Detecting brain tumours is complex due to the natural variation in their location, shape, and intensity in images. While having accurate detection and segmentation of brain tumours would be beneficial, current methods...Detecting brain tumours is complex due to the natural variation in their location, shape, and intensity in images. While having accurate detection and segmentation of brain tumours would be beneficial, current methods still need to solve this problem despite the numerous available approaches. Precise analysis of Magnetic Resonance Imaging (MRI) is crucial for detecting, segmenting, and classifying brain tumours in medical diagnostics. Magnetic Resonance Imaging is a vital component in medical diagnosis, and it requires precise, efficient, careful, efficient, and reliable image analysis techniques. The authors developed a Deep Learning (DL) fusion model to classify brain tumours reliably. Deep Learning models require large amounts of training data to achieve good results, so the researchers utilised data augmentation techniques to increase the dataset size for training models. VGG16, ResNet50, and convolutional deep belief networks networks extracted deep features from MRI images. Softmax was used as the classifier, and the training set was supplemented with intentionally created MRI images of brain tumours in addition to the genuine ones. The features of two DL models were combined in the proposed model to generate a fusion model, which significantly increased classification accuracy. An openly accessible dataset from the internet was used to test the model's performance, and the experimental results showed that the proposed fusion model achieved a classification accuracy of 98.98%. Finally, the results were compared with existing methods, and the proposed model outperformed them significantly.展开更多
The rapid growth of mobile applications,the popularity of the Android system and its openness have attracted many hackers and even criminals,who are creating lots of Android malware.However,the current methods of Andr...The rapid growth of mobile applications,the popularity of the Android system and its openness have attracted many hackers and even criminals,who are creating lots of Android malware.However,the current methods of Android malware detection need a lot of time in the feature engineering phase.Furthermore,these models have the defects of low detection rate,high complexity,and poor practicability,etc.We analyze the Android malware samples,and the distribution of malware and benign software in application programming interface(API)calls,permissions,and other attributes.We classify the software’s threat levels based on the correlation of features.Then,we propose deep neural networks and convolutional neural networks with ensemble learning(DCEL),a new classifier fusion model for Android malware detection.First,DCEL preprocesses the malware data to remove redundant data,and converts the one-dimensional data into a two-dimensional gray image.Then,the ensemble learning approach is used to combine the deep neural network with the convolutional neural network,and the final classification results are obtained by voting on the prediction of each single classifier.Experiments based on the Drebin and Malgenome datasets show that compared with current state-of-art models,the proposed DCEL has a higher detection rate,higher recall rate,and lower computational cost.展开更多
The growth optimizer(GO)is an innovative and robust metaheuristic optimization algorithm designed to simulate the learning and reflective processes experienced by individuals as they mature within the social environme...The growth optimizer(GO)is an innovative and robust metaheuristic optimization algorithm designed to simulate the learning and reflective processes experienced by individuals as they mature within the social environment.However,the original GO algorithm is constrained by two significant limitations:slow convergence and high mem-ory requirements.This restricts its application to large-scale and complex problems.To address these problems,this paper proposes an innovative enhanced growth optimizer(eGO).In contrast to conventional population-based optimization algorithms,the eGO algorithm utilizes a probabilistic model,designated as the virtual population,which is capable of accurately replicating the behavior of actual populations while simultaneously reducing memory consumption.Furthermore,this paper introduces the Lévy flight mechanism,which enhances the diversity and flexibility of the search process,thus further improving the algorithm’s global search capability and convergence speed.To verify the effectiveness of the eGO algorithm,a series of experiments were conducted using the CEC2014 and CEC2017 test sets.The results demonstrate that the eGO algorithm outperforms the original GO algorithm and other compact algorithms regarding memory usage and convergence speed,thus exhibiting powerful optimization capabilities.Finally,the eGO algorithm was applied to image fusion.Through a comparative analysis with the existing PSO and GO algorithms and other compact algorithms,the eGO algorithm demonstrates superior performance in image fusion.展开更多
High resolution image fusion is a significant focus in the field of image processing. A new image fusion model is presented based on the characteristic level of empirical mode decomposition (EMD). The intensity hue ...High resolution image fusion is a significant focus in the field of image processing. A new image fusion model is presented based on the characteristic level of empirical mode decomposition (EMD). The intensity hue saturation (IHS) transform of the multi-spectral image first gives the intensity image. Thereafter, the 2D EMD in terms of row-column extension of the 1D EMD model is used to decompose the detailed scale image and coarse scale image from the high-resolution band image and the intensity image. Finally, a fused intensity image is obtained by reconstruction with high frequency of the high-resolution image and low frequency of the intensity image and IHS inverse transform result in the fused image. After presenting the EMD principle, a multi-scale decomposition and reconstruction algorithm of 2D EMD is defined and a fusion technique scheme is advanced based on EMD. Panchromatic band and multi-spectral band 3,2,1 of Quickbird are used to assess the quality of the fusion algorithm. After selecting the appropriate intrinsic mode function (IMF) for the merger on the basis of EMD analysis on specific row (column) pixel gray value series, the fusion scheme gives a fused image, which is compared with generally used fusion algorithms (wavelet, IHS, Brovey). The objectives of image fusion include enhancing the visibility of the image and improving the spatial resolution and the spectral information of the original images. To assess quality of an image after fusion, information entropy and standard deviation are applied to assess spatial details of the fused images and correlation coefficient, bias index and warping degree for measuring distortion between the original image and fused image in terms of spectral information. For the proposed fusion algorithm, better results are obtained when EMD algorithm is used to perform the fusion experience.展开更多
