AIM: To build and evaluate predictive models for contrast-enhanced ultrasound(CEUS) of the breast to distinguish between benign and malignant lesions. METHODS: A total of 235 breast imaging reporting and data system(B...AIM: To build and evaluate predictive models for contrast-enhanced ultrasound(CEUS) of the breast to distinguish between benign and malignant lesions. METHODS: A total of 235 breast imaging reporting and data system(BI-RADS) 4 solid breast lesions were imaged via CEUS before core needle biopsy or surgical resection. CEUS results were analyzed on 10 enhancing patterns to evaluate diagnostic performance of three benign and three malignant CEUS models, with pathological results used as the gold standard. A logistic regression model was developed basing on the CEUS results, and then evaluated with receiver operating curve(ROC). RESULTS: Except in cases of enhanced homogeneity, the rest of the 9 enhancement appearances were statistically significant(P < 0.05). These 9 enhancement patterns were selected in the final step of the logistic regression analysis, with diagnostic sensitivity and specificity of 84.4% and 82.7%, respectively, and the area under the ROC curve of 0.911. Diagnostic sensitivity, specificity, and accuracy of the malignant vs benign CEUS models were 84.38%, 87.77%, 86.38% and 86.46%, 81.29% and 83.40%, respectively. CONCLUSION: The breast CEUS models can predict risk of malignant breast lesions more accurately, decrease false-positive biopsy, and provide accurate BIRADS classification.展开更多
Processing and analyzing of medical images is one of the priority research areas. At the same time, the processing of images of cells occupies a special place. This is due to the fact that such studies allow for a com...Processing and analyzing of medical images is one of the priority research areas. At the same time, the processing of images of cells occupies a special place. This is due to the fact that such studies allow for a comprehensive diagnosis of the state of human health, identify and prevent the development of diseases in the early stages. We investigate the effectiveness of using wavelet analysis in color models, taking into account the preliminary change in the contrast of the input image. We consider the HSV color model and the image contrast modification procedure, which is based on the histogram change in the specified range with gamma correction. As a criterion for choosing parameters for changing the contrast of the image, we consider the entropy of the image. We also showed the advisability of using the value of the entropy index for the subsequent improvement of image analysis based on the wavelet ideology. We examined the general sequence of action for the analysis of image of megaloblastic anemia cells. This sequence is based on the choice of parameters for changing the contrast of the image and application of wavelet ideology.展开更多
This study proposes a novel dual S-shaped logistic model for automatically quantifying the characteristic kinetic curves of breast lesions and for distinguishing malignant from benign breast tumors on dynamic contrast...This study proposes a novel dual S-shaped logistic model for automatically quantifying the characteristic kinetic curves of breast lesions and for distinguishing malignant from benign breast tumors on dynamic contrast enhanced (DCE) magnetic resonance (MR) images.D(,) is the diagnostic parameter derived from the logistic model.Significant differences were found in D(,) between the malignant benign groups.Fisher's Linear Discriminant analysis correctly classified more than 90% of the benign and malignant kinetic breast data using the derived diagnostic parameter (D(,)).Receiver operating characteristic curve analysis of the derived diagnostic parameter (D(,)) indicated high sensitivity and specificity to differentiate malignancy from benignancy.The dual S-shaped logistic model was effectively used to fit the kinetic curves of breast lesions in DCE-MR.Separation between benign and malignant breast lesions was achieved with sufficient accuracy by using the derived diagnostic parameter D(,) as the lesion's feature.The proposed method therefore has the potential for computer-aided diagnosis in breast tumors.展开更多
文摘AIM: To build and evaluate predictive models for contrast-enhanced ultrasound(CEUS) of the breast to distinguish between benign and malignant lesions. METHODS: A total of 235 breast imaging reporting and data system(BI-RADS) 4 solid breast lesions were imaged via CEUS before core needle biopsy or surgical resection. CEUS results were analyzed on 10 enhancing patterns to evaluate diagnostic performance of three benign and three malignant CEUS models, with pathological results used as the gold standard. A logistic regression model was developed basing on the CEUS results, and then evaluated with receiver operating curve(ROC). RESULTS: Except in cases of enhanced homogeneity, the rest of the 9 enhancement appearances were statistically significant(P < 0.05). These 9 enhancement patterns were selected in the final step of the logistic regression analysis, with diagnostic sensitivity and specificity of 84.4% and 82.7%, respectively, and the area under the ROC curve of 0.911. Diagnostic sensitivity, specificity, and accuracy of the malignant vs benign CEUS models were 84.38%, 87.77%, 86.38% and 86.46%, 81.29% and 83.40%, respectively. CONCLUSION: The breast CEUS models can predict risk of malignant breast lesions more accurately, decrease false-positive biopsy, and provide accurate BIRADS classification.
文摘Processing and analyzing of medical images is one of the priority research areas. At the same time, the processing of images of cells occupies a special place. This is due to the fact that such studies allow for a comprehensive diagnosis of the state of human health, identify and prevent the development of diseases in the early stages. We investigate the effectiveness of using wavelet analysis in color models, taking into account the preliminary change in the contrast of the input image. We consider the HSV color model and the image contrast modification procedure, which is based on the histogram change in the specified range with gamma correction. As a criterion for choosing parameters for changing the contrast of the image, we consider the entropy of the image. We also showed the advisability of using the value of the entropy index for the subsequent improvement of image analysis based on the wavelet ideology. We examined the general sequence of action for the analysis of image of megaloblastic anemia cells. This sequence is based on the choice of parameters for changing the contrast of the image and application of wavelet ideology.
文摘This study proposes a novel dual S-shaped logistic model for automatically quantifying the characteristic kinetic curves of breast lesions and for distinguishing malignant from benign breast tumors on dynamic contrast enhanced (DCE) magnetic resonance (MR) images.D(,) is the diagnostic parameter derived from the logistic model.Significant differences were found in D(,) between the malignant benign groups.Fisher's Linear Discriminant analysis correctly classified more than 90% of the benign and malignant kinetic breast data using the derived diagnostic parameter (D(,)).Receiver operating characteristic curve analysis of the derived diagnostic parameter (D(,)) indicated high sensitivity and specificity to differentiate malignancy from benignancy.The dual S-shaped logistic model was effectively used to fit the kinetic curves of breast lesions in DCE-MR.Separation between benign and malignant breast lesions was achieved with sufficient accuracy by using the derived diagnostic parameter D(,) as the lesion's feature.The proposed method therefore has the potential for computer-aided diagnosis in breast tumors.