Currently,the improvement in AI is mainly related to deep learning techniques that are employed for the classification,identification,and quantification of patterns in clinical images.The deep learning models show mor...Currently,the improvement in AI is mainly related to deep learning techniques that are employed for the classification,identification,and quantification of patterns in clinical images.The deep learning models show more remarkable performance than the traditional methods for medical image processing tasks,such as skin cancer,colorectal cancer,brain tumour,cardiac disease,Breast cancer(BrC),and a few more.The manual diagnosis of medical issues always requires an expert and is also expensive.Therefore,developing some computer diagnosis techniques based on deep learning is essential.Breast cancer is the most frequently diagnosed cancer in females with a rapidly growing percentage.It is estimated that patients with BrC will rise to 70%in the next 20 years.If diagnosed at a later stage,the survival rate of patients with BrC is shallow.Hence,early detection is essential,increasing the survival rate to 50%.A new framework for BrC classification is presented that utilises deep learning and feature optimization.The significant steps of the presented framework include(i)hybrid contrast enhancement of acquired images,(ii)data augmentation to facilitate better learning of the Convolutional Neural Network(CNN)model,(iii)a pre‐trained ResNet‐101 model is utilised and modified according to selected dataset classes,(iv)deep transfer learning based model training for feature extraction,(v)the fusion of features using the proposed highly corrected function‐controlled canonical correlation analysis approach,and(vi)optimal feature selection using the modified Satin Bowerbird Optimization controlled Newton Raphson algorithm that finally classified using 10 machine learning classifiers.The experiments of the proposed framework have been carried out using the most critical and publicly available dataset,such as CBISDDSM,and obtained the best accuracy of 94.5%along with improved computation time.The comparison depicts that the presented method surpasses the current state‐ofthe‐art approaches.展开更多
The problem of domestic refuse is becoming more and more serious with the use of all kinds of equipment in medical institutions.This matter arouses people’s attention.Traditional artificial waste classification is su...The problem of domestic refuse is becoming more and more serious with the use of all kinds of equipment in medical institutions.This matter arouses people’s attention.Traditional artificial waste classification is subjective and cannot be put accurately;moreover,the working environment of sorting is poor and the efficiency is low.Therefore,automated and effective sorting is needed.In view of the current development of deep learning,it can provide a good auxiliary role for classification and realize automatic classification.In this paper,the ResNet-50 convolutional neural network based on the transfer learning method is applied to design the image classifier to obtain the domestic refuse classification with high accuracy.By comparing the method designed in this paper with back propagation neural network and convolutional neural network,it is concluded that the CNN based on transfer learning method applied in this paper with higher accuracy rate and lower false detection rate.Further,under the shortage situation of data samples,the method with transfer learning and ResNet-50 training model is effective to improve the accuracy of image classification.展开更多
Radio frequency interference(RFI)will pollute the weak astronomical signals received by radio telescopes,which in return will seriously affect the time-domain astronomical observation and research.In this paper,we use...Radio frequency interference(RFI)will pollute the weak astronomical signals received by radio telescopes,which in return will seriously affect the time-domain astronomical observation and research.In this paper,we use a deep learning method to identify RFI in frequency spectrum data,and propose a neural network based on Unet that combines the principles of depthwise separable convolution and residual,named DSC Based Dual-Resunet.Compared with the existing Unet network,DSC Based Dual-Resunet performs better in terms of accuracy,F1 score,and MIoU,and is also better in terms of computation cost where the model size and parameter amount are 12.5%of Unet and the amount of computation is 38%of Unet.The experimental results show that the proposed network is a high-performance and lightweight network,and it is hopeful to be applied to RFI identification of radio telescopes on a large scale.展开更多
