In this paper, we present an optimized design method for high-speed embedded image processing system using 32 bit floating-point Digital Signal Processor (DSP) and Complex Programmable Logic Device (CPLD). The DSP...In this paper, we present an optimized design method for high-speed embedded image processing system using 32 bit floating-point Digital Signal Processor (DSP) and Complex Programmable Logic Device (CPLD). The DSP acts as the main processor of the system: executes digital image processing algorithms and operates other devices such as image sensor and CPLD. The CPLD is used to acquire images and achieve complex logic control of the whole system. Some key technologies are introduced to enhance the performance of our system. In particular, the use of DSP/BIOS tool to develop DSP applications makes our program run much more efficiently. As a result, this system can provide an excellent computing platform not only for executing complex image processing algorithms, but also for other digital signal processing or multi-channel data collection by choosing different sensors or Analog-to-Digital (A/D) converters.展开更多
This paper proposed a general purpose real-time image processing system based on a flexible DSP-based Network, which is implemented by a high bandwidth communication channel, links. The links is realized using FPGA an...This paper proposed a general purpose real-time image processing system based on a flexible DSP-based Network, which is implemented by a high bandwidth communication channel, links. The links is realized using FPGA and provides a bandwidth of 12. 8 Gbit/s. Using the links, The topologic of multi-DSP system can be changed online to meet the variabilities of the parallel algorithm of image processing. The system can be assembled with utmost tens of boards and maintain the high communication speed. Analysis of the system adaptivity to image processing is testified followed by actual results. Key words real-time image processing - multi-DSP - flexible - scalable - FPGA - links CLC number TP 303 Foundation item: Supported by the National Natural Science Foundation of China (60135020)Biography: MAO Hai-cen(1973-), male, Ph.D. candidate, research direction: artificial intelligence, expert system, pattern recognition and image processing展开更多
A survey of the population densities of rice planthoppers is important for forecasting decisions and efficient control. Tra- ditional manual surveying of rice planthoppers is time-consuming, fatiguing, and subjective....A survey of the population densities of rice planthoppers is important for forecasting decisions and efficient control. Tra- ditional manual surveying of rice planthoppers is time-consuming, fatiguing, and subjective. A new three-layer detection method was proposed to detect and identify white-backed planthoppers (WBPHs, Sogatella furcifera (Horvath)) and their developmental stages using image processing. In the first two detection layers, we used an AdaBoost classifier that was trained on a histogram of oriented gradient (HOG) features and a support vector machine (SVM) classifier that was trained on Gabor and Local Binary Pattern (LBP) features to detect WBPHs and remove impurities. We achieved a detection rate of 85.6% and a false detection rate of 10.2%. In the third detection layer, a SVM classifier that was trained on the HOG features was used to identify the different developmental stages of the WBPHs, and we achieved an identification rate of 73.1%, a false identification rate of 23.3%, and a 5.6% false detection rate for the images without WBPHs. The proposed three-layer detection method is feasible and effective for the identification of different developmental stages of planthoppers on rice plants in paddy fields.展开更多
The knowledge of flow regime is very important for quantifying the pressure drop, the stability and safety of two-phase flow systems. Based on image multi-feature fusion and support vector machine, a new method to ide...The knowledge of flow regime is very important for quantifying the pressure drop, the stability and safety of two-phase flow systems. Based on image multi-feature fusion and support vector machine, a new method to identify flow regime in two-phase flow was presented. Firstly, gas-liquid two-phase flow images including bub- bly flow, plug flow, slug flow, stratified flow, wavy flow, annular flow and mist flow were captured by digital high speed video systems in the horizontal tube. The image moment invariants and gray level co-occurrence matrix texture features were extracted using image processing techniques. To improve the performance of a multiple classifier system, the rough sets theory was used for reducing the inessential factors. Furthermore, the support vector machine was trained by using these eigenvectors to reduce the dimension as flow regime samples, and the flow regime intelligent identification was realized. The test results showed that image features which were reduced with the rough sets theory could excellently reflect the difference between seven typical flow regimes, and successful training the support vector machine could quickly and accurately identify seven typical flow regimes of gas-liquid two-phase flow in the horizontal tube. Image multi-feature fusion method provided a new way to identify the gas-liquid two-phase flow, and achieved higher identification ability than that of single characteristic. The overall identification accuracy was 100%, and an estimate of the image processing time was 8 ms for online flow regime identification.展开更多
