments direction. Groundwater modeling including GMS and MODFLOW programs were processed to manage waterlogging problem. Using of underground tile drain along the eastern portion of Wadi El Tumilate basin and dewatering wells along the western side was recommended to obtain the highest monetary return from the drainage investment.展开更多
文摘The large concentration of human population,industry and services in the Metropolitan Area of Barcelona has to confront scarce water resources,serious seasonal and inter-annual variations and quality deficiencies in the sources.A large fraction of these water resources are in the medium-size Llobregat River basin and the remaining ones correspond to a surface water transfer,seawater desalination and wastewater reclamation.Groundwater dominated water resources availability before 1950.Afterwards,water supply has evolved progressively to integrated water resources management,which includes serious water quality concerns to deal with population density,river pollution,seawater intrusion in the main aquifer,and brine generation in the mid Llobregat basin due to old mining of saline minerals.The role of the alluvial aquifers has progressively evolved from being the main water source to reserve storage to cope with seasonal and drought water resources availability.River-enhanced recharge and artificial recharge are needed to assure enough groundwater storage before surface water becomes scarce and/or suffers a serious temporal loss of quality.Enhanced river recharge started in 1950.Treated river water injection in dual-purpose wells was put into operation in the early 1970s.Basin and pond recharge was added later,as well as a deep well injection barrier along the coast to reduce seawater intrusion and to allow increased groundwater abstraction in moments of water scarcity.There is a progressive evolution from solving water quantity problems to consideration of water quality improvement during recharge,with attention to emergent concern pollutants in river water and in reclaimed water to be considered for artificial recharge.Improvement of artificial recharge operation activities has been introduced and research is being carried out on the difficult behavior to degrade organic pollutants during infiltration and in the terrain.This paper presents the different activities carried out and presents the research activities,and comments on the economic,social and administrative issues involved as well.
文摘Three sets of satellite data were utilized to outline and monitor the waterlogging problems along the Wadi El Tumilate basin. These data include Thematic Mapper image for year 1984, Enhanced Landsat Thematic Mapper image for year 2000 and SPOT-4 image for year 2008. Supervised classification using the maximum likelihood approach has been performed. A number of 6 classes were observed at the study sites including, Niledeposits and cultivated areas, surface water and water logged areas, salt crust, Quaternary playa deposits, fluviatile and lacustrine deposits and Miocene (gypsum and carbonate) deposits. Water logged areas expanded from9.1 km2 inyear 1984 to18.8 km2 inyear 2000 to25.3 km2 inyear 2008, with a rate of0.7 km2/year. At the same time, vegetation cover shows an increase from453 km2 inyear 1984 to719 km2 inyear 2008. The integrated data used by Geographic Information Systems specified factors controlling waterlogging problems, which are: topography, drainage pattern and water flow direction, excess of irrigation water, deficiency of drainage system, presence of impermeable clay lenses and lineaments direction. Groundwater modeling including GMS and MODFLOW programs were processed to manage waterlogging problem. Using of underground tile drain along the eastern portion of Wadi El Tumilate basin and dewatering wells along the western side was recommended to obtain the highest monetary return from the drainage investment.