This study aimed to propose road crack detection method based on infrared image fusion technology.By analyzing the characteristics of road crack images,this method uses a variety of infrared image fusion methods to pr...This study aimed to propose road crack detection method based on infrared image fusion technology.By analyzing the characteristics of road crack images,this method uses a variety of infrared image fusion methods to process different types of images.The use of this method allows the detection of road cracks,which not only reduces the professional requirements for inspectors,but also improves the accuracy of road crack detection.Based on infrared image processing technology,on the basis of in-depth analysis of infrared image features,a road crack detection method is proposed,which can accurately identify the road crack location,direction,length,and other characteristic information.Experiments showed that this method has a good effect,and can meet the requirement of road crack detection.展开更多
Melanoma,due to its higher mortality rate,is considered as one of the most pernicious types of skin cancers,mostly affecting the white populations.It has been reported a number of times and is now widely accepted,that...Melanoma,due to its higher mortality rate,is considered as one of the most pernicious types of skin cancers,mostly affecting the white populations.It has been reported a number of times and is now widely accepted,that early detection of melanoma increases the chances of the subject’s survival.Computer-aided diagnostic systems help the experts in diagnosing the skin lesion at earlier stages using machine learning techniques.In thiswork,we propose a framework that accurately segments,and later classifies,the lesion using improved image segmentation and fusion methods.The proposed technique takes an image and passes it through two methods simultaneously;one is the weighted visual saliency-based method,and the second is improved HDCT based saliency estimation.The resultant image maps are later fused using the proposed image fusion technique to generate a localized lesion region.The resultant binary image is later mapped back to the RGB image and fed into the Inception-ResNet-V2 pre-trained model-trained by applying transfer learning.The simulation results show improved performance compared to several existing methods.展开更多
Along with the rapid development of biometric authentication technology,face recognition has been commercially used in many industries in recent years.However,it cannot be ignored that face recognition-based authentic...Along with the rapid development of biometric authentication technology,face recognition has been commercially used in many industries in recent years.However,it cannot be ignored that face recognition-based authentication techniques can be easily spoofed using various types of attacks such photographs,videos or forged 3D masks.In order to solve this problem,this work proposed a face anti-fraud algorithm based on the fusion of thermal infrared images and visible light images.The normal temperature distribution of the human face is stable and characteristic,and the important physiological information of the human body can be observed by the infrared thermal images.Therefore,based on the thermal infrared image,the pixel value of the pulse sensitive area of the human face is collected,and the human heart rate signal is detected to distinguish between real faces and spoofing faces.In order to better obtain the texture features of the face,an image fusion algorithm based on DTCWT and the improved Roberts algorithm is proposed.Firstly,DTCWT is used to decompose the thermal infrared image and visible light image of the face to obtain high-and low-frequency subbands.Then,the method based on region energy and the improved Roberts algorithm are then used to fuse the coefficients of the high-and low-frequency subbands.Finally,the DTCWT inverse transform is used to obtain the fused image containing the facial texture features.Face recognition is carried out on the fused image to realize identity authentication.Experimental results show that this algorithm can effectively resist attacks from photos,videos or masks.Compared with the use of visible light images alone for face recognition,this algorithm has higher recognition accuracy and better robustness.展开更多
In order to enhance the contrast of the fused image and reduce the loss of fine details in the process of image fusion,a novel fusion algorithm of infrared and visible images is proposed.First of all,regions of intere...In order to enhance the contrast of the fused image and reduce the loss of fine details in the process of image fusion,a novel fusion algorithm of infrared and visible images is proposed.First of all,regions of interest(RoIs)are detected in two original images by using saliency map.Then,nonsubsampled contourlet transform(NSCT)on both the infrared image and the visible image is performed to get a low-frequency sub-band and a certain amount of high-frequency sub-bands.Subsequently,the coefcients of all sub-bands are classified into four categories based on the result of RoI detection:the region of interest in the low-frequency sub-band(LSRoI),the region of interest in the high-frequency sub-band(HSRoI),the region of non-interest in the low-frequency sub-band(LSNRoI)and the region of non-interest in the high-frequency sub-band(HSNRoI).Fusion rules are customized for each kind of coefcients and fused image is achieved by performing the inverse NSCT to the fused coefcients.Experimental results show that the fusion scheme proposed in this paper achieves better efect than the other fusion algorithms both in visual efect and quantitative metrics.展开更多
Content-based video copy detection is an active research field due to the need for copyright pro- tection and business intellectual property protection. This paper gives a probabilistic spatiotemporal fusion approach ...Content-based video copy detection is an active research field due to the need for copyright pro- tection and business intellectual property protection. This paper gives a probabilistic spatiotemporal fusion approach for video copy detection. This approach directly estimates the location of the copy segment with a probabilistic graphical model. The spatial and temporal consistency of the video copy is embedded in the local probability function. An effective local descriptor and a two-level descriptor pairing method are used to build a video copy detection system to evaluate the approach. Tests show that it outperforms the popular voting algorithm and the probabilistic fusion framework based on the Hidden Markov Model, improving F-score (F1) by 8%.展开更多
