Image fusion is performed between one band of multi-spectral image and two bands of hyperspectral image to produce fused image with the same spatial resolution as source multi-spectral image and the same spectral reso...Image fusion is performed between one band of multi-spectral image and two bands of hyperspectral image to produce fused image with the same spatial resolution as source multi-spectral image and the same spectral resolution as source hyperspeetral image. According to the characteristics and 3-Dimensional (3-D) feature analysis of multi-spectral and hyperspectral image data volume, the new fusion approach using 3-D wavelet based method is proposed. This approach is composed of four major procedures: Spatial and spectral resampling, 3-D wavelet transform, wavelet coefficient integration and 3-D inverse wavelet transform. Especially, a novel method, Ratio Image Based Spectral Resampling (RIBSR)method, is proposed to accomplish data resampling in spectral domain by utilizing the property of ratio image. And a new fusion rule, Average and Substitution (A&S) rule, is employed as the fusion rule to accomplish wavelet coefficient integration. Experimental results illustrate that the fusion approach using 3-D wavelet transform can utilize both spatial and spectral characteristics of source images more adequately and produce fused image with higher quality and fewer artifacts than fusion approach using 2-D wavelet transform. It is also revealed that RIBSR method is capable of interpolating the missing data more effectively and correctly, and A&S rule can integrate coefficients of source images in 3-D wavelet domain to preserve both spatial and spectral features of source images more properly.展开更多
In this paper,we propose a new image fusion algorithm based on two-dimensional Scale-Mixing Complex Wavelet Transform(2D-SMCWT).The fusion of the detail 2D-SMCWT cofficients is performed via a Bayesian Maximum a Poste...In this paper,we propose a new image fusion algorithm based on two-dimensional Scale-Mixing Complex Wavelet Transform(2D-SMCWT).The fusion of the detail 2D-SMCWT cofficients is performed via a Bayesian Maximum a Posteriori(MAP)approach by considering a trivariate statistical model for the local neighboring of 2D-SMCWT coefficients.For the approx imation coefficients,a new fusion rule based on the Principal Component Analysis(PCA)is applied.We conduct several experiments using three different groups of multimodal medical images to evaluate the performance of the proposed method.The obt ained results prove the superiority of the proposed method over the state of the art fusion methods in terms of visual quality and several commonly used metrics.Robustness of the proposed method is further tested against different types of noise.The plots of fusion met rics establish the accuracy of the proposed fusion method.展开更多
In this paper, a new method of combination single layer wavelet transform and compressive sensing is proposed for image fusion. In which only measured the high-pass wavelet coefficients of the image but preserved the ...In this paper, a new method of combination single layer wavelet transform and compressive sensing is proposed for image fusion. In which only measured the high-pass wavelet coefficients of the image but preserved the low-pass wavelet coefficient. Then, fuse the low-pass wavelet coefficients and the measurements of high-pass wavelet coefficient with different schemes. For the reconstruction, by using the minimization of total variation algorithm (TV), high-pass wavelet coefficients could be recovered by the fused measurements. Finally, the fused image could be reconstructed by the inverse wavelet transform. The experiments show the proposed method provides promising fusion performance with a low computational complexity.展开更多
In the fusion of image,how to measure the local character and clarity is called activity measurement. According to the problem,the traditional measurement is decided only by the high-frequency detail coefficients, whi...In the fusion of image,how to measure the local character and clarity is called activity measurement. According to the problem,the traditional measurement is decided only by the high-frequency detail coefficients, which will make the energy expression insufficient to reflect the local clarity. Therefore,in this paper,a novel construction method for activity measurement is proposed. Firstly,it uses the wavelet decomposition for the fusion resource image, and then utilizes the high and low frequency wavelet coefficients synthetically. Meantime,it takes the normalized variance as the weight of high-frequency energy. Secondly,it calculates the measurement by the weighted energy,which can be used to measure the local character. Finally,the fusion coefficients can be got. In order to illustrate the superiority of this new method,three kinds of assessing indicators are provided. The experiment results show that,comparing with the traditional methods,this new method weakens the fuzzy and promotes the indicator value. Therefore,it has much more advantages for practical application.展开更多
