In modern society,information is becoming increasingly interconnected through networks,and the rapid development of information technology has caused people to pay more attention to the encryption and the protection o...In modern society,information is becoming increasingly interconnected through networks,and the rapid development of information technology has caused people to pay more attention to the encryption and the protection of information.Image encryption technology is a key technology for ensuring the security performance of images.We extracted single channel RGB component images from a color image using MATLAB programs,encrypted and decrypted the color images by randomly disrupting rows,columns and regions of the image.Combined with histograms and the visual judgments of encryption images,it is shown that the information of the original image cannot be obtained from the encryption image easily.The results show that the color-image encryptions with the algorithm we used have good effect and fast operation speed.Thus this algorithm has certain practical value.展开更多
This paper analyzes the problems in image encryption and decryption based on chaos theory. This article introduces the application of the two-stage Logistic algorithm in image encryption and decryption, then by inform...This paper analyzes the problems in image encryption and decryption based on chaos theory. This article introduces the application of the two-stage Logistic algorithm in image encryption and decryption, then by information entropy analysis it is concluded that the security of this algorithm is higher compared with the original image;And a new image encryption and decryption algorithm based on the combination of two-stage Logistic mapping and <i>M</i> sequence is proposed. This new algorithm is very sensitive to keys;the key space is large and its security is higher than two-stage Logistic mapping of image encryption and decryption technology.展开更多
In the era of big data,the number of images transmitted over the public channel increases exponentially.As a result,it is crucial to devise the efficient and highly secure encryption method to safeguard the sensitive ...In the era of big data,the number of images transmitted over the public channel increases exponentially.As a result,it is crucial to devise the efficient and highly secure encryption method to safeguard the sensitive image.In this paper,an improved sine map(ISM)possessing a larger chaotic region,more complex chaotic behavior and greater unpredictability is proposed and extensively tested.Drawing upon the strengths of ISM,we introduce a lightweight symmetric image encryption cryptosystem in wavelet domain(WDLIC).The WDLIC employs selective encryption to strike a satisfactory balance between security and speed.Initially,only the low-frequency-low-frequency component is chosen to encrypt utilizing classic permutation and diffusion.Then leveraging the statistical properties in wavelet domain,Gaussianization operation which opens the minds of encrypting image information in wavelet domain is first proposed and employed to all sub-bands.Simulations and theoretical analysis demonstrate the high speed and the remarkable effectiveness of WDLIC.展开更多
With the advent of the information security era,it is necessary to guarantee the privacy,accuracy,and dependable transfer of pictures.This study presents a new approach to the encryption and compression of color image...With the advent of the information security era,it is necessary to guarantee the privacy,accuracy,and dependable transfer of pictures.This study presents a new approach to the encryption and compression of color images.It is predicated on 2D compressed sensing(CS)and the hyperchaotic system.First,an optimized Arnold scrambling algorithm is applied to the initial color images to ensure strong security.Then,the processed images are con-currently encrypted and compressed using 2D CS.Among them,chaotic sequences replace traditional random measurement matrices to increase the system’s security.Third,the processed images are re-encrypted using a combination of permutation and diffusion algorithms.In addition,the 2D projected gradient with an embedding decryption(2DPG-ED)algorithm is used to reconstruct images.Compared with the traditional reconstruction algorithm,the 2DPG-ED algorithm can improve security and reduce computational complexity.Furthermore,it has better robustness.The experimental outcome and the performance analysis indicate that this algorithm can withstand malicious attacks and prove the method is effective.展开更多
Security during remote transmission has been an important concern for researchers in recent years.In this paper,a hierarchical encryption multi-image encryption scheme for people with different security levels is desi...Security during remote transmission has been an important concern for researchers in recent years.In this paper,a hierarchical encryption multi-image encryption scheme for people with different security levels is designed,and a multiimage encryption(MIE)algorithm with row and column confusion and closed-loop bi-directional diffusion is adopted in the paper.While ensuring secure communication of medical image information,people with different security levels have different levels of decryption keys,and differentiated visual effects can be obtained by using the strong sensitivity of chaotic keys.The highest security level can obtain decrypted images without watermarks,and at the same time,patient information and copyright attribution can be verified by obtaining watermark images.The experimental results show that the scheme is sufficiently secure as an MIE scheme with visualized differences and the encryption and decryption efficiency is significantly improved compared to other works.展开更多
For digital image transmission security and information copyright,a new holographic image self-embedding watermarking encryption scheme is proposed.Firstly,the plaintext is converted to the RGB three-color channel,the...For digital image transmission security and information copyright,a new holographic image self-embedding watermarking encryption scheme is proposed.Firstly,the plaintext is converted to the RGB three-color channel,the corresponding phase hologram is obtained by holographic technology and the watermark is self-embedded in the frequency domain.Secondly,by applying the Hilbert transform principle and genetic center law,a complete set of image encryption algorithms is constructed to realize the encryption of image information.Finally,simulation results and security analysis indicate that the scheme can effectively encrypt and decrypt image information and realize the copyright protection of information.The introduced scheme can provide some support for relevant theoretical research,and has practical significance.展开更多
