期刊文献+
共找到1,447篇文章
< 1 2 73 >
每页显示 20 50 100
CMA:an efficient index algorithmof clustering supporting fast retrieval oflarge image databases
1
作者 谢毓湘 栾悉道 +2 位作者 吴玲达 老松杨 谢伦国 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第3期709-714,共6页
To realize content-hased retrieval of large image databases, it is required to develop an efficient index and retrieval scheme. This paper proposes an index algorithm of clustering called CMA, which supports fast retr... To realize content-hased retrieval of large image databases, it is required to develop an efficient index and retrieval scheme. This paper proposes an index algorithm of clustering called CMA, which supports fast retrieval of large image databases. CMA takes advantages of k-means and self-adaptive algorithms. It is simple and works without any user interactions. There are two main stages in this algorithm. In the first stage, it classifies images in a database into several clusters, and automatically gets the necessary parameters for the next stage-k-means iteration. The CMA algorithm is tested on a large database of more than ten thousand images and compare it with k-means algorithm. Experimental results show that this algorithm is effective in both precision and retrieval time. 展开更多
关键词 large image database content-based retrieval K-means clustering self-adaptive clustering.
下载PDF
Efficient Cloud Image Retrieval System Using Weighted-Inverted Index and Database Filtering Algorithms
2
作者 Shuo-Fu Yen Jiann-Jone Chen Yao-Hong Tsai 《Journal of Electronic Science and Technology》 CAS CSCD 2017年第2期161-168,共8页
With the advance of multimedia technology and communications, images and videos become the major streaming information through the Internet. How to fast retrieve desired similar images precisely from the Internet scal... With the advance of multimedia technology and communications, images and videos become the major streaming information through the Internet. How to fast retrieve desired similar images precisely from the Internet scale image/video databases is the most important retrieval control target. In this paper, a cloud based content-based image retrieval (CBIR) scheme is presented. Database-categorizing based on weighted-inverted index (DCWII) and database f'dtering algorithm (DFA) is used to speed up the features matching process. In the DCWII, the weights are assigned to discrete cosine transform (DCT) coefficients histograms and the database is categorized by weighted features. In addition, the DFA filters out the irrelevant image in the database to reduce unnecessary computation loading for features matching. Experiments show that the proposed CBIR scheme outperforms previous work in the precision-recall performance and maintains mean average precision (mAP) about 0.678 in the large-scale database comprising one million images. Our scheme also can reduce about 50% to 85% retrieval time by pre-filtering the database, which helps to improve the efficiency of retrieval systems. 展开更多
关键词 index Terms-Content-based image retrieval cloud computing MPEG-7.
下载PDF
Multi-Index Image Retrieval Hash Algorithm Based on Multi-View Feature Coding
3
作者 Rong Duan Junshan Tan +3 位作者 Jiaohua Qin Xuyu Xiang Yun Tan N.eal NXiong 《Computers, Materials & Continua》 SCIE EI 2020年第12期2335-2350,共16页
In recent years,with the massive growth of image data,how to match the image required by users quickly and efficiently becomes a challenge.Compared with single-view feature,multi-view feature is more accurate to descr... In recent years,with the massive growth of image data,how to match the image required by users quickly and efficiently becomes a challenge.Compared with single-view feature,multi-view feature is more accurate to describe image information.The advantages of hash method in reducing data storage and improving efficiency also make us study how to effectively apply to large-scale image retrieval.In this paper,a hash algorithm of multi-index image retrieval based on multi-view feature coding is proposed.By learning the data correlation between different views,this algorithm uses multi-view data with deeper level image semantics to achieve better retrieval results.This algorithm uses a quantitative hash method to generate binary sequences,and uses the hash code generated by the association features to construct database inverted index files,so as to reduce the memory burden and promote the efficient matching.In order to reduce the matching error of hash code and ensure the retrieval accuracy,this algorithm uses inverted multi-index structure instead of single-index structure.Compared with other advanced image retrieval method,this method has better retrieval performance. 展开更多
关键词 HASHING multi-view feature large-scale image retrieval feature coding feature matching
下载PDF
A Visual Indoor Localization Method Based on Efficient Image Retrieval