A new method based on resolution degradation model is proposed to improve both spatial and spectral quality of the synthetic images. Some ETM+ panchromatic and multispectral images are used to assess the new method. I...A new method based on resolution degradation model is proposed to improve both spatial and spectral quality of the synthetic images. Some ETM+ panchromatic and multispectral images are used to assess the new method. Its spatial and spectral effects are evaluated by qualitative and quantitative measures and the results are compared with those of IHS, PCA, Brovey, OWT(Orthogonal Wavelet Transform) and RWT(Redundant Wavelet Transform). The results show that the new method can keep almost the same spatial resolution as the panchromatic images, and the spectral effect of the new method is as good as those of wavelet-based methods.展开更多
A novel feature fusion method is proposed for the edge detection of color images. Except for the typical features used in edge detection, the color contrast similarity and the orientation consistency are also selected...A novel feature fusion method is proposed for the edge detection of color images. Except for the typical features used in edge detection, the color contrast similarity and the orientation consistency are also selected as the features. The four features are combined together as a parameter to detect the edges of color images. Experimental results show that the method can inhibit noisy edges and facilitate the detection for weak edges. It has a better performance than conventional methods in noisy environments.展开更多
The accuracy of Digital Surface Models(DSMs)generated using stereo matching methods varies due to the varying acquisition conditions and configuration parameters of stereo images.It has been a good practice to fuse th...The accuracy of Digital Surface Models(DSMs)generated using stereo matching methods varies due to the varying acquisition conditions and configuration parameters of stereo images.It has been a good practice to fuse these DSMs generated from various stereo pairs to achieve enhanced,in which multiple DSMs are combined through computational approaches into a single,more accurate,and complete DSM.However,accurately characterizing detailed objects and their boundaries still present a challenge since most boundary-ware fusion methods still struggle to achieve sharpened depth discontinuities due to the averaging effects of different DSMs.Therefore,we propose a simple and efficient adaptive image-guided DSM fusion method that applies k-means clustering on small patches of the orthophoto to guide the pixel-level fusion adapted to the most consistent and relevant elevation points.The experiment results show that our proposed method has outperformed comparing methods in accuracy and the ability to preserve sharpened depth edges.展开更多
Earth resource and environmental monitoring are essential areas that can be used to investigate the environmental conditions and natural resources supporting sustainable policy development,regulatory measures,and thei...Earth resource and environmental monitoring are essential areas that can be used to investigate the environmental conditions and natural resources supporting sustainable policy development,regulatory measures,and their implementation elevating the environment.Large-scale forest fire is considered a major harmful hazard that affects climate change and life over the globe.Therefore,the early identification of forest fires using automated tools is essential to avoid the spread of fire to a large extent.Therefore,this paper focuses on the design of automated forest fire detection using a fusion-based deep learning(AFFD-FDL)model for environmental monitoring.The AFFDFDL technique involves the design of an entropy-based fusion model for feature extraction.The combination of the handcrafted features using histogram of gradients(HOG)with deep features using SqueezeNet and Inception v3 models.Besides,an optimal extreme learning machine(ELM)based classifier is used to identify the existence of fire or not.In order to properly tune the parameters of the ELM model,the oppositional glowworm swarm optimization(OGSO)algorithm is employed and thereby improves the forest fire detection performance.A wide range of simulation analyses takes place on a benchmark dataset and the results are inspected under several aspects.The experimental results highlighted the betterment of the AFFD-FDL technique over the recent state of art techniques.展开更多
A new remote sensing image fusion method based on statistical parameter estimation is proposed in this paper. More specially, Bayesian linear estimation (BLE) is applied to observation models between remote sensing ...A new remote sensing image fusion method based on statistical parameter estimation is proposed in this paper. More specially, Bayesian linear estimation (BLE) is applied to observation models between remote sensing images with different spatial and spectral resolutions. The proposed method only estimates the mean vector and covariance matrix of the high-resolution multispectral (MS) images, instead of assuming the joint distribution between the panchromatic (PAN) image and low-resolution mulUspectral image. Furthermore, the proposed method can enhance the spatial resolution of several principal components of MS images, while the traditional Principal Component Analysis (PCA) method is limited to enhance only the first principal component. Experimental results with real MS images and PAN image of Landsat ETM+ demonstrate that the proposed method performs better than traditional methods based on statistical parameter estimation, PCA-based method and wavelet-based method.展开更多
It is difficult to balance local details and global distribution using a single source image in marine target detection of a large scene.To solve this problem,a technique based on the fusion of optical image and synth...It is difficult to balance local details and global distribution using a single source image in marine target detection of a large scene.To solve this problem,a technique based on the fusion of optical image and synthetic aperture radar(SAR)image for the extraction of sea ice is proposed in this paper.The Band 2(B2 image of Sentinel-2(S2 in the research area is selected as optical image data.Preprocessing on the optical image,such as resampling,projection transformation and format conversion,are conducted to the S2 dataset before fusion.Imaging characteristics of the sea ice have been analyzed,and a new deep learning(DL)model,OceanTDL5,is built to detect sea ices.The fusion of the Sentinel-1(S1 and S2 images is realized by solving the optimal pixel values based on deriving Poisson Equation.The experimental results indicate that the use of a fused image improves the accuracy of sea ice detection compared with the use of a single data source.The fused image has richer spatial details and a clearer texture compared with the original optical image,and its material sense and color are more abundant.展开更多