This paper explores a double quantum images representation(DNEQR)model that allows for simultaneous storage of two digital images in a quantum superposition state.Additionally,a new type of two-dimensional hyperchaoti...This paper explores a double quantum images representation(DNEQR)model that allows for simultaneous storage of two digital images in a quantum superposition state.Additionally,a new type of two-dimensional hyperchaotic system based on sine and logistic maps is investigated,offering a wider parameter space and better chaotic behavior compared to the sine and logistic maps.Based on the DNEQR model and the hyperchaotic system,a double quantum images encryption algorithm is proposed.Firstly,two classical plaintext images are transformed into quantum states using the DNEQR model.Then,the proposed hyperchaotic system is employed to iteratively generate pseudo-random sequences.These chaotic sequences are utilized to perform pixel value and position operations on the quantum image,resulting in changes to both pixel values and positions.Finally,the ciphertext image can be obtained by qubit-level diffusion using two XOR operations between the position-permutated image and the pseudo-random sequences.The corresponding quantum circuits are also given.Experimental results demonstrate that the proposed scheme ensures the security of the images during transmission,improves the encryption efficiency,and enhances anti-interference and anti-attack capabilities.展开更多
Images are the most important carrier of human information. Moreover, how to safely transmit digital imagesthrough public channels has become an urgent problem. In this paper, we propose a novel image encryptionalgori...Images are the most important carrier of human information. Moreover, how to safely transmit digital imagesthrough public channels has become an urgent problem. In this paper, we propose a novel image encryptionalgorithm, called chaotic compressive sensing (CS) encryption (CCSE), which can not only improve the efficiencyof image transmission but also introduce the high security of the chaotic system. Specifically, the proposed CCSEcan fully leverage the advantages of the Chebyshev chaotic system and CS, enabling it to withstand various attacks,such as differential attacks, and exhibit robustness. First, we use a sparse trans-form to sparse the plaintext imageand then use theArnold transformto perturb the image pixels. After that,we elaborate aChebyshev Toeplitz chaoticsensing matrix for CCSE. By using this Toeplitz matrix, the perturbed image is compressed and sampled to reducethe transmission bandwidth and the amount of data. Finally, a bilateral diffusion operator and a chaotic encryptionoperator are used to perturb and expand the image pixels to change the pixel position and value of the compressedimage, and ultimately obtain an encrypted image. Experimental results show that our method can be resistant tovarious attacks, such as the statistical attack and noise attack, and can outperform its current competitors.展开更多
The neuron model has been widely employed in neural-morphic computing systems and chaotic circuits.This study aims to develop a novel circuit simulation of a three-neuron Hopfield neural network(HNN)with coupled hyper...The neuron model has been widely employed in neural-morphic computing systems and chaotic circuits.This study aims to develop a novel circuit simulation of a three-neuron Hopfield neural network(HNN)with coupled hyperbolic memristors through the modification of a single coupling connection weight.The bistable mode of the hyperbolic memristive HNN(mHNN),characterized by the coexistence of asymmetric chaos and periodic attractors,is effectively demonstrated through the utilization of conventional nonlinear analysis techniques.These techniques include bifurcation diagrams,two-parameter maximum Lyapunov exponent plots,local attractor basins,and phase trajectory diagrams.Moreover,an encryption technique for color images is devised by leveraging the mHNN model and asymmetric structural attractors.This method demonstrates significant benefits in correlation,information entropy,and resistance to differential attacks,providing strong evidence for its effectiveness in encryption.Additionally,an improved modular circuit design method is employed to create the analog equivalent circuit of the memristive HNN.The correctness of the circuit design is confirmed through Multisim simulations,which align with numerical simulations conducted in Matlab.展开更多
A novel image encryption scheme based on parallel compressive sensing and edge detection embedding technology is proposed to improve visual security. Firstly, the plain image is sparsely represented using the discrete...A novel image encryption scheme based on parallel compressive sensing and edge detection embedding technology is proposed to improve visual security. Firstly, the plain image is sparsely represented using the discrete wavelet transform.Then, the coefficient matrix is scrambled and compressed to obtain a size-reduced image using the Fisher–Yates shuffle and parallel compressive sensing. Subsequently, to increase the security of the proposed algorithm, the compressed image is re-encrypted through permutation and diffusion to obtain a noise-like secret image. Finally, an adaptive embedding method based on edge detection for different carrier images is proposed to generate a visually meaningful cipher image. To improve the plaintext sensitivity of the algorithm, the counter mode is combined with the hash function to generate keys for chaotic systems. Additionally, an effective permutation method is designed to scramble the pixels of the compressed image in the re-encryption stage. The simulation results and analyses demonstrate that the proposed algorithm performs well in terms of visual security and decryption quality.展开更多
