Underwater target motion estimation is a challenge for ocean military and scientific research.In this work,we propose a method based on the combination of polarization imaging and optical flow for turbid underwater ta...Underwater target motion estimation is a challenge for ocean military and scientific research.In this work,we propose a method based on the combination of polarization imaging and optical flow for turbid underwater target detection.Polarization imaging can reduce the influence of backscattered light and obtain high-quality images underwater.The optical flow shows the motion and structural information of the target.We use polarized optical flow to obtain the optical flow field and estimate the target motion.The experimental results of different targets under varying water turbidity levels illustrate that our method is realizable and robust.The precision is verified by comparing the results with the precise displacement data and calculating two error measures.The proposed method based on polarized optical flow can obtain accurate displacement information and a good recognition effect.Moving target segmentation based on the Otsu method further proves the superiority of the polarized optical flow under turbid water.This study is valuable for target detection and motion estimation in scattering environments.展开更多
4-Dimensional cone-beam computed tomography(4D-CBCT)offers several key advantages over conventional 3DCBCT in moving target localization/delineation,structure de-blurring,target motion tracking,treatment dose accumul...4-Dimensional cone-beam computed tomography(4D-CBCT)offers several key advantages over conventional 3DCBCT in moving target localization/delineation,structure de-blurring,target motion tracking,treatment dose accumulation and adaptive radiation therapy.However,the use of the 4D-CBCT in current radiation therapy practices has been limited,mostly due to its sub-optimal image quality from limited angular sampling of conebeam projections.In this study,we summarized the recent developments of 4D-CBCT reconstruction techniques for image quality improvement,and introduced our developments of a new 4D-CBCT reconstruction technique which features simultaneous motion estimation and image reconstruction(SMEIR).Based on the original SMEIR scheme,biomechanical modeling-guided SMEIR(SMEIR-Bio)was introduced to further improve the reconstruction accuracy of fine details in lung 4D-CBCTs.To improve the efficiency of reconstruction,we recently developed a U-net-based deformation-vector-field(DVF)optimization technique to leverage a population-based deep learning scheme to improve the accuracy of intra-lung DVFs(SMEIR-Unet),without explicit biomechanical modeling.Details of each of the SMEIR,SMEIR-Bio and SMEIR-Unet techniques were included in this study,along with the corresponding results comparing the reconstruction accuracy in terms of CBCT images and the DVFs.We also discussed the application prospects of the SMEIR-type techniques in image-guided radiation therapy and adaptive radiation therapy,and presented potential schemes on future developments to achieve faster and more accurate 4D-CBCT imaging.展开更多
An improved estimation of motion vectors of feature points is proposed for tracking moving objects of dynamic image sequence. Feature points are firstly extracted by the improved minimum intensity change (MIC) algor...An improved estimation of motion vectors of feature points is proposed for tracking moving objects of dynamic image sequence. Feature points are firstly extracted by the improved minimum intensity change (MIC) algorithm. The matching points of these feature points are then determined by adaptive rood pattern searching. Based on the random sample consensus (RANSAC) method, the background motion is finally compensated by the parameters of an affine transform of the background motion. With reasonable morphological filtering, the moving objects are completely extracted from the background, and then tracked accurately. Experimental results show that the improved method is successful on the motion background compensation and offers great promise in tracking moving objects of the dynamic image sequence.展开更多
The side information quality has an immense effect on the compression efficiency of the distributed video coding (DVC) sys- tem. This article, based on the hierarchical motion estimation (HME), proposes a new side inf...The side information quality has an immense effect on the compression efficiency of the distributed video coding (DVC) sys- tem. This article, based on the hierarchical motion estimation (HME), proposes a new side information generation algorithm which is integrated into DVC system. First, forward motion estimation (FME) and bidirectional motion estimation (BME) on the basis of variable block size HME algorithm are used to acquire relatively accurate motion vectors. Second, a motion vector filter (MVF) is i...展开更多
Super-resolution reconstruction algorithm produces a high-resolution imagefrom a low-resolution image sequence. The accuracy and the stability of the motion estimation (ME)are essential for the whole restoration. In t...Super-resolution reconstruction algorithm produces a high-resolution imagefrom a low-resolution image sequence. The accuracy and the stability of the motion estimation (ME)are essential for the whole restoration. In this paper, a new super-resolution reconstructionalgorithm is developed using a robust ME method, which fuses multiple estimated motion vectorswithin the sequence. The new algorithm has two major improvements compared with the previousresearch. First, instead of only two frames, the whole sequence is used to obtain a more accurateand stable estimation of the motion vector of each frame; second, the reliability of the ME isquantitatively measured and introduced into the cost function of the reconstruction algorithm. Thealgorithm is applied to both synthetic and real sequences, and the results are presented in thepaper.展开更多