4
作者 Mengyan Lyu Xinxin Guo +1 位作者 Kunpeng Zhang Liye Zhang 《Journal of Computer and Communications》 2024年第2期47-66,共20页
The task of indoor visual localization, utilizing camera visual information for user pose calculation, was a core component of Augmented Reality (AR) and Simultaneous Localization and Mapping (SLAM). Existing indoor l... The task of indoor visual localization, utilizing camera visual information for user pose calculation, was a core component of Augmented Reality (AR) and Simultaneous Localization and Mapping (SLAM). Existing indoor localization technologies generally used scene-specific 3D representations or were trained on specific datasets, making it challenging to balance accuracy and cost when applied to new scenes. Addressing this issue, this paper proposed a universal indoor visual localization method based on efficient image retrieval. Initially, a Multi-Layer Perceptron (MLP) was employed to aggregate features from intermediate layers of a convolutional neural network, obtaining a global representation of the image. This approach ensured accurate and rapid retrieval of reference images. Subsequently, a new mechanism using Random Sample Consensus (RANSAC) was designed to resolve relative pose ambiguity caused by the essential matrix decomposition based on the five-point method. Finally, the absolute pose of the queried user image was computed, thereby achieving indoor user pose estimation. The proposed indoor localization method was characterized by its simplicity, flexibility, and excellent cross-scene generalization. Experimental results demonstrated a positioning error of 0.09 m and 2.14° on the 7Scenes dataset, and 0.15 m and 6.37° on the 12Scenes dataset. These results convincingly illustrated the outstanding performance of the proposed indoor localization method. 展开更多
关键词 Visual Indoor Positioning feature Point Matching image retrieval Position Calculation Five-Point Method
下载PDF
A flower image retrieval method based on ROI feature 被引量:6
5
作者 洪安祥 陈刚 +2 位作者 李均利 池哲儒 张亶 《Journal of Zhejiang University Science》 CSCD 2004年第7期764-772,共9页
Flower image retrieval is a very important step for computer-aided plant species recognition. In this paper, we propose an efficient segmentation method based on color clustering and domain knowledge to extract flower... Flower image retrieval is a very important step for computer-aided plant species recognition. In this paper, we propose an efficient segmentation method based on color clustering and domain knowledge to extract flower regions from flower images. For flower retrieval, we use the color histogram of a flower region to characterize the color features of flower and two shape-based features sets, Centroid-Contour Distance (CCD) and Angle Code Histogram (ACH), to characterize the shape features of a flower contour. Experimental results showed that our flower region extraction method based on color clustering and domain knowledge can produce accurate flower regions. Flower retrieval results on a database of 885 flower images collected from 14 plant species showed that our Region-of-Interest (ROI) based retrieval approach using both color and shape features can perform better than a method based on the global color histogram proposed by Swain and Ballard (1991) and a method based on domain knowledge-driven segmentation and color names proposed by Das et al.(1999). 展开更多
关键词 Flower image retrieval Knowledge-driven segmentation Flower image characterization Region-of-Interest (ROI) Color features Shape features
下载PDF
Design of Content-Based Retrieval System in Remote Sensing Image Database 被引量:1
6
作者 LI Feng ZENG Zhiming HU Yanfeng FU Kun 《Geo-Spatial Information Science》 2006年第3期191-195,共5页
To retrieve the object region efficaciously from massive remote sensing image database, a model for content-based retrieval of remote sensing image is given according to the characters of remote sensing image applicat... To retrieve the object region efficaciously from massive remote sensing image database, a model for content-based retrieval of remote sensing image is given according to the characters of remote sensing image application firstly, and then the algorithm adopted for feature extraction and multidimensional indexing, and relevance feedback by this model are analyzed in detail. Finally, the contents intending to be researched about this model are proposed. 展开更多
关键词 content-based retrieval remote sensing image image database feature extraction object region
下载PDF
Integrating Color and Spatial Feature for Content-Based Image Retrieval 被引量:1
7
作者 Cao Kui Feng Yu-cai 《Wuhan University Journal of Natural Sciences》 EI CAS 2002年第3期290-296,共7页