A novel color image encryption scheme is developed to enhance the security of encryption without increasing the complexity. Firstly, the plain color image is decomposed into three grayscale plain images, which are con...A novel color image encryption scheme is developed to enhance the security of encryption without increasing the complexity. Firstly, the plain color image is decomposed into three grayscale plain images, which are converted into the frequency domain coefficient matrices(FDCM) with discrete cosine transform(DCT) operation. After that, a twodimensional(2D) coupled chaotic system is developed and used to generate one group of embedded matrices and another group of encryption matrices, respectively. The embedded matrices are integrated with the FDCM to fulfill the frequency domain encryption, and then the inverse DCT processing is implemented to recover the spatial domain signal. Eventually,under the function of the encryption matrices and the proposed diagonal scrambling algorithm, the final color ciphertext is obtained. The experimental results show that the proposed method can not only ensure efficient encryption but also satisfy various sizes of image encryption. Besides, it has better performance than other similar techniques in statistical feature analysis, such as key space, key sensitivity, anti-differential attack, information entropy, noise attack, etc.展开更多
Multispectral image compression and encryption algorithms commonly suffer from issues such as low compression efficiency,lack of synchronization between the compression and encryption proces-ses,and degradation of int...Multispectral image compression and encryption algorithms commonly suffer from issues such as low compression efficiency,lack of synchronization between the compression and encryption proces-ses,and degradation of intrinsic image structure.A novel approach is proposed to address these is-sues.Firstly,a chaotic sequence is generated using the Lorenz three-dimensional chaotic mapping to initiate the encryption process,which is XORed with each spectral band of the multispectral image to complete the initial encryption of the image.Then,a two-dimensional lifting 9/7 wavelet transform is applied to the processed image.Next,a key-sensitive Arnold scrambling technique is employed on the resulting low-frequency image.It effectively eliminates spatial redundancy in the multispectral image while enhancing the encryption process.To optimize the compression and encryption processes further,fast Tucker decomposition is applied to the wavelet sub-band tensor.It effectively removes both spectral redundancy and residual spatial redundancy in the multispectral image.Finally,the core tensor and pattern matrix obtained from the decomposition are subjected to entropy encoding,and real-time chaotic encryption is implemented during the encoding process,effectively integrating compression and encryption.The results show that the proposed algorithm is suitable for occasions with high requirements for compression and encryption,and it provides valuable insights for the de-velopment of compression and encryption in multispectral field.展开更多
In the intricate network environment,the secure transmission of medical images faces challenges such as information leakage and malicious tampering,significantly impacting the accuracy of disease diagnoses by medical ...In the intricate network environment,the secure transmission of medical images faces challenges such as information leakage and malicious tampering,significantly impacting the accuracy of disease diagnoses by medical professionals.To address this problem,the authors propose a robust feature watermarking algorithm for encrypted medical images based on multi-stage discrete wavelet transform(DWT),Daisy descriptor,and discrete cosine transform(DCT).The algorithm initially encrypts the original medical image through DWT-DCT and Logistic mapping.Subsequently,a 3-stage DWT transformation is applied to the encrypted medical image,with the centre point of the LL3 sub-band within its low-frequency component serving as the sampling point.The Daisy descriptor matrix for this point is then computed.Finally,a DCT transformation is performed on the Daisy descriptor matrix,and the low-frequency portion is processed using the perceptual hashing algorithm to generate a 32-bit binary feature vector for the medical image.This scheme utilises cryptographic knowledge and zero-watermarking technique to embed watermarks without modifying medical images and can extract the watermark from test images without the original image,which meets the basic re-quirements of medical image watermarking.The embedding and extraction of water-marks are accomplished in a mere 0.160 and 0.411s,respectively,with minimal computational overhead.Simulation results demonstrate the robustness of the algorithm against both conventional attacks and geometric attacks,with a notable performance in resisting rotation attacks.展开更多
This paper proposes a secure approach for encryption and decryption of digital images with chaotic map lattices. In the proposed encryption process, eight different types of operations are used to encrypt the pixels o...This paper proposes a secure approach for encryption and decryption of digital images with chaotic map lattices. In the proposed encryption process, eight different types of operations are used to encrypt the pixels of an image and one of them will be used for particular pixels decided by the outcome of the chaotic map lattices. To make the cipher more robust against any attacks, the secret key is modified after encrypting each block of sixteen pixels of the image. The experimental results and security analysis show that the proposed image encryption scheme achieves high security and efficiency.展开更多
We propose a new image encryption algorithm on the basis of the fractional-order hyperchaotic Lorenz system. While in the process of generating a key stream, the system parameters and the derivative order are embedded...We propose a new image encryption algorithm on the basis of the fractional-order hyperchaotic Lorenz system. While in the process of generating a key stream, the system parameters and the derivative order are embedded in the proposed algorithm to enhance the security. Such an algorithm is detailed in terms of security analyses, including correlation analysis, information entropy analysis, run statistic analysis, mean-variance gray value analysis, and key sensitivity analysis. The experimental results demonstrate that the proposed image encryption scheme has the advantages of large key space and high security for practical image encryption.展开更多