This paper presents a video context enhancement method for night surveillance. The basic idea is to extract and fuse the meaningful information of video sequence captured from a fixed camera under different illuminati...This paper presents a video context enhancement method for night surveillance. The basic idea is to extract and fuse the meaningful information of video sequence captured from a fixed camera under different illuminations. A unique characteristic of the algorithm is to separate the image context into two classes and estimate them in different ways. One class contains basic surrounding scene in- formation and scene model, which is obtained via background modeling and object tracking in daytime video sequence. The other class is extracted from nighttime video, including frequently moving region, high illumination region and high gradient region. The scene model and pixel-wise difference method are used to segment the three regions. A shift-invariant discrete wavelet based image fusion technique is used to integral all those context information in the final result. Experiment results demonstrate that the proposed approach can provide much more details and meaningful information for nighttime video.展开更多
Background Document images such as statistical reports and scientific journals are widely used in information technology.Accurate detection of table areas in document images is an essential prerequisite for tasks such...Background Document images such as statistical reports and scientific journals are widely used in information technology.Accurate detection of table areas in document images is an essential prerequisite for tasks such as information extraction.However,because of the diversity in the shapes and sizes of tables,existing table detection methods adapted from general object detection algorithms,have not yet achieved satisfactory results.Incorrect detection results might lead to the loss of critical information.Methods Therefore,we propose a novel end-to-end trainable deep network combined with a self-supervised pretraining transformer for feature extraction to minimize incorrect detections.To better deal with table areas of different shapes and sizes,we added a dualbranch context content attention module(DCCAM)to high-dimensional features to extract context content information,thereby enhancing the network's ability to learn shape features.For feature fusion at different scales,we replaced the original 3×3 convolution with a multilayer residual module,which contains enhanced gradient flow information to improve the feature representation and extraction capability.Results We evaluated our method on public document datasets and compared it with previous methods,which achieved state-of-the-art results in terms of evaluation metrics such as recall and F1-score.https://github.com/Yong Z-Lee/TD-DCCAM.展开更多
Multimodality image registration and fusion are essential steps in building 3-D models from remotesensing data. We present in this paper a neural network technique for the registration and fusion of multimodali-ty rem...Multimodality image registration and fusion are essential steps in building 3-D models from remotesensing data. We present in this paper a neural network technique for the registration and fusion of multimodali-ty remote sensing data for the reconstruction of 3-D models of terrain regions. A FeedForward neural network isused to fuse the intensity data sets with the spatial data set after learning its geometry. Results on real data arepresented. Human performance evaluation is assessed on several perceptual tests in order to evaluate the fusionresults.展开更多
The development of experimental animal models for head and neck tumors generally rely on the biol uminescence imaging to achieve the dynamic monitoring of the tumor growth and metastasis due to the complicated anatomi...The development of experimental animal models for head and neck tumors generally rely on the biol uminescence imaging to achieve the dynamic monitoring of the tumor growth and metastasis due to the complicated anatomical structures.Since the bioluminescence imaging is largely affected by the intracellular luciferase expression level and external D-luciferin concentrations,its imaging accuracy requires further confirmation.Here,a new triple fusion reportelr gene,which consists of a herpes simplex virus type 1 thymidine kinase(TK)gene for radioactive imaging,a far-red fuorescent protein(mLumin)gene for fuorescent imaging,and a firefly luciferase gene for bioluminescence imaging,was introduced for in vrivo observation of the head and neck tumors through multi-modality imaging.Results show that fuorescence and bioluminescence signals from mLumin and luciferase,respectively,were clearly observed in tumor cells,and TK could activate suicide pathway of the cells in the presence of nucleotide analog-ganciclovir(GCV),demonstrating the effecti veness of individual functions of each gene.Moreover,subcutaneous and metastasis animal models for head and neck tumors using the fusion reporter gene-expressing cell lines were established,allowing multi-modality imaging in vio.Together,the established tumor models of head and neck cancer based on the newly developed triple fusion reporter gene are ideal for monitoring tumor growth,assessing the drug therapeutic efficacy and verifying the effec-tiveness of new treatments.展开更多
Congenital heart defect,accounting for about 30%of congenital defects,is the most common one.Data shows that congenital heart defects have seriously affected the birth rate of healthy newborns.In Fetal andNeonatal Car...Congenital heart defect,accounting for about 30%of congenital defects,is the most common one.Data shows that congenital heart defects have seriously affected the birth rate of healthy newborns.In Fetal andNeonatal Cardiology,medical imaging technology(2D ultrasonic,MRI)has been proved to be helpful to detect congenital defects of the fetal heart and assists sonographers in prenatal diagnosis.It is a highly complex task to recognize 2D fetal heart ultrasonic standard plane(FHUSP)manually.Compared withmanual identification,automatic identification through artificial intelligence can save a lot of time,ensure the efficiency of diagnosis,and improve the accuracy of diagnosis.In this study,a feature extraction method based on texture features(Local Binary Pattern LBP and Histogram of Oriented Gradient HOG)and combined with Bag of Words(BOW)model is carried out,and then feature fusion is performed.Finally,it adopts Support VectorMachine(SVM)to realize automatic recognition and classification of FHUSP.The data includes 788 standard plane data sets and 448 normal and abnormal plane data sets.Compared with some other methods and the single method model,the classification accuracy of our model has been obviously improved,with the highest accuracy reaching 87.35%.Similarly,we also verify the performance of the model in normal and abnormal planes,and the average accuracy in classifying abnormal and normal planes is 84.92%.The experimental results show that thismethod can effectively classify and predict different FHUSP and can provide certain assistance for sonographers to diagnose fetal congenital heart disease.展开更多