Objective This paper proposed a novel algorithm of discrete wavelet transform(DWT) which is used for multimodal medical image fusion. Methods The source medical images are initially transformed by DWT followed by fusi...Objective This paper proposed a novel algorithm of discrete wavelet transform(DWT) which is used for multimodal medical image fusion. Methods The source medical images are initially transformed by DWT followed by fusing low and high frequency sub-images. Then, the "coefficient absolute value" that can provide clear and detail parts is adapted to fuse high-frequency coefficients, where as the "region energy ratio" which can efficiently preserve most information of source images is employed to fuse low-frequency coefficients. Finally, the fused image is reconstructed by inverse wavelet transform. Results Visually and quantitatively experimental results indicate that the proposed fusion method is superior to traditional wavelet transform and the existing fusion methods. Conclusion The proposed method is a feasible approach for multimodal medical image fusion which can obtain more efficient and accurate fusions results even in the noise environment.展开更多
In order to enhance the image information from multi-sensor and to improve the abilities of the information analysis and the feature extraction, this letter proposed a new fusion approach in pixel level by means of th...In order to enhance the image information from multi-sensor and to improve the abilities of the information analysis and the feature extraction, this letter proposed a new fusion approach in pixel level by means of the Wavelet Packet Transform (WPT). The WPT is able to decompose an image into low frequency band and high frequency band in higher scale. It offers a more precise method for image analysis than Wavelet Transform (WT). Firstly, the proposed approach employs HIS (Hue, Intensity, Saturation) transform to obtain the intensity component of CBERS (China-Brazil Earth Resource Satellite) multi-spectral image. Then WPT transform is employed to decompose the intensity component and SPOT (Systeme Pour I'Observation de la Therre ) image into low frequency band and high frequency band in three levels. Next, two high frequency coefficients and low frequency coefficients of the images are combined by linear weighting strategies. Finally, the fused image is obtained with inverse WPT and inverse HIS. The results show the new approach can fuse details of input image successfully, and thereby can obtain a more satisfactory result than that of HM (Histogram Matched)-based fusion algorithm and WT-based fusion approach.展开更多
A muitisensor image fusion algorithm is described using 2-dimensional nonseparable wavelet frame (NWF) transform. The source muitisensor images are first decomposed by the NWF transform. Then, the NWF transform coef...A muitisensor image fusion algorithm is described using 2-dimensional nonseparable wavelet frame (NWF) transform. The source muitisensor images are first decomposed by the NWF transform. Then, the NWF transform coefficients of the source images are combined into the composite NWF transform coefficients. Inverse NWF transform is performed on the composite NWF transform coefficients in order to obtain the intermediate fused image. Finally, intensity adjustment is applied to the intermediate fused image in order to maintain the dynamic intensity range. Experiment resuits using real data show that the proposed algorithm works well in muitisensor image fusion.展开更多
An accurate and early diagnosis of brain tumors based on medical ima-ging modalities is of great interest because brain tumors are a harmful threat to a person’s health worldwide.Several medical imaging techniques ha...An accurate and early diagnosis of brain tumors based on medical ima-ging modalities is of great interest because brain tumors are a harmful threat to a person’s health worldwide.Several medical imaging techniques have been used to analyze brain tumors,including computed tomography(CT)and magnetic reso-nance imaging(MRI).CT provides information about dense tissues,whereas MRI gives information about soft tissues.However,the fusion of CT and MRI images has little effect on enhancing the accuracy of the diagnosis of brain tumors.Therefore,machine learning methods have been adopted to diagnose brain tumors in recent years.This paper intends to develop a novel scheme to detect and classify brain tumors based on fused CT and MRI images.The pro-posed approach starts with preprocessing the images to reduce the noise.Then,fusion rules are applied to get the fused image,and a segmentation algorithm is employed to isolate the tumor region from the background to isolate the tumor region.Finally,a machine learning classifier classified the brain images into benign and malignant tumors.Computing statistical measures evaluate the classi-fication potential of the proposed scheme.Experimental outcomes are provided,and the Enhanced Flower Pollination Algorithm(EFPA)system shows that it out-performs other brain tumor classification methods considered for comparison.展开更多
This paper describes a method to decompose multi-scale information from different source medical image using wavelet transformation. The data fusion between CT image and MRI image is implemented based on the coefficie...This paper describes a method to decompose multi-scale information from different source medical image using wavelet transformation. The data fusion between CT image and MRI image is implemented based on the coefficients fusion rule which included choice of regional variance and weighted average wavelet information. The result indicates that this method is better than WMF, LEF and RVF on fusion results, details and target distortion.展开更多