In recent years, the chaos based cryptographic algorithms have suggested some new and efficient ways to develop secure image encryption techniques. This paper proposes a new approach for image encryption based on a hi...In recent years, the chaos based cryptographic algorithms have suggested some new and efficient ways to develop secure image encryption techniques. This paper proposes a new approach for image encryption based on a high-dimensional chaotic map. The new scheme employs the Cat map to shuffle the positions, then to confuse the relationship between the cipher-image and the plain-image using the high-dimensional Lorenz chaotic map preprocessed. The results of experimental, statistical analysis and key space analysis show that the proposed image encryption scheme provides an efficient and secure way for real-time image encryption and transmission.展开更多
Based on the Fisher–Yatess scrambling and DNA coding technology, a chaotical image encryption method is proposed. First, the SHA-3 algorithm is used to calculate the hash value of the initial password, which is used ...Based on the Fisher–Yatess scrambling and DNA coding technology, a chaotical image encryption method is proposed. First, the SHA-3 algorithm is used to calculate the hash value of the initial password, which is used as the initial value of the chaotic system. Second, the chaotic sequence and Fisher–Yatess scrambling are used to scramble the plaintext,and a sorting scrambling algorithm is used for secondary scrambling. Then, the chaotic sequence and DNA coding rules are used to change the plaintext pixel values, which makes the ciphertext more random and resistant to attacks, and thus ensures that the encrypted ciphertext is more secure. Finally, we add plaintext statistics for pixel-level diffusion to ensure plaintext sensitivity. The experimental results and security analysis show that the new algorithm has a good encryption effect and speed, and can also resist common attacks.展开更多
In this paper, first, we investigate a novel one-dimensional logistic-PWLCM(LP) modulation map which is derived from the logistic and PWLCM maps. Second, we propose a novel PCLML spatiotemporal chaos in pseudo-rando...In this paper, first, we investigate a novel one-dimensional logistic-PWLCM(LP) modulation map which is derived from the logistic and PWLCM maps. Second, we propose a novel PCLML spatiotemporal chaos in pseudo-random coupling method that can accelerate the system behavior of the fully spatial chaos. Here, because the better chaotic properties include a wide range of parameter settings and better ergodicity than a logistic map, the LP is used in PCLML as f(x). The Kolmogorov–Sinai entropy density and universality and the bifurcation diagram are employed to investigate the chaotic behaviors of the proposed PCLML model. Finally, we apply the LP and PCLML chaotic systems to image encryption to improve the effectiveness and security of the encryption scheme. By combining self-generating matrix model M and dynamic substitution box(S-Box) methods, we design a new image encryption algorithm. Numerical simulations and security analysis have been carried out to demonstrate that the proposed algorithm has a high security level and can efficiently encrypt several different kinds of images into random-like images.展开更多
In this paper, Adomian decomposition method (ADM) with high accuracy and fast convergence is introduced to solve the fractional-order piecewise-linear (PWL) hyperchaotic system. Based on the obtained hyperchaotic ...In this paper, Adomian decomposition method (ADM) with high accuracy and fast convergence is introduced to solve the fractional-order piecewise-linear (PWL) hyperchaotic system. Based on the obtained hyperchaotic sequences, a novel color image encryption algorithm is proposed by employing a hybrid model of bidirectional circular permutation and DNA masking. In this scheme, the pixel positions of image are scrambled by circular permutation, and the pixel values are substituted by DNA sequence operations. In the DNA sequence operations, addition and substraction operations are performed according to traditional addition and subtraction in the binary, and two rounds of addition rules are used to encrypt the pixel values. The simulation results and security analysis show that the hyperchaotic map is suitable for image encryption, and the proposed encryption algorithm has good encryption effect and strong key sensitivity. It can resist brute-force attack, statistical attack, differential attack, known-plaintext, and chosen-plaintext attacks.展开更多
A chaos-based cryptosystem for fractal image coding is proposed. The Renyi chaotic map is employed to determine the order of processing the range blocks and to generate the keystream for masking the encoded sequence. ...A chaos-based cryptosystem for fractal image coding is proposed. The Renyi chaotic map is employed to determine the order of processing the range blocks and to generate the keystream for masking the encoded sequence. Compared with the standard approach of fraetal image coding followed by the Advanced Encryption Standard, our scheme offers a higher sensitivity to both plaintext and ciphertext at a comparable operating efficiency. The keystream generated by the Renyi chaotic map passes the randomness tests set by the United States National Institute of Standards and Technology, and so the proposed scheme is sensitive to the key.展开更多
基金National Natural Science Foundation of China(No.11865013)Horizontal Project of Shangrao Normal University,China(No.K8000219T)+1 种基金Industrial Science and Technology Project in Shangrao of Jiangxi Province,China(No.17A005)Doctoral Scientific Research Foundation of Shangrao Normal University,China(No.6000108)。
文摘In modern society,information is becoming increasingly interconnected through networks,and the rapid development of information technology has caused people to pay more attention to the encryption and the protection of information.Image encryption technology is a key technology for ensuring the security performance of images.We extracted single channel RGB component images from a color image using MATLAB programs,encrypted and decrypted the color images by randomly disrupting rows,columns and regions of the image.Combined with histograms and the visual judgments of encryption images,it is shown that the information of the original image cannot be obtained from the encryption image easily.The results show that the color-image encryptions with the algorithm we used have good effect and fast operation speed.Thus this algorithm has certain practical value.