This paper presents a new robust global motion estimation method based on pre-analysis of the video content. The novel idea in the proposed method, compared to classical robust statistics-based estimation methods, is...This paper presents a new robust global motion estimation method based on pre-analysis of the video content. The novel idea in the proposed method, compared to classical robust statistics-based estimation methods, is to classify the video sequences into 3 classes based on the analysis of scene content before motion estimation. Different motion models and estimation methods are applied to different classes of image sequences. As a result, outliers can be identified and removed from the dominant motion estimate to solve the problem of inaccurate initial descending direction estimates associated with classical global motion estimation methods. The pre-analysis of scene content is based on the Spatial Temporal Gradient Scale (STGS) images derived from the original image sequences. The extra computation time for STGS-image-based pre-analysis of scene content is negligible compared to the overall speed and accuracy improvement achieved with the proposed method. Evaluations based on extensive experiments have shown that the proposed method significantly improves the speed of robust global motion estimation methods (saving about 50% of the execution time of classical methods).展开更多
This paper proposes a motion-based region growing segmentation scheme for the object-based video coding, which segments an image into homogeneous regions characterized by a coherent motion. It adopts a block matching ...This paper proposes a motion-based region growing segmentation scheme for the object-based video coding, which segments an image into homogeneous regions characterized by a coherent motion. It adopts a block matching algorithm to estimate motion vectors and uses morphological tools such as open-close by reconstruction and the region-growing version of the watershed algorithm for spatial segmentation to improve the temporal segmentation. In order to determine the reliable motion vectors, this paper also proposes a change detection algorithm and a multi-candidate pro- screening motion estimation method. Preliminary simulation results demonstrate that the proposed scheme is feasible. The main advantage of the scheme is its low computational load.展开更多
A new robust electronic image stabilization system is presented, which involves feature-point, tracking based global motion estimation and Kalman filtering based motion compensation. First, global motion is estimated ...A new robust electronic image stabilization system is presented, which involves feature-point, tracking based global motion estimation and Kalman filtering based motion compensation. First, global motion is estimated from the local motions of selected feature points. Considering the local moving objects or the inevitable mismatch, the matching validation, based on the stable relative distance between the points set is proposed, thus maintaining high accuracy and robustness. Next, the global motion parameters are accumulated for correction by Kalman filteration. The experimental result illustrates that the proposed system is effective to stabilize translational, rotational, and zooming jitter and robust to local motions.展开更多
Although previous studies have made some clear leap in learning latent dynamics from high-dimensional representations,the performances in terms of accuracy and inference time of long-term model prediction still need t...Although previous studies have made some clear leap in learning latent dynamics from high-dimensional representations,the performances in terms of accuracy and inference time of long-term model prediction still need to be improved.In this study,a deep convolutional network based on the Koopman operator(CKNet)is proposed to model non-linear systems with pixel-level measurements for long-term prediction.CKNet adopts an autoencoder network architecture,consisting of an encoder to generate latent states and a linear dynamical model(i.e.,the Koopman operator)which evolves in the latent state space spanned by the encoder.The decoder is used to recover images from latent states.According to a multi-step ahead prediction loss function,the system matrices for approximating the Koopman operator are trained synchronously with the autoencoder in a mini-batch manner.In this manner,gradients can be synchronously transmitted to both the system matrices and the autoencoder to help the encoder self-adaptively tune the latent state space in the training process,and the resulting model is time-invariant in the latent space.Therefore,the proposed CKNet has the advantages of less inference time and high accuracy for long-term prediction.Experiments are per-formed on OpenAI Gym and Mujoco environments,including two and four non-linear forced dynamical systems with continuous action spaces.The experimental results show that CKNet has strong long-term prediction capabilities with sufficient precision.展开更多