Aim To fuse the fluorescence image and transmission image of a cell into a single image containing more information than any of the individual image. Methods Image fusion technology was applied to biological cell imag...Aim To fuse the fluorescence image and transmission image of a cell into a single image containing more information than any of the individual image. Methods Image fusion technology was applied to biological cell imaging processing. It could match the images and improve the confidence and spatial resolution of the images. Using two algorithms, double thresholds algorithm and denoising algorithm based on wavelet transform,the fluorescence image and transmission image of a Cell were merged into a composite image. Results and Conclusion The position of fluorescence and the structure of cell can be displyed in the composite image. The signal-to-noise ratio of the exultant image is improved to a large extent. The algorithms are not only useful to investigate the fluorescence and transmission images, but also suitable to observing two or more fluoascent label proes in a single cell.展开更多
With the developpment of image fusion technology and the maturity of wavelet theory, wavelet transform with its good time-frequency characteristics stands out in the field of image fusion. On the basis of wavelet tran...With the developpment of image fusion technology and the maturity of wavelet theory, wavelet transform with its good time-frequency characteristics stands out in the field of image fusion. On the basis of wavelet transforms theory, this article proposes a high dynamic range imaging confusion method which combines with wavelet decomposition. First, perform a wavelet multi-scale decomposition to the two registered source image; then conduct wavelet inverse transform to the decomposed images. This paper focuses on the characteristics of high frequency and low frequency domain after wavelet decomposition,using different fusion methods in each of the frequency domain, finally obtain the fused image through inverse wavelet transform image reconstruction. The simulation results and evaluation index results show that, compared with other similar methods, this method is better in retaining the original image's details information, and improves the quality of fusion image.展开更多
Because previous methods can not identify underlying image features from noises effectively, the updated image fusion schemes will be degraded when inputs are corrupted with noise. The perceptual salient image feature...Because previous methods can not identify underlying image features from noises effectively, the updated image fusion schemes will be degraded when inputs are corrupted with noise. The perceptual salient image features often manifest some geometric structures, while noise dominated images are less structured. Based on complex wavelet transform, a structurization information metric is formulated by means of the Von Neumann entropy. The formulated metric can distinguish image features from noise very well. During the fusion process, the metric is employed to weight all fusion inputs. As a result, the perceptual meaningful inputs are enhanced while the noise inputs are de-emphasized adaptively. Comparing several image fusion schemes subjectively and objectively shows the good performance of the new scheme.展开更多
Taking the advantage of the lifting scheme's characters that can build wavelet translorms tor transforming from integer to integer and the quality of the reconstructing image'is independent of the topology way adopt...Taking the advantage of the lifting scheme's characters that can build wavelet translorms tor transforming from integer to integer and the quality of the reconstructing image'is independent of the topology way adopted by the boundary, an image fusion algorithm based on lifting scheme is proposed. This paper discusses the fundamental theory of lifting scheme firstly and then after taking transform analysis according to a kind of images that need to be confused.展开更多
The rise of urban traffic flow highlights the growing importance of traffic safety.In order to reduce the occurrence rate of traffic accidents,and improve front vision information of vehicle drivers,the method to impr...The rise of urban traffic flow highlights the growing importance of traffic safety.In order to reduce the occurrence rate of traffic accidents,and improve front vision information of vehicle drivers,the method to improve visual information of the vehicle driver in low visibility conditions is put forward based on infrared and visible image fusion technique.The wavelet image confusion algorithm is adopted to decompose the image into low-frequency approximation components and high-frequency detail components.Low-frequency component contains information representing gray value differences.High-frequency component contains the detail information of the image,which is frequently represented by gray standard deviation to assess image quality.To extract feature information of low-frequency component and high-frequency component with different emphases,different fusion operators are used separately by low-frequency and high-frequency components.In the processing of low-frequency component,the fusion rule of weighted regional energy proportion is adopted to improve the brightness of the image,and the fusion rule of weighted regional proportion of standard deviation is used in all the three high-frequency components to enhance the image contrast.The experiments on image fusion of infrared and visible light demonstrate that this image fusion method can effectively improve the image brightness and contrast,and it is suitable for vision enhancement of the low-visibility images.展开更多