文摘This paper analyzes the problems in image encryption and decryption based on chaos theory. This article introduces the application of the two-stage Logistic algorithm in image encryption and decryption, then by information entropy analysis it is concluded that the security of this algorithm is higher compared with the original image;And a new image encryption and decryption algorithm based on the combination of two-stage Logistic mapping and <i>M</i> sequence is proposed. This new algorithm is very sensitive to keys;the key space is large and its security is higher than two-stage Logistic mapping of image encryption and decryption technology.
基金Project supported by the Key Area Research and Development Program of Guangdong Province,China(Grant No.2022B0701180001)the National Natural Science Foundation of China(Grant No.61801127)+1 种基金the Science Technology Planning Project of Guangdong Province,China(Grant Nos.2019B010140002 and 2020B111110002)the Guangdong–Hong Kong–Macao Joint Innovation Field Project(Grant No.2021A0505080006).
文摘In the era of big data,the number of images transmitted over the public channel increases exponentially.As a result,it is crucial to devise the efficient and highly secure encryption method to safeguard the sensitive image.In this paper,an improved sine map(ISM)possessing a larger chaotic region,more complex chaotic behavior and greater unpredictability is proposed and extensively tested.Drawing upon the strengths of ISM,we introduce a lightweight symmetric image encryption cryptosystem in wavelet domain(WDLIC).The WDLIC employs selective encryption to strike a satisfactory balance between security and speed.Initially,only the low-frequency-low-frequency component is chosen to encrypt utilizing classic permutation and diffusion.Then leveraging the statistical properties in wavelet domain,Gaussianization operation which opens the minds of encrypting image information in wavelet domain is first proposed and employed to all sub-bands.Simulations and theoretical analysis demonstrate the high speed and the remarkable effectiveness of WDLIC.
基金This work was supported in part by the National Natural Science Foundation of China under Grants 71571091,71771112the State Key Laboratory of Synthetical Automation for Process Industries Fundamental Research Funds under Grant PAL-N201801the Excellent Talent Training Project of University of Science and Technology Liaoning under Grant 2019RC05.
文摘With the advent of the information security era,it is necessary to guarantee the privacy,accuracy,and dependable transfer of pictures.This study presents a new approach to the encryption and compression of color images.It is predicated on 2D compressed sensing(CS)and the hyperchaotic system.First,an optimized Arnold scrambling algorithm is applied to the initial color images to ensure strong security.Then,the processed images are con-currently encrypted and compressed using 2D CS.Among them,chaotic sequences replace traditional random measurement matrices to increase the system’s security.Third,the processed images are re-encrypted using a combination of permutation and diffusion algorithms.In addition,the 2D projected gradient with an embedding decryption(2DPG-ED)algorithm is used to reconstruct images.Compared with the traditional reconstruction algorithm,the 2DPG-ED algorithm can improve security and reduce computational complexity.Furthermore,it has better robustness.The experimental outcome and the performance analysis indicate that this algorithm can withstand malicious attacks and prove the method is effective.
基金Project supported by the National Natural Science Foundation of China(Grant No.62061014)the Natural Science Foundation of Liaoning province of China(Grant No.2020-MS-274).
文摘Security during remote transmission has been an important concern for researchers in recent years.In this paper,a hierarchical encryption multi-image encryption scheme for people with different security levels is designed,and a multiimage encryption(MIE)algorithm with row and column confusion and closed-loop bi-directional diffusion is adopted in the paper.While ensuring secure communication of medical image information,people with different security levels have different levels of decryption keys,and differentiated visual effects can be obtained by using the strong sensitivity of chaotic keys.The highest security level can obtain decrypted images without watermarks,and at the same time,patient information and copyright attribution can be verified by obtaining watermark images.The experimental results show that the scheme is sufficiently secure as an MIE scheme with visualized differences and the encryption and decryption efficiency is significantly improved compared to other works.
基金Project supported by the National Natural Science Foundation of China(Grant No.62061014)。
文摘For digital image transmission security and information copyright,a new holographic image self-embedding watermarking encryption scheme is proposed.Firstly,the plaintext is converted to the RGB three-color channel,the corresponding phase hologram is obtained by holographic technology and the watermark is self-embedded in the frequency domain.Secondly,by applying the Hilbert transform principle and genetic center law,a complete set of image encryption algorithms is constructed to realize the encryption of image information.Finally,simulation results and security analysis indicate that the scheme can effectively encrypt and decrypt image information and realize the copyright protection of information.The introduced scheme can provide some support for relevant theoretical research,and has practical significance.