基金Ministry of Education,Youth and Sports of the Chezk Republic,Grant/Award Numbers:SP2023/039,SP2023/042the European Union under the REFRESH,Grant/Award Number:CZ.10.03.01/00/22_003/0000048。
文摘Detecting brain tumours is complex due to the natural variation in their location, shape, and intensity in images. While having accurate detection and segmentation of brain tumours would be beneficial, current methods still need to solve this problem despite the numerous available approaches. Precise analysis of Magnetic Resonance Imaging (MRI) is crucial for detecting, segmenting, and classifying brain tumours in medical diagnostics. Magnetic Resonance Imaging is a vital component in medical diagnosis, and it requires precise, efficient, careful, efficient, and reliable image analysis techniques. The authors developed a Deep Learning (DL) fusion model to classify brain tumours reliably. Deep Learning models require large amounts of training data to achieve good results, so the researchers utilised data augmentation techniques to increase the dataset size for training models. VGG16, ResNet50, and convolutional deep belief networks networks extracted deep features from MRI images. Softmax was used as the classifier, and the training set was supplemented with intentionally created MRI images of brain tumours in addition to the genuine ones. The features of two DL models were combined in the proposed model to generate a fusion model, which significantly increased classification accuracy. An openly accessible dataset from the internet was used to test the model's performance, and the experimental results showed that the proposed fusion model achieved a classification accuracy of 98.98%. Finally, the results were compared with existing methods, and the proposed model outperformed them significantly.
基金supported by the National Natural Science Foundation of China(62072255)。
文摘The rapid growth of mobile applications,the popularity of the Android system and its openness have attracted many hackers and even criminals,who are creating lots of Android malware.However,the current methods of Android malware detection need a lot of time in the feature engineering phase.Furthermore,these models have the defects of low detection rate,high complexity,and poor practicability,etc.We analyze the Android malware samples,and the distribution of malware and benign software in application programming interface(API)calls,permissions,and other attributes.We classify the software’s threat levels based on the correlation of features.Then,we propose deep neural networks and convolutional neural networks with ensemble learning(DCEL),a new classifier fusion model for Android malware detection.First,DCEL preprocesses the malware data to remove redundant data,and converts the one-dimensional data into a two-dimensional gray image.Then,the ensemble learning approach is used to combine the deep neural network with the convolutional neural network,and the final classification results are obtained by voting on the prediction of each single classifier.Experiments based on the Drebin and Malgenome datasets show that compared with current state-of-art models,the proposed DCEL has a higher detection rate,higher recall rate,and lower computational cost.
文摘The growth optimizer(GO)is an innovative and robust metaheuristic optimization algorithm designed to simulate the learning and reflective processes experienced by individuals as they mature within the social environment.However,the original GO algorithm is constrained by two significant limitations:slow convergence and high mem-ory requirements.This restricts its application to large-scale and complex problems.To address these problems,this paper proposes an innovative enhanced growth optimizer(eGO).In contrast to conventional population-based optimization algorithms,the eGO algorithm utilizes a probabilistic model,designated as the virtual population,which is capable of accurately replicating the behavior of actual populations while simultaneously reducing memory consumption.Furthermore,this paper introduces the Lévy flight mechanism,which enhances the diversity and flexibility of the search process,thus further improving the algorithm’s global search capability and convergence speed.To verify the effectiveness of the eGO algorithm,a series of experiments were conducted using the CEC2014 and CEC2017 test sets.The results demonstrate that the eGO algorithm outperforms the original GO algorithm and other compact algorithms regarding memory usage and convergence speed,thus exhibiting powerful optimization capabilities.Finally,the eGO algorithm was applied to image fusion.Through a comparative analysis with the existing PSO and GO algorithms and other compact algorithms,the eGO algorithm demonstrates superior performance in image fusion.
文摘High resolution image fusion is a significant focus in the field of image processing. A new image fusion model is presented based on the characteristic level of empirical mode decomposition (EMD). The intensity hue saturation (IHS) transform of the multi-spectral image first gives the intensity image. Thereafter, the 2D EMD in terms of row-column extension of the 1D EMD model is used to decompose the detailed scale image and coarse scale image from the high-resolution band image and the intensity image. Finally, a fused intensity image is obtained by reconstruction with high frequency of the high-resolution image and low frequency of the intensity image and IHS inverse transform result in the fused image. After presenting the EMD principle, a multi-scale decomposition and reconstruction algorithm of 2D EMD is defined and a fusion technique scheme is advanced based on EMD. Panchromatic band and multi-spectral band 3,2,1 of Quickbird are used to assess the quality of the fusion algorithm. After selecting the appropriate intrinsic mode function (IMF) for the merger on the basis of EMD analysis on specific row (column) pixel gray value series, the fusion scheme gives a fused image, which is compared with generally used fusion algorithms (wavelet, IHS, Brovey). The objectives of image fusion include enhancing the visibility of the image and improving the spatial resolution and the spectral information of the original images. To assess quality of an image after fusion, information entropy and standard deviation are applied to assess spatial details of the fused images and correlation coefficient, bias index and warping degree for measuring distortion between the original image and fused image in terms of spectral information. For the proposed fusion algorithm, better results are obtained when EMD algorithm is used to perform the fusion experience.