Global motion estimation (GME) algorithms are widely applied to computer vision and video processing. In the previous works, the image resolutions are usually low for the real-time requirement (e.g. video stabilizatio...Global motion estimation (GME) algorithms are widely applied to computer vision and video processing. In the previous works, the image resolutions are usually low for the real-time requirement (e.g. video stabilization). However, in some mobile devices applications (e.g. image sequence panoramic stitching), the high resolution is necessary to obtain satisfactory quality of panoramic image. However, the computational cost will become too expensive to be suitable for the low power consumption requirement of mobile device. The full search algorithm can obtain the global minimum with extremely computational cost, while the typical fast algorithms may suffer from the local minimum problem. This paper proposed a fast algorithm to deal with 2560 × 1920 high-resolution (HR) image sequences. The proposed method estimates the motion vector by a two-level coarse-to-fine scheme which only exploits sparse reference blocks (25 blocks in this paper) in each level to determine the global motion vector, thus the computational costs are significantly decreased. In order to increase the effective search range and robustness, the predictive motion vector (PMV) technique is used in this work. By the comparisons of computational complexity, the proposed algorithm costs less addition operations than the typical Three-Step Search algorithm (TSS) for estimating the global motion of the HR images without the local minimum problem. The quantitative evaluations show that our method is comparable to the full search algorithm (FSA) which is considered to be the golden baseline.展开更多
This paper presents a new method for simultaneously eliminating visual artifacts caused by moving objects and structure misalignment in image stitching. Given that the input images are roughly aligned, our approach is...This paper presents a new method for simultaneously eliminating visual artifacts caused by moving objects and structure misalignment in image stitching. Given that the input images are roughly aligned, our approach is implemented in two stages. In the first stage, we discover motions between input images, and then extract their corresponding regions through a multi-seed based region growing algorithm. In the second stage, with prior information provided by the extracted regions, we perform a graph cut optimization in gradient-domain to determine which pixels to use from each image to achieve seamless stitching. Our method is simple to implement and effective. The experimental results illustrate that the proposed approach can produce comparable or superior results in comparison with state-of-the-art methods.展开更多
With the advances of display technology, three-dimensional(3-D) imaging systems are becoming increasingly popular. One way of stimulating 3-D perception is to use stereo pairs, a pair of images of the same scene acqui...With the advances of display technology, three-dimensional(3-D) imaging systems are becoming increasingly popular. One way of stimulating 3-D perception is to use stereo pairs, a pair of images of the same scene acquired from different perspectives. Since there is an inherent redundancy between the images of a stereo pairs, data compression algorithms should be employed to represent stereo pairs efficiently. The proposed techniques generally use block-based disparity compensation. In order to get the higher compression ratio, this paper employs the wavelet-based mixed-resolution coding technique to incorporate with SPT-based disparity-compensation to compress the stereo image data. The mixed-resolution coding is a perceptually justified technique that is achieved by presenting one eye with a low-resolution image and the other with a high-resolution image. Psychophysical experiments show that the stereo image pairs with one high-resolution image and one low-resolution image provide almost the same stereo depth to that of a stereo image with two high-resolution images. By combining the mixed-resolution coding and SPT-based disparity-compensation techniques, one reference (left) high-resolution image can be compressed by a hierarchical wavelet transform followed by vector quantization and Huffman encoder. After two level wavelet decompositions, for the low-resolution right image and low-resolution left image, subspace projection technique using the fixed block size disparity compensation estimation is used. At the decoder, the low-resolution right subimage is estimated using the disparity from the low-resolution left subimage. A full-size reconstruction is obtained by upsampling a factor of 4 and reconstructing with the synthesis low pass filter. Finally, experimental results are presented, which show that our scheme achieves a PSNR gain (about 0.92dB) as compared to the current block-based disparity compensation coding techniques.展开更多
A new digital image stabilization method is proposed for real-time application based on image contour. The image intensities are projected to several gray levels by thresholding before extracting contour points. Match...A new digital image stabilization method is proposed for real-time application based on image contour. The image intensities are projected to several gray levels by thresholding before extracting contour points. Matching position could be found using these contour points. All pixels are still used for refined matching near the matching position. This algorithm is more robust against changes in illumination and noise affection. The adaptive global motion judgement can remove the affection of intruding object. All those are realized on normally available PC.展开更多