In this paper, we present a novel and efficient scheme for extracting, indexing and retrieving color images. Our motivation was to reduce the space overhead of partition-based approaches taking advantage of the fact t... In this paper, we present a novel and efficient scheme for extracting, indexing and retrieving color images. Our motivation was to reduce the space overhead of partition-based approaches taking advantage of the fact that only a relatively low number of distinct values of a particular visual feature is present in most images. To extract color feature and build indices into our image database we take into consideration factors such as human color perception and perceptual range, and the image is partitioned into a set of regions by using a simple classifying scheme. The compact color feature vector and the spatial color histogram, which are extracted from the seqmented image region, are used for representing the color and spatial information in the image. We have also developed the region-based distance measures to compare the similarity of two images. Extensive tests on a large image collection were conducted to demonstrate the effectiveness of the proposed approach. 展开更多
关键词 color distribution spatial color histogram region-based image representation and retrieval similarity matching integrating of single features
下载PDF
Image Retrieval with Text Manipulation by Local Feature Modification 被引量:2
8
作者 查剑宏 燕彩蓉 +1 位作者 张艳婷 王俊 《Journal of Donghua University(English Edition)》 CAS 2023年第4期404-409,共6页
The demand for image retrieval with text manipulation exists in many fields, such as e-commerce and Internet search. Deep metric learning methods are used by most researchers to calculate the similarity between the qu... The demand for image retrieval with text manipulation exists in many fields, such as e-commerce and Internet search. Deep metric learning methods are used by most researchers to calculate the similarity between the query and the candidate image by fusing the global feature of the query image and the text feature. However, the text usually corresponds to the local feature of the query image rather than the global feature. Therefore, in this paper, we propose a framework of image retrieval with text manipulation by local feature modification(LFM-IR) which can focus on the related image regions and attributes and perform modification. A spatial attention module and a channel attention module are designed to realize the semantic mapping between image and text. We achieve excellent performance on three benchmark datasets, namely Color-Shape-Size(CSS), Massachusetts Institute of Technology(MIT) States and Fashion200K(+8.3%, +0.7% and +4.6% in R@1). 展开更多
关键词 image retrieval text manipulation ATTENTION local feature modification
下载PDF
Retrieval of High Resolution Satellite Images Using Texture Features 被引量:1
9
作者 Samia Bouteldja Assia Kourgli 《Journal of Electronic Science and Technology》 CAS 2014年第2期211-215,共5页
In this research, a content-based image retrieval (CBIR) system for high resolution satellite images has been developed by using texture features. The proposed approach uses the local binary pattern (LBP) texture ... In this research, a content-based image retrieval (CBIR) system for high resolution satellite images has been developed by using texture features. The proposed approach uses the local binary pattern (LBP) texture feature and a block based scheme. The query and database images are divided into equally sized blocks, from which LBP histograms are extracted. The block histograms are then compared by using the Chi-square distance. Experimental results show that the LBP representation provides a powerful tool for high resolution satellite images (HRSI) retrieval. 展开更多
关键词 Content-based image retrieval high resolution satellite imagery local binary pattern texture feature extraction
下载PDF
Image Retrieval Based on Deep Feature Extraction and Reduction with Improved CNN and PCA 被引量:2
10
作者 Rongyu Chen Lili Pan +1 位作者 Yan Zhou Qianhui Lei 《Journal of Information Hiding and Privacy Protection》 2020年第2期67-76,共10页
With the rapid development of information technology,the speed and efficiency of image retrieval are increasingly required in many fields,and a compelling image retrieval method is critical for the development of info... With the rapid development of information technology,the speed and efficiency of image retrieval are increasingly required in many fields,and a compelling image retrieval method is critical for the development of information.Feature extraction based on deep learning has become dominant in image retrieval due to their discrimination more complete,information more complementary and higher precision.However,the high-dimension deep features extracted by CNNs(convolutional neural networks)limits the retrieval efficiency and makes it difficult to satisfy the requirements of existing image retrieval.To solving this problem,the high-dimension feature reduction technology is