文摘This study aimed to propose road crack detection method based on infrared image fusion technology.By analyzing the characteristics of road crack images,this method uses a variety of infrared image fusion methods to process different types of images.The use of this method allows the detection of road cracks,which not only reduces the professional requirements for inspectors,but also improves the accuracy of road crack detection.Based on infrared image processing technology,on the basis of in-depth analysis of infrared image features,a road crack detection method is proposed,which can accurately identify the road crack location,direction,length,and other characteristic information.Experiments showed that this method has a good effect,and can meet the requirement of road crack detection.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research Group No.(RG-1438-034)and co-authors K.A.and M.A.
文摘Melanoma,due to its higher mortality rate,is considered as one of the most pernicious types of skin cancers,mostly affecting the white populations.It has been reported a number of times and is now widely accepted,that early detection of melanoma increases the chances of the subject’s survival.Computer-aided diagnostic systems help the experts in diagnosing the skin lesion at earlier stages using machine learning techniques.In thiswork,we propose a framework that accurately segments,and later classifies,the lesion using improved image segmentation and fusion methods.The proposed technique takes an image and passes it through two methods simultaneously;one is the weighted visual saliency-based method,and the second is improved HDCT based saliency estimation.The resultant image maps are later fused using the proposed image fusion technique to generate a localized lesion region.The resultant binary image is later mapped back to the RGB image and fed into the Inception-ResNet-V2 pre-trained model-trained by applying transfer learning.The simulation results show improved performance compared to several existing methods.
基金This research was funded by the Hebei Science and Technology Support Program Project(Grant No.19273703D)the Hebei Higher Education Science and Technology Research Project(Grant No.ZD2020318).
文摘Along with the rapid development of biometric authentication technology,face recognition has been commercially used in many industries in recent years.However,it cannot be ignored that face recognition-based authentication techniques can be easily spoofed using various types of attacks such photographs,videos or forged 3D masks.In order to solve this problem,this work proposed a face anti-fraud algorithm based on the fusion of thermal infrared images and visible light images.The normal temperature distribution of the human face is stable and characteristic,and the important physiological information of the human body can be observed by the infrared thermal images.Therefore,based on the thermal infrared image,the pixel value of the pulse sensitive area of the human face is collected,and the human heart rate signal is detected to distinguish between real faces and spoofing faces.In order to better obtain the texture features of the face,an image fusion algorithm based on DTCWT and the improved Roberts algorithm is proposed.Firstly,DTCWT is used to decompose the thermal infrared image and visible light image of the face to obtain high-and low-frequency subbands.Then,the method based on region energy and the improved Roberts algorithm are then used to fuse the coefficients of the high-and low-frequency subbands.Finally,the DTCWT inverse transform is used to obtain the fused image containing the facial texture features.Face recognition is carried out on the fused image to realize identity authentication.Experimental results show that this algorithm can effectively resist attacks from photos,videos or masks.Compared with the use of visible light images alone for face recognition,this algorithm has higher recognition accuracy and better robustness.
基金the National Natural Science Foundation of China(No.61105022)the Research Fund for the Doctoral Program of Higher Education of China(No.20110073120028)the Jiangsu Provincial Natural Science Foundation(No.BK2012296)
文摘In order to enhance the contrast of the fused image and reduce the loss of fine details in the process of image fusion,a novel fusion algorithm of infrared and visible images is proposed.First of all,regions of interest(RoIs)are detected in two original images by using saliency map.Then,nonsubsampled contourlet transform(NSCT)on both the infrared image and the visible image is performed to get a low-frequency sub-band and a certain amount of high-frequency sub-bands.Subsequently,the coefcients of all sub-bands are classified into four categories based on the result of RoI detection:the region of interest in the low-frequency sub-band(LSRoI),the region of interest in the high-frequency sub-band(HSRoI),the region of non-interest in the low-frequency sub-band(LSNRoI)and the region of non-interest in the high-frequency sub-band(HSNRoI).Fusion rules are customized for each kind of coefcients and fused image is achieved by performing the inverse NSCT to the fused coefcients.Experimental results show that the fusion scheme proposed in this paper achieves better efect than the other fusion algorithms both in visual efect and quantitative metrics.
基金Supported by the National Key Basic Research and Development (863) Program of China (No. 2007CB311003)
文摘Content-based video copy detection is an active research field due to the need for copyright pro- tection and business intellectual property protection. This paper gives a probabilistic spatiotemporal fusion approach for video copy detection. This approach directly estimates the location of the copy segment with a probabilistic graphical model. The spatial and temporal consistency of the video copy is embedded in the local probability function. An effective local descriptor and a two-level descriptor pairing method are used to build a video copy detection system to evaluate the approach. Tests show that it outperforms the popular voting algorithm and the probabilistic fusion framework based on the Hidden Markov Model, improving F-score (F1) by 8%.