The extent of the peril associated with cancer can be perceivedfrom the lack of treatment, ineffective early diagnosis techniques, and mostimportantly its fatality rate. Globally, cancer is the second leading cause of...The extent of the peril associated with cancer can be perceivedfrom the lack of treatment, ineffective early diagnosis techniques, and mostimportantly its fatality rate. Globally, cancer is the second leading cause ofdeath and among over a hundred types of cancer;lung cancer is the secondmost common type of cancer as well as the leading cause of cancer-relateddeaths. Anyhow, an accurate lung cancer diagnosis in a timely manner canelevate the likelihood of survival by a noticeable margin and medical imagingis a prevalent manner of cancer diagnosis since it is easily accessible to peoplearound the globe. Nonetheless, this is not eminently efficacious consideringhuman inspection of medical images can yield a high false positive rate. Ineffectiveand inefficient diagnosis is a crucial reason for such a high mortalityrate for this malady. However, the conspicuous advancements in deep learningand artificial intelligence have stimulated the development of exceedinglyprecise diagnosis systems. The development and performance of these systemsrely prominently on the data that is used to train these systems. A standardproblem witnessed in publicly available medical image datasets is the severeimbalance of data between different classes. This grave imbalance of data canmake a deep learning model biased towards the dominant class and unableto generalize. This study aims to present an end-to-end convolutional neuralnetwork that can accurately differentiate lung nodules from non-nodules andreduce the false positive rate to a bare minimum. To tackle the problem ofdata imbalance, we oversampled the data by transforming available images inthe minority class. The average false positive rate in the proposed method isa mere 1.5 percent. However, the average false negative rate is 31.76 percent.The proposed neural network has 68.66 percent sensitivity and 98.42 percentspecificity.展开更多
A novel reconfigurable hardware system which uses both muhi-DSP and FPGA to attain high performance and real-time image processing are presented. The system structure and working principle of mainly processing multi-B...A novel reconfigurable hardware system which uses both muhi-DSP and FPGA to attain high performance and real-time image processing are presented. The system structure and working principle of mainly processing multi-BSP board, extended multi-DSP board are analysed. The outstanding advantage is that the communication among different board components of this system is supported by high speed link ports & serial ports for increasing the system performance and computational power. Then the implementation of embedded real-time operating systems (RTOS) by us is discussed in detail. In this system, we adopt two kinds of parallel structures controlled by RTOS for parallel processing of algorithms. The experimental results show that exploitive period of the system is short, and maintenance convenient. Thus it is suitable for real-time image processing and can get satisfactory effect of image recognition.展开更多
The pharmaceutical industry increasingly values medicinal plants due to their perceived safety and costeffectiveness compared to modern drugs.Throughout the extensive history of medicinal plant usage,various plant par...The pharmaceutical industry increasingly values medicinal plants due to their perceived safety and costeffectiveness compared to modern drugs.Throughout the extensive history of medicinal plant usage,various plant parts,including flowers,leaves,and roots,have been acknowledged for their healing properties and employed in plant identification.Leaf images,however,stand out as the preferred and easily accessible source of information.Manual plant identification by plant taxonomists is intricate,time-consuming,and prone to errors,relying heavily on human perception.Artificial intelligence(AI)techniques offer a solution by automating plant recognition processes.This study thoroughly examines cutting-edge AI approaches for leaf image-based plant identification,drawing insights from literature across renowned repositories.This paper critically summarizes relevant literature based on AI algorithms,extracted features,and results achieved.Additionally,it analyzes extensively used datasets in automated plant classification research.It also offers deep insights into implemented techniques and methods employed for medicinal plant recognition.Moreover,this rigorous review study discusses opportunities and challenges in employing these AI-based approaches.Furthermore,in-depth statistical findings and lessons learned from this survey are highlighted with novel research areas with the aim of offering insights to the readers and motivating new research directions.This review is expected to serve as a foundational resource for future researchers in the field of AI-based identification of medicinal plants.展开更多
基金Supported by the National Natural Science Foundation of China (No.60472046)
文摘In this paper, we present an optimized design method for high-speed embedded image processing system using 32 bit floating-point Digital Signal Processor (DSP) and Complex Programmable Logic Device (CPLD). The DSP acts as the main processor of the system: executes digital image processing algorithms and operates other devices such as image sensor and CPLD. The CPLD is used to acquire images and achieve complex logic control of the whole system. Some key technologies are introduced to enhance the performance of our system. In particular, the use of DSP/BIOS tool to develop DSP applications makes our program run much more efficiently. As a result, this system can provide an excellent computing platform not only for executing complex image processing algorithms, but also for other digital signal processing or multi-channel data collection by choosing different sensors or Analog-to-Digital (A/D) converters.