基金Project supported by the Open Fund of Anhui Key Laboratory of Mine Intelligent Equipment and Technology (Grant No.ZKSYS202204)the Talent Introduction Fund of Anhui University of Science and Technology (Grant No.2021yjrc34)the Scientific Research Fund of Anhui Provincial Education Department (Grant No.KJ2020A0301)。
文摘This paper explores a double quantum images representation(DNEQR)model that allows for simultaneous storage of two digital images in a quantum superposition state.Additionally,a new type of two-dimensional hyperchaotic system based on sine and logistic maps is investigated,offering a wider parameter space and better chaotic behavior compared to the sine and logistic maps.Based on the DNEQR model and the hyperchaotic system,a double quantum images encryption algorithm is proposed.Firstly,two classical plaintext images are transformed into quantum states using the DNEQR model.Then,the proposed hyperchaotic system is employed to iteratively generate pseudo-random sequences.These chaotic sequences are utilized to perform pixel value and position operations on the quantum image,resulting in changes to both pixel values and positions.Finally,the ciphertext image can be obtained by qubit-level diffusion using two XOR operations between the position-permutated image and the pseudo-random sequences.The corresponding quantum circuits are also given.Experimental results demonstrate that the proposed scheme ensures the security of the images during transmission,improves the encryption efficiency,and enhances anti-interference and anti-attack capabilities.
基金the National Natural Science Foundation of China(Nos.62002028,62102040 and 62202066).
文摘Images are the most important carrier of human information. Moreover, how to safely transmit digital imagesthrough public channels has become an urgent problem. In this paper, we propose a novel image encryptionalgorithm, called chaotic compressive sensing (CS) encryption (CCSE), which can not only improve the efficiencyof image transmission but also introduce the high security of the chaotic system. Specifically, the proposed CCSEcan fully leverage the advantages of the Chebyshev chaotic system and CS, enabling it to withstand various attacks,such as differential attacks, and exhibit robustness. First, we use a sparse trans-form to sparse the plaintext imageand then use theArnold transformto perturb the image pixels. After that,we elaborate aChebyshev Toeplitz chaoticsensing matrix for CCSE. By using this Toeplitz matrix, the perturbed image is compressed and sampled to reducethe transmission bandwidth and the amount of data. Finally, a bilateral diffusion operator and a chaotic encryptionoperator are used to perturb and expand the image pixels to change the pixel position and value of the compressedimage, and ultimately obtain an encrypted image. Experimental results show that our method can be resistant tovarious attacks, such as the statistical attack and noise attack, and can outperform its current competitors.
基金Project supported by the National Nature Science Foundation of China(Grant Nos.51737003 and 51977060)the Natural Science Foundation of Hebei Province(Grant No.E2011202051).
文摘The neuron model has been widely employed in neural-morphic computing systems and chaotic circuits.This study aims to develop a novel circuit simulation of a three-neuron Hopfield neural network(HNN)with coupled hyperbolic memristors through the modification of a single coupling connection weight.The bistable mode of the hyperbolic memristive HNN(mHNN),characterized by the coexistence of asymmetric chaos and periodic attractors,is effectively demonstrated through the utilization of conventional nonlinear analysis techniques.These techniques include bifurcation diagrams,two-parameter maximum Lyapunov exponent plots,local attractor basins,and phase trajectory diagrams.Moreover,an encryption technique for color images is devised by leveraging the mHNN model and asymmetric structural attractors.This method demonstrates significant benefits in correlation,information entropy,and resistance to differential attacks,providing strong evidence for its effectiveness in encryption.Additionally,an improved modular circuit design method is employed to create the analog equivalent circuit of the memristive HNN.The correctness of the circuit design is confirmed through Multisim simulations,which align with numerical simulations conducted in Matlab.
基金supported by the Key Area R&D Program of Guangdong Province (Grant No.2022B0701180001)the National Natural Science Foundation of China (Grant No.61801127)+1 种基金the Science Technology Planning Project of Guangdong Province,China (Grant Nos.2019B010140002 and 2020B111110002)the Guangdong-Hong Kong-Macao Joint Innovation Field Project (Grant No.2021A0505080006)。
文摘A novel image encryption scheme based on parallel compressive sensing and edge detection embedding technology is proposed to improve visual security. Firstly, the plain image is sparsely represented using the discrete wavelet transform.Then, the coefficient matrix is scrambled and compressed to obtain a size-reduced image using the Fisher–Yates shuffle and parallel compressive sensing. Subsequently, to increase the security of the proposed algorithm, the compressed image is re-encrypted through permutation and diffusion to obtain a noise-like secret image. Finally, an adaptive embedding method based on edge detection for different carrier images is proposed to generate a visually meaningful cipher image. To improve the plaintext sensitivity of the algorithm, the counter mode is combined with the hash function to generate keys for chaotic systems. Additionally, an effective permutation method is designed to scramble the pixels of the compressed image in the re-encryption stage. The simulation results and analyses demonstrate that the proposed algorithm performs well in terms of visual security and decryption quality.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62105004 and 52174141)the College Student Innovation and Entrepreneurship Fund Project(Grant No.202210361053)+1 种基金Anhui Mining Machinery and Electrical Equipment Coordination Innovation Center,Anhui University of Science&Technology(Grant No.KSJD202304)the Anhui Province Digital Agricultural Engineering Technology Research Center Open Project(Grant No.AHSZNYGC-ZXKF021)。
文摘A novel color image encryption scheme is developed to enhance the security of encryption without increasing the complexity. Firstly, the plain color image is decomposed into three grayscale plain images, which are converted into the frequency domain coefficient matrices(FDCM) with discrete cosine transform(DCT) operation. After that, a twodimensional(2D) coupled chaotic system is developed and used to generate one group of embedded matrices and another group of encryption matrices, respectively. The embedded matrices are integrated with the FDCM to fulfill the frequency domain encryption, and then the inverse DCT processing is implemented to recover the spatial domain signal. Eventually,under the function of the encryption matrices and the proposed diagonal scrambling algorithm, the final color ciphertext is obtained. The experimental results show that the proposed method can not only ensure efficient encryption but also satisfy various sizes of image encryption. Besides, it has better performance than other similar techniques in statistical feature analysis, such as key space, key sensitivity, anti-differential attack, information entropy, noise attack, etc.