文摘A new method based on resolution degradation model is proposed to improve both spatial and spectral quality of the synthetic images. Some ETM+ panchromatic and multispectral images are used to assess the new method. Its spatial and spectral effects are evaluated by qualitative and quantitative measures and the results are compared with those of IHS, PCA, Brovey, OWT(Orthogonal Wavelet Transform) and RWT(Redundant Wavelet Transform). The results show that the new method can keep almost the same spatial resolution as the panchromatic images, and the spectral effect of the new method is as good as those of wavelet-based methods.
基金supported partly by the National Basic Research Program of China (2005CB724303)the National Natural Science Foundation of China (60671062) Shanghai Leading Academic Discipline Project (B112).
文摘A novel feature fusion method is proposed for the edge detection of color images. Except for the typical features used in edge detection, the color contrast similarity and the orientation consistency are also selected as the features. The four features are combined together as a parameter to detect the edges of color images. Experimental results show that the method can inhibit noisy edges and facilitate the detection for weak edges. It has a better performance than conventional methods in noisy environments.
基金John Hopkins University Applied Physics Lab to support the Imagery of the 2019 DFC datasets
文摘The accuracy of Digital Surface Models(DSMs)generated using stereo matching methods varies due to the varying acquisition conditions and configuration parameters of stereo images.It has been a good practice to fuse these DSMs generated from various stereo pairs to achieve enhanced,in which multiple DSMs are combined through computational approaches into a single,more accurate,and complete DSM.However,accurately characterizing detailed objects and their boundaries still present a challenge since most boundary-ware fusion methods still struggle to achieve sharpened depth discontinuities due to the averaging effects of different DSMs.Therefore,we propose a simple and efficient adaptive image-guided DSM fusion method that applies k-means clustering on small patches of the orthophoto to guide the pixel-level fusion adapted to the most consistent and relevant elevation points.The experiment results show that our proposed method has outperformed comparing methods in accuracy and the ability to preserve sharpened depth edges.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under Grant Number(RGP.1/172/42)Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2023R191)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.This study is supported via funding from Prince Sattam bin Abdulaziz University Project Number(PSAU/2023/R/1444).
文摘Earth resource and environmental monitoring are essential areas that can be used to investigate the environmental conditions and natural resources supporting sustainable policy development,regulatory measures,and their implementation elevating the environment.Large-scale forest fire is considered a major harmful hazard that affects climate change and life over the globe.Therefore,the early identification of forest fires using automated tools is essential to avoid the spread of fire to a large extent.Therefore,this paper focuses on the design of automated forest fire detection using a fusion-based deep learning(AFFD-FDL)model for environmental monitoring.The AFFDFDL technique involves the design of an entropy-based fusion model for feature extraction.The combination of the handcrafted features using histogram of gradients(HOG)with deep features using SqueezeNet and Inception v3 models.Besides,an optimal extreme learning machine(ELM)based classifier is used to identify the existence of fire or not.In order to properly tune the parameters of the ELM model,the oppositional glowworm swarm optimization(OGSO)algorithm is employed and thereby improves the forest fire detection performance.A wide range of simulation analyses takes place on a benchmark dataset and the results are inspected under several aspects.The experimental results highlighted the betterment of the AFFD-FDL technique over the recent state of art techniques.
基金National Natural Science Foundation of China (Grant Nos. 60672116 and 30370392)the Major State Basic Research Development Program of China (Grant No. 2001CB309400)+1 种基金 HangTian Support Techniques Foundation (Grant No. 2004-1.3-03)Shanghai NSF (Grant No. 04ZR14018)
文摘A new remote sensing image fusion method based on statistical parameter estimation is proposed in this paper. More specially, Bayesian linear estimation (BLE) is applied to observation models between remote sensing images with different spatial and spectral resolutions. The proposed method only estimates the mean vector and covariance matrix of the high-resolution multispectral (MS) images, instead of assuming the joint distribution between the panchromatic (PAN) image and low-resolution mulUspectral image. Furthermore, the proposed method can enhance the spatial resolution of several principal components of MS images, while the traditional Principal Component Analysis (PCA) method is limited to enhance only the first principal component. Experimental results with real MS images and PAN image of Landsat ETM+ demonstrate that the proposed method performs better than traditional methods based on statistical parameter estimation, PCA-based method and wavelet-based method.
基金the Natural Science Foun-dation of Shandong Province(No.ZR2019MD034)。
文摘It is difficult to balance local details and global distribution using a single source image in marine target detection of a large scene.To solve this problem,a technique based on the fusion of optical image and synthetic aperture radar(SAR)image for the extraction of sea ice is proposed in this paper.The Band 2(B2 image of Sentinel-2(S2 in the research area is selected as optical image data.Preprocessing on the optical image,such as resampling,projection transformation and format conversion,are conducted to the S2 dataset before fusion.Imaging characteristics of the sea ice have been analyzed,and a new deep learning(DL)model,OceanTDL5,is built to detect sea ices.The fusion of the Sentinel-1(S1 and S2 images is realized by solving the optimal pixel values based on deriving Poisson Equation.The experimental results indicate that the use of a fused image improves the accuracy of sea ice detection compared with the use of a single data source.The fused image has richer spatial details and a clearer texture compared with the original optical image,and its material sense and color are more abundant.