proposed with improved CNN and PCA quadratic dimensionality reduction.Firstly,in the last layer of the classical networks,this study makes a well-designed DR-Module(dimensionality reduction module)to compress the number of channels of the feature map as much as possible,and ensures the amount of information.Secondly,the deep features are compressed again with PCA(Principal Components Analysis),and the compression ratios of the two dimensionality reductions are reduced,respectively.Therefore,the retrieval efficiency is dramatically improved.Finally,it is proved on the Cifar100 and Caltech101 datasets that the novel method not only improves the retrieval accuracy but also enhances the retrieval efficiency.Experimental results strongly demonstrate that the proposed method performs well in small and medium-sized datasets. 展开更多
关键词 image retrieval deep features convolutional neural networks principal components analysis
下载PDF
Indexing of Content-Based Image Retrieval System with Image Understanding Approach
11
作者 李学龙 刘政凯 俞能海 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2003年第2期63-68,共6页
This paper presents a novel efficient semantic image classification algorithm for high-level feature indexing of high-dimension image database. Experiments show that the algorithm performs well. The size of the train ... This paper presents a novel efficient semantic image classification algorithm for high-level feature indexing of high-dimension image database. Experiments show that the algorithm performs well. The size of the train set and the test set is 7 537 and 5 000 respectively. Based on this theory, another ground is built with 12,000 images, which are divided into three classes: city, landscape and person, the total result of the classifications is 88.92%, meanwhile, some preliminary results are presented for image understanding based on semantic image classification and low level features. The groundtruth for the experiments is built with the images from Corel database, photos and some famous face databases. 展开更多
关键词 Content-based image retrieval image classification image indexing.
下载PDF
A Fast Image Retrieval Algorithm with Multi-Channel Textural Features in PACS
12
作者 ZHANG Dong YANG Yan QIN Qian-qing 《Wuhan University Journal of Natural Sciences》 EI CAS 2005年第5期847-850,共4页
The paper presents a fast algorithm for image retrieval using multi-channel textural features in medical picture archiving and communication system (PACS). By choosing different linear or nonlinear operators in pred... The paper presents a fast algorithm for image retrieval using multi-channel textural features in medical picture archiving and communication system (PACS). By choosing different linear or nonlinear operators in prediction and update lifting step, the linear or nonlinear M-band wavelet decomposition can be achieved in M-band lifting. It provides the advantages such as fast transform, in-place calculation and integer-integer transform. The set of wavelet moment forms multi-channel textural feature vector related to the texture distribution of each wavelet images. The experimental results of CT image database show that the retrieval approach of multi-channel textural features is effective for image indexing and has lower computational complexity and less memory. It is much easier to implement in hardware and suitable for the applications of real time medical processing system. 展开更多
关键词 integer wavelet decomposition multi-channel textural feature medical image retrieval
下载PDF
Fusion of Hash-Based Hard and Soft Biometrics for Enhancing Face Image Database Search and Retrieval
13
作者 Ameerah Abdullah Alshahrani Emad Sami Jaha Nahed Alowidi 《Computers, Materials & Continua》 SCIE EI 2023年第12期3489-3509,共21页
The utilization of digital picture search and retrieval has grown substantially in numerous fields for different purposes during the last decade,owing to the continuing advances in image processing and computer vision... The utilization of digital picture search and retrieval has grown substantially in numerous fields for different purposes during the last decade,owing to the continuing advances in image processing and computer vision approaches.In multiple real-life applications,for example,social media,content-based face picture retrieval is a well-invested technique for large-scale databases,where there is a significant necessity for reliable retrieval capabilities enabling quick search in a vast number of pictures.Humans widely employ faces for recognizing and identifying people.Thus,face recognition through formal or personal pictures is increasingly used in various real-life applications,such as helping crime investigators retrieve matching images from face image databases to identify victims and criminals.However,such face image retrieval becomes more challenging in large-scale