基金the National Natural Science Foundation of China(No.11803036)Climbing Program of Changchun University(No.ZKP202114).
文摘Multispectral image compression and encryption algorithms commonly suffer from issues such as low compression efficiency,lack of synchronization between the compression and encryption proces-ses,and degradation of intrinsic image structure.A novel approach is proposed to address these is-sues.Firstly,a chaotic sequence is generated using the Lorenz three-dimensional chaotic mapping to initiate the encryption process,which is XORed with each spectral band of the multispectral image to complete the initial encryption of the image.Then,a two-dimensional lifting 9/7 wavelet transform is applied to the processed image.Next,a key-sensitive Arnold scrambling technique is employed on the resulting low-frequency image.It effectively eliminates spatial redundancy in the multispectral image while enhancing the encryption process.To optimize the compression and encryption processes further,fast Tucker decomposition is applied to the wavelet sub-band tensor.It effectively removes both spectral redundancy and residual spatial redundancy in the multispectral image.Finally,the core tensor and pattern matrix obtained from the decomposition are subjected to entropy encoding,and real-time chaotic encryption is implemented during the encoding process,effectively integrating compression and encryption.The results show that the proposed algorithm is suitable for occasions with high requirements for compression and encryption,and it provides valuable insights for the de-velopment of compression and encryption in multispectral field.
基金National Natural Science Foundation of China,Grant/Award Numbers:62063004,62350410483Key Research and Development Project of Hainan Province,Grant/Award Number:ZDYF2021SHFZ093Zhejiang Provincial Postdoctoral Science Foundation,Grant/Award Number:ZJ2021028。
文摘In the intricate network environment,the secure transmission of medical images faces challenges such as information leakage and malicious tampering,significantly impacting the accuracy of disease diagnoses by medical professionals.To address this problem,the authors propose a robust feature watermarking algorithm for encrypted medical images based on multi-stage discrete wavelet transform(DWT),Daisy descriptor,and discrete cosine transform(DCT).The algorithm initially encrypts the original medical image through DWT-DCT and Logistic mapping.Subsequently,a 3-stage DWT transformation is applied to the encrypted medical image,with the centre point of the LL3 sub-band within its low-frequency component serving as the sampling point.The Daisy descriptor matrix for this point is then computed.Finally,a DCT transformation is performed on the Daisy descriptor matrix,and the low-frequency portion is processed using the perceptual hashing algorithm to generate a 32-bit binary feature vector for the medical image.This scheme utilises cryptographic knowledge and zero-watermarking technique to embed watermarks without modifying medical images and can extract the watermark from test images without the original image,which meets the basic re-quirements of medical image watermarking.The embedding and extraction of water-marks are accomplished in a mere 0.160 and 0.411s,respectively,with minimal computational overhead.Simulation results demonstrate the robustness of the algorithm against both conventional attacks and geometric attacks,with a notable performance in resisting rotation attacks.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61001099 and 10971120)the Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No. 200444)
文摘This paper proposes a secure approach for encryption and decryption of digital images with chaotic map lattices. In the proposed encryption process, eight different types of operations are used to encrypt the pixels of an image and one of them will be used for particular pixels decided by the outcome of the chaotic map lattices. To make the cipher more robust against any attacks, the secret key is modified after encrypting each block of sixteen pixels of the image. The experimental results and security analysis show that the proposed image encryption scheme achieves high security and efficiency.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61004078 and 60971022)the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2009GQ009 and ZR2009GM005)+1 种基金the China Postdoctoral Science Foundation (Grant No. 20100481293)the Special Funds for Postdoctoral Innovative Projects of Shandong Province, China (Grant No. 201003037)
文摘We propose a new image encryption algorithm on the basis of the fractional-order hyperchaotic Lorenz system. While in the process of generating a key stream, the system parameters and the derivative order are embedded in the proposed algorithm to enhance the security. Such an algorithm is detailed in terms of security analyses, including correlation analysis, information entropy analysis, run statistic analysis, mean-variance gray value analysis, and key sensitivity analysis. The experimental results demonstrate that the proposed image encryption scheme has the advantages of large key space and high security for practical image encryption.