基金Supported by the National Natural Science Foundation of China (No.60634030 and No.60372085)
文摘This paper presents a video context enhancement method for night surveillance. The basic idea is to extract and fuse the meaningful information of video sequence captured from a fixed camera under different illuminations. A unique characteristic of the algorithm is to separate the image context into two classes and estimate them in different ways. One class contains basic surrounding scene in- formation and scene model, which is obtained via background modeling and object tracking in daytime video sequence. The other class is extracted from nighttime video, including frequently moving region, high illumination region and high gradient region. The scene model and pixel-wise difference method are used to segment the three regions. A shift-invariant discrete wavelet based image fusion technique is used to integral all those context information in the final result. Experiment results demonstrate that the proposed approach can provide much more details and meaningful information for nighttime video.
文摘Background Document images such as statistical reports and scientific journals are widely used in information technology.Accurate detection of table areas in document images is an essential prerequisite for tasks such as information extraction.However,because of the diversity in the shapes and sizes of tables,existing table detection methods adapted from general object detection algorithms,have not yet achieved satisfactory results.Incorrect detection results might lead to the loss of critical information.Methods Therefore,we propose a novel end-to-end trainable deep network combined with a self-supervised pretraining transformer for feature extraction to minimize incorrect detections.To better deal with table areas of different shapes and sizes,we added a dualbranch context content attention module(DCCAM)to high-dimensional features to extract context content information,thereby enhancing the network's ability to learn shape features.For feature fusion at different scales,we replaced the original 3×3 convolution with a multilayer residual module,which contains enhanced gradient flow information to improve the feature representation and extraction capability.Results We evaluated our method on public document datasets and compared it with previous methods,which achieved state-of-the-art results in terms of evaluation metrics such as recall and F1-score.https://github.com/Yong Z-Lee/TD-DCCAM.
文摘Multimodality image registration and fusion are essential steps in building 3-D models from remotesensing data. We present in this paper a neural network technique for the registration and fusion of multimodali-ty remote sensing data for the reconstruction of 3-D models of terrain regions. A FeedForward neural network isused to fuse the intensity data sets with the spatial data set after learning its geometry. Results on real data arepresented. Human performance evaluation is assessed on several perceptual tests in order to evaluate the fusionresults.
基金supported by the National Science and Technology Support Program of China(Grant No.2012BAI23B02)the China-Canada Joint Health Research Initiative(NSFC-30911120489,CIHR CCI-102936)111 Project of China(B07038).
文摘The development of experimental animal models for head and neck tumors generally rely on the biol uminescence imaging to achieve the dynamic monitoring of the tumor growth and metastasis due to the complicated anatomical structures.Since the bioluminescence imaging is largely affected by the intracellular luciferase expression level and external D-luciferin concentrations,its imaging accuracy requires further confirmation.Here,a new triple fusion reportelr gene,which consists of a herpes simplex virus type 1 thymidine kinase(TK)gene for radioactive imaging,a far-red fuorescent protein(mLumin)gene for fuorescent imaging,and a firefly luciferase gene for bioluminescence imaging,was introduced for in vrivo observation of the head and neck tumors through multi-modality imaging.Results show that fuorescence and bioluminescence signals from mLumin and luciferase,respectively,were clearly observed in tumor cells,and TK could activate suicide pathway of the cells in the presence of nucleotide analog-ganciclovir(GCV),demonstrating the effecti veness of individual functions of each gene.Moreover,subcutaneous and metastasis animal models for head and neck tumors using the fusion reporter gene-expressing cell lines were established,allowing multi-modality imaging in vio.Together,the established tumor models of head and neck cancer based on the newly developed triple fusion reporter gene are ideal for monitoring tumor growth,assessing the drug therapeutic efficacy and verifying the effec-tiveness of new treatments.
基金supported by Fujian Provincial Science and Technology Major Project(No.2020HZ02014)by the grants from National Natural Science Foundation of Fujian(2021J01133,2021J011404)by the Quanzhou Scientific and Technological Planning Projects(Nos.2018C113R,2019C028R,2019C029R,2019C076R and 2019C099R).
文摘Congenital heart defect,accounting for about 30%of congenital defects,is the most common one.Data shows that congenital heart defects have seriously affected the birth rate of healthy newborns.In Fetal andNeonatal Cardiology,medical imaging technology(2D ultrasonic,MRI)has been proved to be helpful to detect congenital defects of the fetal heart and assists sonographers in prenatal diagnosis.It is a highly complex task to recognize 2D fetal heart ultrasonic standard plane(FHUSP)manually.Compared withmanual identification,automatic identification through artificial intelligence can save a lot of time,ensure the efficiency of diagnosis,and improve the accuracy of diagnosis.In this study,a feature extraction method based on texture features(Local Binary Pattern LBP and Histogram of Oriented Gradient HOG)and combined with Bag of Words(BOW)model is carried out,and then feature fusion is performed.Finally,it adopts Support VectorMachine(SVM)to realize automatic recognition and classification of FHUSP.The data includes 788 standard plane data sets and 448 normal and abnormal plane data sets.Compared with some other methods and the single method model,the classification accuracy of our model has been obviously improved,with the highest accuracy reaching 87.35%.Similarly,we also verify the performance of the model in normal and abnormal planes,and the average accuracy in classifying abnormal and normal planes is 84.92%.The experimental results show that thismethod can effectively classify and predict different FHUSP and can provide certain assistance for sonographers to diagnose fetal congenital heart disease.