databases,where traditional vision-based face analysis requires ample additional storage space than the raw face images already occupied to store extracted lengthy feature vectors and takes much longer to process and match thousands of face images.This work mainly contributes to enhancing face image retrieval performance in large-scale databases using hash codes inferred by locality-sensitive hashing(LSH)for facial hard and soft biometrics as(Hard BioHash)and(Soft BioHash),respectively,to be used as a search input for retrieving the top-k matching faces.Moreover,we propose the multi-biometric score-level fusion of both face hard and soft BioHashes(Hard-Soft BioHash Fusion)for further augmented face image retrieval.The experimental outcomes applied on the Labeled Faces in the Wild(LFW)dataset and the related attributes dataset(LFW-attributes),demonstrate that the retrieval performance of the suggested fusion approach(Hard-Soft BioHash Fusion)significantly improved the retrieval performance compared to solely using Hard BioHash or Soft BioHash in isolation,where the suggested method provides an augmented accuracy of 87%when executed on 1000 specimens and 77%on 5743 samples.These results remarkably outperform the results of the Hard BioHash method by(50%on the 1000 samples and 30%on the 5743 samples),and the Soft BioHash method by(78%on the 1000 samples and 63%on the 5743 samples). 展开更多
关键词 Face image retrieval soft biometrics similar pictures HASHING database search large databases score-level fusion multimodal fusion
下载PDF
Learning Noise-Assisted Robust Image Features for Fine-Grained Image Retrieval
14
作者 Vidit Kumar Hemant Petwal +1 位作者 Ajay Krishan Gairola Pareshwar Prasad Barmola 《Computer Systems Science & Engineering》 SCIE EI 2023年第9期2711-2724,共14页
Fine-grained image search is one of the most challenging tasks in computer vision that aims to retrieve similar images at the fine-grained level for a given query image.The key objective is to learn discriminative fin... Fine-grained image search is one of the most challenging tasks in computer vision that aims to retrieve similar images at the fine-grained level for a given query image.The key objective is to learn discriminative fine-grained features by training deep models such that similar images are clustered,and dissimilar images are separated in the low embedding space.Previous works primarily focused on defining local structure loss functions like triplet loss,pairwise loss,etc.However,training via these approaches takes a long training time,and they have poor accuracy.Additionally,representations learned through it tend to tighten up in the embedded space and lose generalizability to unseen classes.This paper proposes a noise-assisted representation learning method for fine-grained image retrieval to mitigate these issues.In the proposed work,class manifold learning is performed in which positive pairs are created with noise insertion operation instead of tightening class clusters.And other instances are treated as negatives within the same cluster.Then a loss function is defined to penalize when the distance between instances of the same class becomes too small relative to the noise pair in that class in embedded space.The proposed approach is validated on CARS-196 and CUB-200 datasets and achieved better retrieval results(85.38%recall@1 for CARS-196%and 70.13%recall@1 for CUB-200)compared to other existing methods. 展开更多
关键词 Convolutional network zero-shot learning fine-grained image retrieval image representation image retrieval intra-class diversity feature learning
下载PDF
Spectrum Feature Retrieval and Comparison of Remote Sensing Images Using Improved ISODATA Algorithm
15
作者 刘磊 敬忠良 肖刚 《Journal of Shanghai Jiaotong university(Science)》 EI 2004年第3期60-64,79,共6页
Due to the large quantities of data and high relativity of the spectra of remote sensing images, K-L transformation is used to eliminate the relativity. An improved ISODATA(Interative Self-Organizing Data Analysis Tec... Due to the large quantities of data and high relativity of the spectra of remote sensing images, K-L transformation is used to eliminate the relativity. An improved ISODATA(Interative Self-Organizing Data Analysis Technique A) algorithm is used to extract the spectrum features of the images. The computation is greatly reduced and the dynamic arguments are realized. The comparison of features between two images is carried out, and good results are achieved in simulation. 展开更多
关键词 remote sensing image spectrum feature retrieval ISODATA
下载PDF
PRODUCT IMAGE RETRIEVAL BASED ON CO-FEATURES OF THE OBJECT
16
作者 Fu Haiyan Kong Xiangwei t Yang Nan Zhou Jianhui Chu Fengtao 《Journal of Electronics(China)》 2010年第6期815-821,共7页
