Remote sensing images are hard to achieve high compression ratio because of their rich texture. By analyzing the influence of wavelet properties on image compression, this paper proposes wavelet construction rules and...Remote sensing images are hard to achieve high compression ratio because of their rich texture. By analyzing the influence of wavelet properties on image compression, this paper proposes wavelet construction rules and builds a new biorthogonal wavelet construction model with parameters. The model parameters are optimized by using genetic algorithm and adopting energy compaction as the optimization object function. In addition, in order to resolve the computation complexity problem of online construction, according to the image classification rule proposed in this paper we construct wavelets for different classes of images and implement the fast adaptive wavelet selection algorithm (FAWS). Experimental results show wavelet bases of FAWS gain better compression performance than Daubechies9/7.展开更多
Due to latest advancements in the field of remote sensing,it becomes easier to acquire high quality images by the use of various satellites along with the sensing components.But the massive quantity of data poses a ch...Due to latest advancements in the field of remote sensing,it becomes easier to acquire high quality images by the use of various satellites along with the sensing components.But the massive quantity of data poses a challenging issue to store and effectively transmit the remote sensing images.Therefore,image compression techniques can be utilized to process remote sensing images.In this aspect,vector quantization(VQ)can be employed for image compression and the widely applied VQ approach is Linde–Buzo–Gray(LBG)which creates a local optimum codebook for image construction.The process of constructing the codebook can be treated as the optimization issue and the metaheuristic algorithms can be utilized for resolving it.With this motivation,this article presents an intelligent satin bowerbird optimizer based compression technique(ISBO-CT)for remote sensing images.The goal of the ISBO-CT technique is to proficiently compress the remote sensing images by the effective design of codebook.Besides,the ISBO-CT technique makes use of satin bowerbird optimizer(SBO)with LBG approach is employed.The design of SBO algorithm for remote sensing image compression depicts the novelty of the work.To showcase the enhanced efficiency of ISBO-CT approach,an extensive range of simulations were applied and the outcomes reported the optimum performance of ISBO-CT technique related to the recent state of art image compression approaches.展开更多
压缩感知理论被广泛应用于从少量随机观测中精确地重构原始信号,基于压缩感知理论来实现图像的超分辨率重建,在利用图像的局部稀疏性先验的基础上,采取了以下两项措施:一是通过对图像降质模型的估计,采用K-奇异值分解(Ksingular value d...压缩感知理论被广泛应用于从少量随机观测中精确地重构原始信号,基于压缩感知理论来实现图像的超分辨率重建,在利用图像的局部稀疏性先验的基础上,采取了以下两项措施:一是通过对图像降质模型的估计,采用K-奇异值分解(Ksingular value decomposition,K-SVD)算法构建过完备字典对,依据同一图像高低分辨率观测在对应字典下稀疏表示系数相似的特点,将字典对所表示的高低分辨率图像间的映射关系带入目标函数中,避免了降采样和模糊算子难以抽象为矩阵形式对求解造成的影响;二是在待超分辨率图像稀疏编码时提出一种自适应加权的梯度投影稀疏重构(adaptive weighting gradient projection for sparse reconstruction,AWGPSR)算法,克服了传统正交匹配追踪(orthogonal matching pursuit,OMP)算法在这一步需要固定稀疏度的缺陷,可获得更加精确的稀疏表示系数。结合得到的稀疏表示系数与高分辨率字典可以重建出图像的高频分量,将重建的高频分量与低频部分融合可以得到最终的图像超分辨率重建结果。实验结果表明,所提算法无论从主观视觉还是客观评价指标上均优于其他相关方法。展开更多
基金Supported bY the National Natural Science Foundation of China under Grant No.60573150National Defense Basic Research Foundation,the Program for New Century Excellent Talents in Universities and ERIPKU.
文摘Remote sensing images are hard to achieve high compression ratio because of their rich texture. By analyzing the influence of wavelet properties on image compression, this paper proposes wavelet construction rules and builds a new biorthogonal wavelet construction model with parameters. The model parameters are optimized by using genetic algorithm and adopting energy compaction as the optimization object function. In addition, in order to resolve the computation complexity problem of online construction, according to the image classification rule proposed in this paper we construct wavelets for different classes of images and implement the fast adaptive wavelet selection algorithm (FAWS). Experimental results show wavelet bases of FAWS gain better compression performance than Daubechies9/7.
基金This work was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2020R1A6A1A03038540)National Research Foundation of Korea(NRF)grant funded by the Korea government,Ministry of Science and ICT(MSIT)(2021R1F1A1046339).
文摘Due to latest advancements in the field of remote sensing,it becomes easier to acquire high quality images by the use of various satellites along with the sensing components.But the massive quantity of data poses a challenging issue to store and effectively transmit the remote sensing images.Therefore,image compression techniques can be utilized to process remote sensing images.In this aspect,vector quantization(VQ)can be employed for image compression and the widely applied VQ approach is Linde–Buzo–Gray(LBG)which creates a local optimum codebook for image construction.The process of constructing the codebook can be treated as the optimization issue and the metaheuristic algorithms can be utilized for resolving it.With this motivation,this article presents an intelligent satin bowerbird optimizer based compression technique(ISBO-CT)for remote sensing images.The goal of the ISBO-CT technique is to proficiently compress the remote sensing images by the effective design of codebook.Besides,the ISBO-CT technique makes use of satin bowerbird optimizer(SBO)with LBG approach is employed.The design of SBO algorithm for remote sensing image compression depicts the novelty of the work.To showcase the enhanced efficiency of ISBO-CT approach,an extensive range of simulations were applied and the outcomes reported the optimum performance of ISBO-CT technique related to the recent state of art image compression approaches.
文摘压缩是高光谱遥感(hyperspectral remote sensing)图像的一个重要研究领域.文中充分考虑了高光谱遥感图像的谱间相关性较强而空间相关性相对较弱的特点,采用了自适应波段选择降维方法与基于神经网络的矢量量化方法相结合的方法对高光谱遥感图像进行压缩.首先采用自适应波段选择(Adaptive band selection)的谱间压缩方法,通过自适应地选择信息量大并且与其他波段相关性小的波段来降低高光谱数据量.然后对降维后图像在空间进行小波变换并进行矢量量化,最后对量化后数据进行自适应算术编码.实验结果表明,谱间压缩能够保留信息丰富的波段,同时计算复杂度大大降低;基于神经网络的SOFM算法及其改进算法取得较好的空间压缩效果,实现了对高光谱遥感图像的有效压缩.