On the basis of a thorough understanding of the physical characteristics of remote sensing image, this paper employs the theories of wavelet transform and signal sampling to develop a new image fusion algorithm. The a...On the basis of a thorough understanding of the physical characteristics of remote sensing image, this paper employs the theories of wavelet transform and signal sampling to develop a new image fusion algorithm. The algorithm has been successfully applied to the image fusion of SPOT PAN and TM of Guangdong province, China. The experimental results show that a perfect image fusion can be built up by using the image analytical solution and re-construction in the image frequency domain based on the physical characteristics of the image formation. The method has demonstrated that the results of the image fusion do not change spectral characteristics of the original image.展开更多
Because of cloudy and rainy weather in south China, optical remote sens-ing images often can't be obtained easily. With the regional trial results in Baoying, Jiangsu province, this paper explored the fusion model an...Because of cloudy and rainy weather in south China, optical remote sens-ing images often can't be obtained easily. With the regional trial results in Baoying, Jiangsu province, this paper explored the fusion model and effect of ENVISAT/SAR and HJ-1A satel ite multispectral remote sensing images. Based on the ARSIS strat-egy, using the wavelet transform and the Interaction between the Band Structure Model (IBSM), the research progressed the ENVISAT satel ite SAR and the HJ-1A satel ite CCD images wavelet decomposition, and low/high frequency coefficient re-construction, and obtained the fusion images through the inverse wavelet transform. In the light of low and high-frequency images have different characteristics in differ-ent areas, different fusion rules which can enhance the integration process of self-adaptive were taken, with comparisons with the PCA transformation, IHS transfor-mation and other traditional methods by subjective and the corresponding quantita-tive evaluation. Furthermore, the research extracted the bands and NDVI values around the fusion with GPS samples, analyzed and explained the fusion effect. The results showed that the spectral distortion of wavelet fusion, IHS transform, PCA transform images was 0.101 6, 0.326 1 and 1.277 2, respectively and entropy was 14.701 5, 11.899 3 and 13.229 3, respectively, the wavelet fusion is the highest. The method of wavelet maintained good spectral capability, and visual effects while improved the spatial resolution, the information interpretation effect was much better than other two methods.展开更多
In recent years,many medical image fusion methods had been exploited to derive useful information from multimodality medical image data,but,not an appropriate fusion algorithm for anatomical and functional medical ima...In recent years,many medical image fusion methods had been exploited to derive useful information from multimodality medical image data,but,not an appropriate fusion algorithm for anatomical and functional medical images.In this paper,the traditional method of wavelet fusion is improved and a new fusion algorithm of anatomical and functional medical images,in which high-frequency and low-frequency coefficients are studied respectively.When choosing high-frequency coefficients,the global gradient of each sub-image is calculated to realize adaptive fusion,so that the fused image can reserve the functional information;while choosing the low coefficients is based on the analysis of the neighborbood region energy,so that the fused image can reserve the anatomical image's edge and texture feature.Experimental results and the quality evaluation parameters show that the improved fusion algorithm can enhance the edge and texture feature and retain the function information and anatomical information effectively.展开更多
文摘Image fusion is performed between one band of multi-spectral image and two bands of hyperspectral image to produce fused image with the same spatial resolution as source multi-spectral image and the same spectral resolution as source hyperspeetral image. According to the characteristics and 3-Dimensional (3-D) feature analysis of multi-spectral and hyperspectral image data volume, the new fusion approach using 3-D wavelet based method is proposed. This approach is composed of four major procedures: Spatial and spectral resampling, 3-D wavelet transform, wavelet coefficient integration and 3-D inverse wavelet transform. Especially, a novel method, Ratio Image Based Spectral Resampling (RIBSR)method, is proposed to accomplish data resampling in spectral domain by utilizing the property of ratio image. And a new fusion rule, Average and Substitution (A&S) rule, is employed as the fusion rule to accomplish wavelet coefficient integration. Experimental results illustrate that the fusion approach using 3-D wavelet transform can utilize both spatial and spectral characteristics of source images more adequately and produce fused image with higher quality and fewer artifacts than fusion approach using 2-D wavelet transform. It is also revealed that RIBSR method is capable of interpolating the missing data more effectively and correctly, and A&S rule can integrate coefficients of source images in 3-D wavelet domain to preserve both spatial and spectral features of source images more properly.