This paper proposes an electronic image stabilization algorithm based on efficient block matching on the plane. This algorithm uses a hexagonal search algorithm, and uses the bit-planes to estimate and compensate for ...This paper proposes an electronic image stabilization algorithm based on efficient block matching on the plane. This algorithm uses a hexagonal search algorithm, and uses the bit-planes to estimate and compensate for the translational motion between video sequences at the same time;As for the rotary motion vector generated in the video sequences, in order to highlight the intensity change of the image sequence, the algorithm firstly conducts Laplace transform for the reference frame, then select a number of characteristics at the image edge to make block matching with the current frame, calculate and compensate for the rotational movement that may exist finally. Through theoretical analysis and simula-tion, we prove that, as for a mixed translational and rotational motion video sequences, the proposed algorithm can reduce required time for block matching computation ,while improving the accuracy of the electronic image stabilization.展开更多
基金supported by the National Natural Science Foundation of China (No.52394252)the Postdoctoral Fellowship Program of CPSF (No.GZC20232497)+2 种基金the Key Research and Development Program of Shandong Province,China (No.2021ZLGX04)the Shandong Postdoctoral Science Foundation (No.SDBX2023012)the Qingdao Postdoctoral Program Grant (No.QDBSH20230202009)。
文摘Underwater target motion estimation is a challenge for ocean military and scientific research.In this work,we propose a method based on the combination of polarization imaging and optical flow for turbid underwater target detection.Polarization imaging can reduce the influence of backscattered light and obtain high-quality images underwater.The optical flow shows the motion and structural information of the target.We use polarized optical flow to obtain the optical flow field and estimate the target motion.The experimental results of different targets under varying water turbidity levels illustrate that our method is realizable and robust.The precision is verified by comparing the results with the precise displacement data and calculating two error measures.The proposed method based on polarized optical flow can obtain accurate displacement information and a good recognition effect.Moving target segmentation based on the Otsu method further proves the superiority of the polarized optical flow under turbid water.This study is valuable for target detection and motion estimation in scattering environments.
基金This work was supported in part by grants from the US National Institutes of Health,Nos.R01 EB020366 and R01 EB027898the Cancer Prevention and Research Institute of Texas,Nos.RP130109 and RP160661from the University of Texas Southwestern Medical Center(Radiation Oncology Seed Grant).
文摘4-Dimensional cone-beam computed tomography(4D-CBCT)offers several key advantages over conventional 3DCBCT in moving target localization/delineation,structure de-blurring,target motion tracking,treatment dose accumulation and adaptive radiation therapy.However,the use of the 4D-CBCT in current radiation therapy practices has been limited,mostly due to its sub-optimal image quality from limited angular sampling of conebeam projections.In this study,we summarized the recent developments of 4D-CBCT reconstruction techniques for image quality improvement,and introduced our developments of a new 4D-CBCT reconstruction technique which features simultaneous motion estimation and image reconstruction(SMEIR).Based on the original SMEIR scheme,biomechanical modeling-guided SMEIR(SMEIR-Bio)was introduced to further improve the reconstruction accuracy of fine details in lung 4D-CBCTs.To improve the efficiency of reconstruction,we recently developed a U-net-based deformation-vector-field(DVF)optimization technique to leverage a population-based deep learning scheme to improve the accuracy of intra-lung DVFs(SMEIR-Unet),without explicit biomechanical modeling.Details of each of the SMEIR,SMEIR-Bio and SMEIR-Unet techniques were included in this study,along with the corresponding results comparing the reconstruction accuracy in terms of CBCT images and the DVFs.We also discussed the application prospects of the SMEIR-type techniques in image-guided radiation therapy and adaptive radiation therapy,and presented potential schemes on future developments to achieve faster and more accurate 4D-CBCT imaging.
文摘An improved estimation of motion vectors of feature points is proposed for tracking moving objects of dynamic image sequence. Feature points are firstly extracted by the improved minimum intensity change (MIC) algorithm. The matching points of these feature points are then determined by adaptive rood pattern searching. Based on the random sample consensus (RANSAC) method, the background motion is finally compensated by the parameters of an affine transform of the background motion. With reasonable morphological filtering, the moving objects are completely extracted from the background, and then tracked accurately. Experimental results show that the improved method is successful on the motion background compensation and offers great promise in tracking moving objects of the dynamic image sequence.
基金National Natural Science Foundation of China (60702012)
文摘The side information quality has an immense effect on the compression efficiency of the distributed video coding (DVC) sys- tem. This article, based on the hierarchical motion estimation (HME), proposes a new side information generation algorithm which is integrated into DVC system. First, forward motion estimation (FME) and bidirectional motion estimation (BME) on the basis of variable block size HME algorithm are used to acquire relatively accurate motion vectors. Second, a motion vector filter (MVF) is i...