基金Project supported by the National Natural Science Foundation of China (Grant No 60472112) and the Foundation for the author of National Excellent Doctoral Dissertation of China (Grant No 200444).
文摘In recent years, the chaos based cryptographic algorithms have suggested some new and efficient ways to develop secure image encryption techniques. This paper proposes a new approach for image encryption based on a high-dimensional chaotic map. The new scheme employs the Cat map to shuffle the positions, then to confuse the relationship between the cipher-image and the plain-image using the high-dimensional Lorenz chaotic map preprocessed. The results of experimental, statistical analysis and key space analysis show that the proposed image encryption scheme provides an efficient and secure way for real-time image encryption and transmission.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61173183,61672124,61370145,and 11501064)the Password Theory Project of the 13th Five-Year Plan National Cryptography Development Fund,China(Grant No.MMJJ20170203)+1 种基金the China Postdoctoral Science Foundation(Grant No.2016M590850)the Scientific and Technological Research Program of Chongqing Municipal Education Commission,China(Grant No.KJ1500605)
文摘Based on the Fisher–Yatess scrambling and DNA coding technology, a chaotical image encryption method is proposed. First, the SHA-3 algorithm is used to calculate the hash value of the initial password, which is used as the initial value of the chaotic system. Second, the chaotic sequence and Fisher–Yatess scrambling are used to scramble the plaintext,and a sorting scrambling algorithm is used for secondary scrambling. Then, the chaotic sequence and DNA coding rules are used to change the plaintext pixel values, which makes the ciphertext more random and resistant to attacks, and thus ensures that the encrypted ciphertext is more secure. Finally, we add plaintext statistics for pixel-level diffusion to ensure plaintext sensitivity. The experimental results and security analysis show that the new algorithm has a good encryption effect and speed, and can also resist common attacks.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61672124,61370145,and 61173183)the Password Theory Project of the13th Five-Year Plan National Cryptography Development Fund,China(Grant No.MMJJ20170203)+1 种基金the Program for New Century Excellent Talents in Fujian Province Universitythe Natural Science Foundation of Fujian Province of China(Grant No.2018J01100)
文摘In this paper, first, we investigate a novel one-dimensional logistic-PWLCM(LP) modulation map which is derived from the logistic and PWLCM maps. Second, we propose a novel PCLML spatiotemporal chaos in pseudo-random coupling method that can accelerate the system behavior of the fully spatial chaos. Here, because the better chaotic properties include a wide range of parameter settings and better ergodicity than a logistic map, the LP is used in PCLML as f(x). The Kolmogorov–Sinai entropy density and universality and the bifurcation diagram are employed to investigate the chaotic behaviors of the proposed PCLML model. Finally, we apply the LP and PCLML chaotic systems to image encryption to improve the effectiveness and security of the encryption scheme. By combining self-generating matrix model M and dynamic substitution box(S-Box) methods, we design a new image encryption algorithm. Numerical simulations and security analysis have been carried out to demonstrate that the proposed algorithm has a high security level and can efficiently encrypt several different kinds of images into random-like images.
基金supported by the National Natural Science Foundation of China(Grant Nos.61161006 and 61573383)
文摘In this paper, Adomian decomposition method (ADM) with high accuracy and fast convergence is introduced to solve the fractional-order piecewise-linear (PWL) hyperchaotic system. Based on the obtained hyperchaotic sequences, a novel color image encryption algorithm is proposed by employing a hybrid model of bidirectional circular permutation and DNA masking. In this scheme, the pixel positions of image are scrambled by circular permutation, and the pixel values are substituted by DNA sequence operations. In the DNA sequence operations, addition and substraction operations are performed according to traditional addition and subtraction in the binary, and two rounds of addition rules are used to encrypt the pixel values. The simulation results and security analysis show that the hyperchaotic map is suitable for image encryption, and the proposed encryption algorithm has good encryption effect and strong key sensitivity. It can resist brute-force attack, statistical attack, differential attack, known-plaintext, and chosen-plaintext attacks.
基金Project supported by the Research Grants Council of the Hong Kong Special Administrative Region,China(Grant No.CityU123009)
文摘A chaos-based cryptosystem for fractal image coding is proposed. The Renyi chaotic map is employed to determine the order of processing the range blocks and to generate the keystream for masking the encoded sequence. Compared with the standard approach of fraetal image coding followed by the Advanced Encryption Standard, our scheme offers a higher sensitivity to both plaintext and ciphertext at a comparable operating efficiency. The keystream generated by the Renyi chaotic map passes the randomness tests set by the United States National Institute of Standards and Technology, and so the proposed scheme is sensitive to the key.