文摘In this paper,we propose a new image fusion algorithm based on two-dimensional Scale-Mixing Complex Wavelet Transform(2D-SMCWT).The fusion of the detail 2D-SMCWT cofficients is performed via a Bayesian Maximum a Posteriori(MAP)approach by considering a trivariate statistical model for the local neighboring of 2D-SMCWT coefficients.For the approx imation coefficients,a new fusion rule based on the Principal Component Analysis(PCA)is applied.We conduct several experiments using three different groups of multimodal medical images to evaluate the performance of the proposed method.The obt ained results prove the superiority of the proposed method over the state of the art fusion methods in terms of visual quality and several commonly used metrics.Robustness of the proposed method is further tested against different types of noise.The plots of fusion met rics establish the accuracy of the proposed fusion method.
文摘In this paper, a new method of combination single layer wavelet transform and compressive sensing is proposed for image fusion. In which only measured the high-pass wavelet coefficients of the image but preserved the low-pass wavelet coefficient. Then, fuse the low-pass wavelet coefficients and the measurements of high-pass wavelet coefficient with different schemes. For the reconstruction, by using the minimization of total variation algorithm (TV), high-pass wavelet coefficients could be recovered by the fused measurements. Finally, the fused image could be reconstructed by the inverse wavelet transform. The experiments show the proposed method provides promising fusion performance with a low computational complexity.
基金Sponsored by the Nation Nature Science Foundation of China(Grant No.61275010,61201237)the Fundamental Research Funds for the Central Universities(Grant No.HEUCFZ1129,No.HEUCF120805)
文摘In the fusion of image,how to measure the local character and clarity is called activity measurement. According to the problem,the traditional measurement is decided only by the high-frequency detail coefficients, which will make the energy expression insufficient to reflect the local clarity. Therefore,in this paper,a novel construction method for activity measurement is proposed. Firstly,it uses the wavelet decomposition for the fusion resource image, and then utilizes the high and low frequency wavelet coefficients synthetically. Meantime,it takes the normalized variance as the weight of high-frequency energy. Secondly,it calculates the measurement by the weighted energy,which can be used to measure the local character. Finally,the fusion coefficients can be got. In order to illustrate the superiority of this new method,three kinds of assessing indicators are provided. The experiment results show that,comparing with the traditional methods,this new method weakens the fuzzy and promotes the indicator value. Therefore,it has much more advantages for practical application.
文摘Objective This paper proposed a novel algorithm of discrete wavelet transform(DWT) which is used for multimodal medical image fusion. Methods The source medical images are initially transformed by DWT followed by fusing low and high frequency sub-images. Then, the "coefficient absolute value" that can provide clear and detail parts is adapted to fuse high-frequency coefficients, where as the "region energy ratio" which can efficiently preserve most information of source images is employed to fuse low-frequency coefficients. Finally, the fused image is reconstructed by inverse wavelet transform. Results Visually and quantitatively experimental results indicate that the proposed fusion method is superior to traditional wavelet transform and the existing fusion methods. Conclusion The proposed method is a feasible approach for multimodal medical image fusion which can obtain more efficient and accurate fusions results even in the noise environment.
文摘In order to enhance the image information from multi-sensor and to improve the abilities of the information analysis and the feature extraction, this letter proposed a new fusion approach in pixel level by means of the Wavelet Packet Transform (WPT). The WPT is able to decompose an image into low frequency band and high frequency band in higher scale. It offers a more precise method for image analysis than Wavelet Transform (WT). Firstly, the proposed approach employs HIS (Hue, Intensity, Saturation) transform to obtain the intensity component of CBERS (China-Brazil Earth Resource Satellite) multi-spectral image. Then WPT transform is employed to decompose the intensity component and SPOT (Systeme Pour I'Observation de la Therre ) image into low frequency band and high frequency band in three levels. Next, two high frequency coefficients and low frequency coefficients of the images are combined by linear weighting strategies. Finally, the fused image is obtained with inverse WPT and inverse HIS. The results show the new approach can fuse details of input image successfully, and thereby can obtain a more satisfactory result than that of HM (Histogram Matched)-based fusion algorithm and WT-based fusion approach.