文摘Super-resolution reconstruction algorithm produces a high-resolution imagefrom a low-resolution image sequence. The accuracy and the stability of the motion estimation (ME)are essential for the whole restoration. In this paper, a new super-resolution reconstructionalgorithm is developed using a robust ME method, which fuses multiple estimated motion vectorswithin the sequence. The new algorithm has two major improvements compared with the previousresearch. First, instead of only two frames, the whole sequence is used to obtain a more accurateand stable estimation of the motion vector of each frame; second, the reliability of the ME isquantitatively measured and introduced into the cost function of the reconstruction algorithm. Thealgorithm is applied to both synthetic and real sequences, and the results are presented in thepaper.
基金the State High- Tech Developments Plan of China!(No.86 3- 30 6 - 0 3- 0 7)
文摘This paper presents a new robust global motion estimation method based on pre-analysis of the video content. The novel idea in the proposed method, compared to classical robust statistics-based estimation methods, is to classify the video sequences into 3 classes based on the analysis of scene content before motion estimation. Different motion models and estimation methods are applied to different classes of image sequences. As a result, outliers can be identified and removed from the dominant motion estimate to solve the problem of inaccurate initial descending direction estimates associated with classical global motion estimation methods. The pre-analysis of scene content is based on the Spatial Temporal Gradient Scale (STGS) images derived from the original image sequences. The extra computation time for STGS-image-based pre-analysis of scene content is negligible compared to the overall speed and accuracy improvement achieved with the proposed method. Evaluations based on extensive experiments have shown that the proposed method significantly improves the speed of robust global motion estimation methods (saving about 50% of the execution time of classical methods).
文摘This paper proposes a motion-based region growing segmentation scheme for the object-based video coding, which segments an image into homogeneous regions characterized by a coherent motion. It adopts a block matching algorithm to estimate motion vectors and uses morphological tools such as open-close by reconstruction and the region-growing version of the watershed algorithm for spatial segmentation to improve the temporal segmentation. In order to determine the reliable motion vectors, this paper also proposes a change detection algorithm and a multi-candidate pro- screening motion estimation method. Preliminary simulation results demonstrate that the proposed scheme is feasible. The main advantage of the scheme is its low computational load.
基金the National Natural Science Foundation (60572152) of China and Science Foundation ofShaanxi Province (2005F26)
文摘A new robust electronic image stabilization system is presented, which involves feature-point, tracking based global motion estimation and Kalman filtering based motion compensation. First, global motion is estimated from the local motions of selected feature points. Considering the local moving objects or the inevitable mismatch, the matching validation, based on the stable relative distance between the points set is proposed, thus maintaining high accuracy and robustness. Next, the global motion parameters are accumulated for correction by Kalman filteration. The experimental result illustrates that the proposed system is effective to stabilize translational, rotational, and zooming jitter and robust to local motions.
基金National Natural Science Foundation of China,Grant/Award Numbers:61825305,62003361,U21A20518China Postdoctoral Science Foundation,Grant/Award Number:47680。
文摘Although previous studies have made some clear leap in learning latent dynamics from high-dimensional representations,the performances in terms of accuracy and inference time of long-term model prediction still need to be improved.In this study,a deep convolutional network based on the Koopman operator(CKNet)is proposed to model non-linear systems with pixel-level measurements for long-term prediction.CKNet adopts an autoencoder network architecture,consisting of an encoder to generate latent states and a linear dynamical model(i.e.,the Koopman operator)which evolves in the latent state space spanned by the encoder.The decoder is used to recover images from latent states.According to a multi-step ahead prediction loss function,the system matrices for approximating the Koopman operator are trained synchronously with the autoencoder in a mini-batch manner.In this manner,gradients can be synchronously transmitted to both the system matrices and the autoencoder to help the encoder self-adaptively tune the latent state space in the training process,and the resulting model is time-invariant in the latent space.Therefore,the proposed CKNet has the advantages of less inference time and high accuracy for long-term prediction.Experiments are per-formed on OpenAI Gym and Mujoco environments,including two and four non-linear forced dynamical systems with continuous action spaces.The experimental results show that CKNet has strong long-term prediction capabilities with sufficient precision.