基金Supporting Project number(PNURSP2023R410)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.supported by MRC,UK(MC_PC_17171)+9 种基金Royal Society,UK(RP202G0230)BHF,UK(AA/18/3/34220)Hope Foundation for Cancer Research,UK(RM60G0680)GCRF,UK(P202PF11)Sino‐UK Industrial Fund,UK(RP202G0289)LIAS,UK(P202ED10,P202RE969)Data Science Enhancement Fund,UK(P202RE237)Fight for Sight,UK(24NN201)Sino‐UK Education Fund,UK(OP202006)BBSRC,UK(RM32G0178B8).The funding of this work was provided by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2023R410),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Currently,the improvement in AI is mainly related to deep learning techniques that are employed for the classification,identification,and quantification of patterns in clinical images.The deep learning models show more remarkable performance than the traditional methods for medical image processing tasks,such as skin cancer,colorectal cancer,brain tumour,cardiac disease,Breast cancer(BrC),and a few more.The manual diagnosis of medical issues always requires an expert and is also expensive.Therefore,developing some computer diagnosis techniques based on deep learning is essential.Breast cancer is the most frequently diagnosed cancer in females with a rapidly growing percentage.It is estimated that patients with BrC will rise to 70%in the next 20 years.If diagnosed at a later stage,the survival rate of patients with BrC is shallow.Hence,early detection is essential,increasing the survival rate to 50%.A new framework for BrC classification is presented that utilises deep learning and feature optimization.The significant steps of the presented framework include(i)hybrid contrast enhancement of acquired images,(ii)data augmentation to facilitate better learning of the Convolutional Neural Network(CNN)model,(iii)a pre‐trained ResNet‐101 model is utilised and modified according to selected dataset classes,(iv)deep transfer learning based model training for feature extraction,(v)the fusion of features using the proposed highly corrected function‐controlled canonical correlation analysis approach,and(vi)optimal feature selection using the modified Satin Bowerbird Optimization controlled Newton Raphson algorithm that finally classified using 10 machine learning classifiers.The experiments of the proposed framework have been carried out using the most critical and publicly available dataset,such as CBISDDSM,and obtained the best accuracy of 94.5%along with improved computation time.The comparison depicts that the presented method surpasses the current state‐ofthe‐art approaches.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 61806028,Grant 61672437 and Grant 61702428Sichuan Science and Technology Program under Grants 21ZDYF2484,2021YFN0104,21GJHZ0061,21ZDYF3629,21ZDYF2907,21ZDYF0418,21YYJC1827,21ZDYF3537,2019YJ0356the Chinese Scholarship Council under Grants 202008510036,201908515022.
文摘The problem of domestic refuse is becoming more and more serious with the use of all kinds of equipment in medical institutions.This matter arouses people’s attention.Traditional artificial waste classification is subjective and cannot be put accurately;moreover,the working environment of sorting is poor and the efficiency is low.Therefore,automated and effective sorting is needed.In view of the current development of deep learning,it can provide a good auxiliary role for classification and realize automatic classification.In this paper,the ResNet-50 convolutional neural network based on the transfer learning method is applied to design the image classifier to obtain the domestic refuse classification with high accuracy.By comparing the method designed in this paper with back propagation neural network and convolutional neural network,it is concluded that the CNN based on transfer learning method applied in this paper with higher accuracy rate and lower false detection rate.Further,under the shortage situation of data samples,the method with transfer learning and ResNet-50 training model is effective to improve the accuracy of image classification.
基金supported by the National Natural Science Foundation of China(Grant No.11790305)partially supported by the Specialized Research Fund for State Key Laboratories(Grant No.SYS-202002-04)。
文摘Radio frequency interference(RFI)will pollute the weak astronomical signals received by radio telescopes,which in return will seriously affect the time-domain astronomical observation and research.In this paper,we use a deep learning method to identify RFI in frequency spectrum data,and propose a neural network based on Unet that combines the principles of depthwise separable convolution and residual,named DSC Based Dual-Resunet.Compared with the existing Unet network,DSC Based Dual-Resunet performs better in terms of accuracy,F1 score,and MIoU,and is also better in terms of computation cost where the model size and parameter amount are 12.5%of Unet and the amount of computation is 38%of Unet.The experimental results show that the proposed network is a high-performance and lightweight network,and it is hopeful to be applied to RFI identification of radio telescopes on a large scale.