文摘A muitisensor image fusion algorithm is described using 2-dimensional nonseparable wavelet frame (NWF) transform. The source muitisensor images are first decomposed by the NWF transform. Then, the NWF transform coefficients of the source images are combined into the composite NWF transform coefficients. Inverse NWF transform is performed on the composite NWF transform coefficients in order to obtain the intermediate fused image. Finally, intensity adjustment is applied to the intermediate fused image in order to maintain the dynamic intensity range. Experiment resuits using real data show that the proposed algorithm works well in muitisensor image fusion.
文摘An accurate and early diagnosis of brain tumors based on medical ima-ging modalities is of great interest because brain tumors are a harmful threat to a person’s health worldwide.Several medical imaging techniques have been used to analyze brain tumors,including computed tomography(CT)and magnetic reso-nance imaging(MRI).CT provides information about dense tissues,whereas MRI gives information about soft tissues.However,the fusion of CT and MRI images has little effect on enhancing the accuracy of the diagnosis of brain tumors.Therefore,machine learning methods have been adopted to diagnose brain tumors in recent years.This paper intends to develop a novel scheme to detect and classify brain tumors based on fused CT and MRI images.The pro-posed approach starts with preprocessing the images to reduce the noise.Then,fusion rules are applied to get the fused image,and a segmentation algorithm is employed to isolate the tumor region from the background to isolate the tumor region.Finally,a machine learning classifier classified the brain images into benign and malignant tumors.Computing statistical measures evaluate the classi-fication potential of the proposed scheme.Experimental outcomes are provided,and the Enhanced Flower Pollination Algorithm(EFPA)system shows that it out-performs other brain tumor classification methods considered for comparison.
文摘This paper describes a method to decompose multi-scale information from different source medical image using wavelet transformation. The data fusion between CT image and MRI image is implemented based on the coefficients fusion rule which included choice of regional variance and weighted average wavelet information. The result indicates that this method is better than WMF, LEF and RVF on fusion results, details and target distortion.
文摘Aim To fuse the fluorescence image and transmission image of a cell into a single image containing more information than any of the individual image. Methods Image fusion technology was applied to biological cell imaging processing. It could match the images and improve the confidence and spatial resolution of the images. Using two algorithms, double thresholds algorithm and denoising algorithm based on wavelet transform,the fluorescence image and transmission image of a Cell were merged into a composite image. Results and Conclusion The position of fluorescence and the structure of cell can be displyed in the composite image. The signal-to-noise ratio of the exultant image is improved to a large extent. The algorithms are not only useful to investigate the fluorescence and transmission images, but also suitable to observing two or more fluoascent label proes in a single cell.
文摘With the developpment of image fusion technology and the maturity of wavelet theory, wavelet transform with its good time-frequency characteristics stands out in the field of image fusion. On the basis of wavelet transforms theory, this article proposes a high dynamic range imaging confusion method which combines with wavelet decomposition. First, perform a wavelet multi-scale decomposition to the two registered source image; then conduct wavelet inverse transform to the decomposed images. This paper focuses on the characteristics of high frequency and low frequency domain after wavelet decomposition,using different fusion methods in each of the frequency domain, finally obtain the fused image through inverse wavelet transform image reconstruction. The simulation results and evaluation index results show that, compared with other similar methods, this method is better in retaining the original image's details information, and improves the quality of fusion image.
文摘Because previous methods can not identify underlying image features from noises effectively, the updated image fusion schemes will be degraded when inputs are corrupted with noise. The perceptual salient image features often manifest some geometric structures, while noise dominated images are less structured. Based on complex wavelet transform, a structurization information metric is formulated by means of the Von Neumann entropy. The formulated metric can distinguish image features from noise very well. During the fusion process, the metric is employed to weight all fusion inputs. As a result, the perceptual meaningful inputs are enhanced while the noise inputs are de-emphasized adaptively. Comparing several image fusion schemes subjectively and objectively shows the good performance of the new scheme.
文摘Taking the advantage of the lifting scheme's characters that can build wavelet translorms tor transforming from integer to integer and the quality of the reconstructing image'is independent of the topology way adopted by the boundary, an image fusion algorithm based on lifting scheme is proposed. This paper discusses the fundamental theory of lifting scheme firstly and then after taking transform analysis according to a kind of images that need to be confused.