文摘This paper proposed a general purpose real-time image processing system based on a flexible DSP-based Network, which is implemented by a high bandwidth communication channel, links. The links is realized using FPGA and provides a bandwidth of 12. 8 Gbit/s. Using the links, The topologic of multi-DSP system can be changed online to meet the variabilities of the parallel algorithm of image processing. The system can be assembled with utmost tens of boards and maintain the high communication speed. Analysis of the system adaptivity to image processing is testified followed by actual results. Key words real-time image processing - multi-DSP - flexible - scalable - FPGA - links CLC number TP 303 Foundation item: Supported by the National Natural Science Foundation of China (60135020)Biography: MAO Hai-cen(1973-), male, Ph.D. candidate, research direction: artificial intelligence, expert system, pattern recognition and image processing
基金financially supported by the National High Technology Research and Development Program of China (863 Program, 2013AA102402)the 521 Talent Project of Zhejiang Sci-Tech University, Chinathe Key Research and Development Program of Zhejiang Province, China (2015C03023)
文摘A survey of the population densities of rice planthoppers is important for forecasting decisions and efficient control. Tra- ditional manual surveying of rice planthoppers is time-consuming, fatiguing, and subjective. A new three-layer detection method was proposed to detect and identify white-backed planthoppers (WBPHs, Sogatella furcifera (Horvath)) and their developmental stages using image processing. In the first two detection layers, we used an AdaBoost classifier that was trained on a histogram of oriented gradient (HOG) features and a support vector machine (SVM) classifier that was trained on Gabor and Local Binary Pattern (LBP) features to detect WBPHs and remove impurities. We achieved a detection rate of 85.6% and a false detection rate of 10.2%. In the third detection layer, a SVM classifier that was trained on the HOG features was used to identify the different developmental stages of the WBPHs, and we achieved an identification rate of 73.1%, a false identification rate of 23.3%, and a 5.6% false detection rate for the images without WBPHs. The proposed three-layer detection method is feasible and effective for the identification of different developmental stages of planthoppers on rice plants in paddy fields.
基金Supported by the National Natural Science Foundation of China (50706006) and the Science and Technology Development Program of Jilin Province (20040513).
文摘The knowledge of flow regime is very important for quantifying the pressure drop, the stability and safety of two-phase flow systems. Based on image multi-feature fusion and support vector machine, a new method to identify flow regime in two-phase flow was presented. Firstly, gas-liquid two-phase flow images including bub- bly flow, plug flow, slug flow, stratified flow, wavy flow, annular flow and mist flow were captured by digital high speed video systems in the horizontal tube. The image moment invariants and gray level co-occurrence matrix texture features were extracted using image processing techniques. To improve the performance of a multiple classifier system, the rough sets theory was used for reducing the inessential factors. Furthermore, the support vector machine was trained by using these eigenvectors to reduce the dimension as flow regime samples, and the flow regime intelligent identification was realized. The test results showed that image features which were reduced with the rough sets theory could excellently reflect the difference between seven typical flow regimes, and successful training the support vector machine could quickly and accurately identify seven typical flow regimes of gas-liquid two-phase flow in the horizontal tube. Image multi-feature fusion method provided a new way to identify the gas-liquid two-phase flow, and achieved higher identification ability than that of single characteristic. The overall identification accuracy was 100%, and an estimate of the image processing time was 8 ms for online flow regime identification.