文摘Global motion estimation (GME) algorithms are widely applied to computer vision and video processing. In the previous works, the image resolutions are usually low for the real-time requirement (e.g. video stabilization). However, in some mobile devices applications (e.g. image sequence panoramic stitching), the high resolution is necessary to obtain satisfactory quality of panoramic image. However, the computational cost will become too expensive to be suitable for the low power consumption requirement of mobile device. The full search algorithm can obtain the global minimum with extremely computational cost, while the typical fast algorithms may suffer from the local minimum problem. This paper proposed a fast algorithm to deal with 2560 × 1920 high-resolution (HR) image sequences. The proposed method estimates the motion vector by a two-level coarse-to-fine scheme which only exploits sparse reference blocks (25 blocks in this paper) in each level to determine the global motion vector, thus the computational costs are significantly decreased. In order to increase the effective search range and robustness, the predictive motion vector (PMV) technique is used in this work. By the comparisons of computational complexity, the proposed algorithm costs less addition operations than the typical Three-Step Search algorithm (TSS) for estimating the global motion of the HR images without the local minimum problem. The quantitative evaluations show that our method is comparable to the full search algorithm (FSA) which is considered to be the golden baseline.
文摘This paper presents a new method for simultaneously eliminating visual artifacts caused by moving objects and structure misalignment in image stitching. Given that the input images are roughly aligned, our approach is implemented in two stages. In the first stage, we discover motions between input images, and then extract their corresponding regions through a multi-seed based region growing algorithm. In the second stage, with prior information provided by the extracted regions, we perform a graph cut optimization in gradient-domain to determine which pixels to use from each image to achieve seamless stitching. Our method is simple to implement and effective. The experimental results illustrate that the proposed approach can produce comparable or superior results in comparison with state-of-the-art methods.
基金This project was supported by the National Natural Science Foundation (No. 69972027).
文摘With the advances of display technology, three-dimensional(3-D) imaging systems are becoming increasingly popular. One way of stimulating 3-D perception is to use stereo pairs, a pair of images of the same scene acquired from different perspectives. Since there is an inherent redundancy between the images of a stereo pairs, data compression algorithms should be employed to represent stereo pairs efficiently. The proposed techniques generally use block-based disparity compensation. In order to get the higher compression ratio, this paper employs the wavelet-based mixed-resolution coding technique to incorporate with SPT-based disparity-compensation to compress the stereo image data. The mixed-resolution coding is a perceptually justified technique that is achieved by presenting one eye with a low-resolution image and the other with a high-resolution image. Psychophysical experiments show that the stereo image pairs with one high-resolution image and one low-resolution image provide almost the same stereo depth to that of a stereo image with two high-resolution images. By combining the mixed-resolution coding and SPT-based disparity-compensation techniques, one reference (left) high-resolution image can be compressed by a hierarchical wavelet transform followed by vector quantization and Huffman encoder. After two level wavelet decompositions, for the low-resolution right image and low-resolution left image, subspace projection technique using the fixed block size disparity compensation estimation is used. At the decoder, the low-resolution right subimage is estimated using the disparity from the low-resolution left subimage. A full-size reconstruction is obtained by upsampling a factor of 4 and reconstructing with the synthesis low pass filter. Finally, experimental results are presented, which show that our scheme achieves a PSNR gain (about 0.92dB) as compared to the current block-based disparity compensation coding techniques.
文摘A new digital image stabilization method is proposed for real-time application based on image contour. The image intensities are projected to several gray levels by thresholding before extracting contour points. Matching position could be found using these contour points. All pixels are still used for refined matching near the matching position. This algorithm is more robust against changes in illumination and noise affection. The adaptive global motion judgement can remove the affection of intruding object. All those are realized on normally available PC.
文摘This paper proposes an electronic image stabilization algorithm based on efficient block matching on the plane. This algorithm uses a hexagonal search algorithm, and uses the bit-planes to estimate and compensate for the translational motion between video sequences at the same time;As for the rotary motion vector generated in the video sequences, in order to highlight the intensity change of the image sequence, the algorithm firstly conducts Laplace transform for the reference frame, then select a number of characteristics at the image edge to make block matching with the current frame, calculate and compensate for the rotational movement that may exist finally. Through theoretical analysis and simula-tion, we prove that, as for a mixed translational and rotational motion video sequences, the proposed algorithm can reduce required time for block matching computation ,while improving the accuracy of the electronic image stabilization.