基金the Science and Technology Development Program of Beijing Municipal Commission of Education (No.KM201010011002)the National College Students'Scientific Research and Entrepreneurial Action Plan(SJ201401011)
文摘The rise of urban traffic flow highlights the growing importance of traffic safety.In order to reduce the occurrence rate of traffic accidents,and improve front vision information of vehicle drivers,the method to improve visual information of the vehicle driver in low visibility conditions is put forward based on infrared and visible image fusion technique.The wavelet image confusion algorithm is adopted to decompose the image into low-frequency approximation components and high-frequency detail components.Low-frequency component contains information representing gray value differences.High-frequency component contains the detail information of the image,which is frequently represented by gray standard deviation to assess image quality.To extract feature information of low-frequency component and high-frequency component with different emphases,different fusion operators are used separately by low-frequency and high-frequency components.In the processing of low-frequency component,the fusion rule of weighted regional energy proportion is adopted to improve the brightness of the image,and the fusion rule of weighted regional proportion of standard deviation is used in all the three high-frequency components to enhance the image contrast.The experiments on image fusion of infrared and visible light demonstrate that this image fusion method can effectively improve the image brightness and contrast,and it is suitable for vision enhancement of the low-visibility images.
基金ProjectsupportedbytheNationalNaturalScienceFoundationofChina (No .40 0 2 30 0 4 ) .
文摘On the basis of a thorough understanding of the physical characteristics of remote sensing image, this paper employs the theories of wavelet transform and signal sampling to develop a new image fusion algorithm. The algorithm has been successfully applied to the image fusion of SPOT PAN and TM of Guangdong province, China. The experimental results show that a perfect image fusion can be built up by using the image analytical solution and re-construction in the image frequency domain based on the physical characteristics of the image formation. The method has demonstrated that the results of the image fusion do not change spectral characteristics of the original image.
基金supported by the National Natural Science Foundation of China(41171336)the Project of Jiangsu Province Agricultural Science and Technology Innovation Fund(CX12-3054)
文摘Because of cloudy and rainy weather in south China, optical remote sens-ing images often can't be obtained easily. With the regional trial results in Baoying, Jiangsu province, this paper explored the fusion model and effect of ENVISAT/SAR and HJ-1A satel ite multispectral remote sensing images. Based on the ARSIS strat-egy, using the wavelet transform and the Interaction between the Band Structure Model (IBSM), the research progressed the ENVISAT satel ite SAR and the HJ-1A satel ite CCD images wavelet decomposition, and low/high frequency coefficient re-construction, and obtained the fusion images through the inverse wavelet transform. In the light of low and high-frequency images have different characteristics in differ-ent areas, different fusion rules which can enhance the integration process of self-adaptive were taken, with comparisons with the PCA transformation, IHS transfor-mation and other traditional methods by subjective and the corresponding quantita-tive evaluation. Furthermore, the research extracted the bands and NDVI values around the fusion with GPS samples, analyzed and explained the fusion effect. The results showed that the spectral distortion of wavelet fusion, IHS transform, PCA transform images was 0.101 6, 0.326 1 and 1.277 2, respectively and entropy was 14.701 5, 11.899 3 and 13.229 3, respectively, the wavelet fusion is the highest. The method of wavelet maintained good spectral capability, and visual effects while improved the spatial resolution, the information interpretation effect was much better than other two methods.
基金The National High Technology Research and Development Program of China(‘863’Program)grant number:2007AA02Z4A9+1 种基金National Natural Science Foundation of Chinagrant number:30671997
文摘In recent years,many medical image fusion methods had been exploited to derive useful information from multimodality medical image data,but,not an appropriate fusion algorithm for anatomical and functional medical images.In this paper,the traditional method of wavelet fusion is improved and a new fusion algorithm of anatomical and functional medical images,in which high-frequency and low-frequency coefficients are studied respectively.When choosing high-frequency coefficients,the global gradient of each sub-image is calculated to realize adaptive fusion,so that the fused image can reserve the functional information;while choosing the low coefficients is based on the analysis of the neighborbood region energy,so that the fused image can reserve the anatomical image's edge and texture feature.Experimental results and the quality evaluation parameters show that the improved fusion algorithm can enhance the edge and texture feature and retain the function information and anatomical information effectively.