基金supported this research through the National Research Foundation of Korea (NRF)funded by the Ministry of Science,ICT (2019M3F2A1073387)this work was supported by the Institute for Information&communications Technology Promotion (IITP) (NO.2022-0-00980Cooperative Intelligence Framework of Scene Perception for Autonomous IoT Device).
文摘The extent of the peril associated with cancer can be perceivedfrom the lack of treatment, ineffective early diagnosis techniques, and mostimportantly its fatality rate. Globally, cancer is the second leading cause ofdeath and among over a hundred types of cancer;lung cancer is the secondmost common type of cancer as well as the leading cause of cancer-relateddeaths. Anyhow, an accurate lung cancer diagnosis in a timely manner canelevate the likelihood of survival by a noticeable margin and medical imagingis a prevalent manner of cancer diagnosis since it is easily accessible to peoplearound the globe. Nonetheless, this is not eminently efficacious consideringhuman inspection of medical images can yield a high false positive rate. Ineffectiveand inefficient diagnosis is a crucial reason for such a high mortalityrate for this malady. However, the conspicuous advancements in deep learningand artificial intelligence have stimulated the development of exceedinglyprecise diagnosis systems. The development and performance of these systemsrely prominently on the data that is used to train these systems. A standardproblem witnessed in publicly available medical image datasets is the severeimbalance of data between different classes. This grave imbalance of data canmake a deep learning model biased towards the dominant class and unableto generalize. This study aims to present an end-to-end convolutional neuralnetwork that can accurately differentiate lung nodules from non-nodules andreduce the false positive rate to a bare minimum. To tackle the problem ofdata imbalance, we oversampled the data by transforming available images inthe minority class. The average false positive rate in the proposed method isa mere 1.5 percent. However, the average false negative rate is 31.76 percent.The proposed neural network has 68.66 percent sensitivity and 98.42 percentspecificity.
基金This project was supported by the National Natural Science Foundation of China(60135020) National Key Pre-researchProject of China(413010701 -3) .
文摘A novel reconfigurable hardware system which uses both muhi-DSP and FPGA to attain high performance and real-time image processing are presented. The system structure and working principle of mainly processing multi-BSP board, extended multi-DSP board are analysed. The outstanding advantage is that the communication among different board components of this system is supported by high speed link ports & serial ports for increasing the system performance and computational power. Then the implementation of embedded real-time operating systems (RTOS) by us is discussed in detail. In this system, we adopt two kinds of parallel structures controlled by RTOS for parallel processing of algorithms. The experimental results show that exploitive period of the system is short, and maintenance convenient. Thus it is suitable for real-time image processing and can get satisfactory effect of image recognition.
文摘The pharmaceutical industry increasingly values medicinal plants due to their perceived safety and costeffectiveness compared to modern drugs.Throughout the extensive history of medicinal plant usage,various plant parts,including flowers,leaves,and roots,have been acknowledged for their healing properties and employed in plant identification.Leaf images,however,stand out as the preferred and easily accessible source of information.Manual plant identification by plant taxonomists is intricate,time-consuming,and prone to errors,relying heavily on human perception.Artificial intelligence(AI)techniques offer a solution by automating plant recognition processes.This study thoroughly examines cutting-edge AI approaches for leaf image-based plant identification,drawing insights from literature across renowned repositories.This paper critically summarizes relevant literature based on AI algorithms,extracted features,and results achieved.Additionally,it analyzes extensively used datasets in automated plant classification research.It also offers deep insights into implemented techniques and methods employed for medicinal plant recognition.Moreover,this rigorous review study discusses opportunities and challenges in employing these AI-based approaches.Furthermore,in-depth statistical findings and lessons learned from this survey are highlighted with novel research areas with the aim of offering insights to the readers and motivating new research directions.This review is expected to serve as a foundational resource for future researchers in the field of AI-based identification of medicinal plants.