In this paper, we propose a product image retrieval method based on the object contour corners, image texture and color. The product image mainly highlights the object and its background is very simple. According to t... In this paper, we propose a product image retrieval method based on the object contour corners, image texture and color. The product image mainly highlights the object and its background is very simple. According to these characteristics, we represent the object using its contour, and detect the corners of contour to reduce the number of pixels. Every corner is described using its approximate curvature based on distance. In addition, the Block Difference of Inverse Probabilities (BDIP) and Block Variation of Local Correlation (BVLC) texture features and color moment are extracted from image's HIS color space. Finally, dynamic time warping method is used to match features with different length. In order to demonstrate the effect of the proposed method, we carry out experiments in Mi-crosoft product image database, and compare it with other feature descriptors. The retrieval precision and recall curves show that our method is feasible. 展开更多
关键词 Product image retrieval Multi-features Approximate curvature based on distance Block Difference of Inverse Probabilities (BDIP) and Block Variation of Local Correlation (BVLC) texture features Color moment
下载PDF
Remote Sensing Image Retrieval Based on 3D-Local Ternary Pattern(LTP)Features and Non-subsampled Shearlet Transform(NSST)Domain Statistical Features
17
作者 Hilly Gohain Baruah Vijay Kumar Nath Deepika Hazarika 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第4期137-164,共28页
With the increasing popularity of high-resolution remote sensing images,the remote sensing image retrieval(RSIR)has always been a topic of major issue.A combined,global non-subsampled shearlet transform(NSST)-domain s... With the increasing popularity of high-resolution remote sensing images,the remote sensing image retrieval(RSIR)has always been a topic of major issue.A combined,global non-subsampled shearlet transform(NSST)-domain statistical features(NSSTds)and local three dimensional local ternary pattern(3D-LTP)features,is proposed for high-resolution remote sensing images.We model the NSST image coefficients of detail subbands using 2-state laplacian mixture(LM)distribution and its three parameters are estimated using Expectation-Maximization(EM)algorithm.We also calculate the statistical parameters such as subband kurtosis and skewness from detail subbands along with mean and standard deviation calculated from approximation subband,and concatenate all of them with the 2-state LM parameters to describe the global features of the image.The various properties of NSST such as multiscale,localization and flexible directional sensitivity make it a suitable choice to provide an effective approximation of an image.In order to extract the dense local features,a new 3D-LTP is proposed where dimension reduction is performed via selection of‘uniform’patterns.The 3D-LTP is calculated from spatial RGB planes of the input image.The proposed inter-channel 3D-LTP not only exploits the local texture information but the color information is captured too.Finally,a fused feature representation(NSSTds-3DLTP)is proposed using new global(NSSTds)and local(3D-LTP)features to enhance the discriminativeness of features.The retrieval performance of proposed NSSTds-3DLTP features are tested on three challenging remote sensing image datasets such as WHU-RS19,Aerial Image Dataset(AID)and PatternNet in terms of mean average precision(MAP),average normalized modified retrieval rank(ANMRR)and precision-recall(P-R)graph.The experimental results are encouraging and the NSSTds-3DLTP features leads to superior retrieval performance compared to many well known existing descriptors such as Gabor RGB,Granulometry,local binary pattern(LBP),Fisher vector(FV),vector of locally aggregated descriptors(VLAD)and median robust extended local binary pattern(MRELBP).For WHU-RS19 dataset,in terms of{MAP,ANMRR},the NSSTds-3DLTP improves upon Gabor RGB,Granulometry,LBP,FV,VLAD and MRELBP descriptors by{41.93%,20.87%},{92.30%,32.68%},{86.14%,31.97%},{18.18%,15.22%},{8.96%,19.60%}and{15.60%,13.26%},respectively.For AID,in terms of{MAP,ANMRR},the NSSTds-3DLTP improves upon Gabor RGB,Granulometry,LBP,FV,VLAD and MRELBP descriptors by{152.60%,22.06%},{226.65%,25.08%},{185.03%,23.33%},{80.06%,12.16%},{50.58%,10.49%}and{62.34%,3.24%},respectively.For PatternNet,the NSSTds-3DLTP respectively improves upon Gabor RGB,Granulometry,LBP,FV,VLAD and MRELBP descriptors by{32.79%,10.34%},{141.30%,24.72%},{17.47%,10.34%},{83.20%,19.07%},{21.56%,3.60%},and{19.30%,0.48%}in terms of{MAP,ANMRR}.The moderate dimensionality of simple NSSTds-3DLTP allows the system to run in real-time. 展开更多
关键词 Remote sensing image retrieval laplacian mixture model local ternary pattern statistical modeling KS test texture global features
下载PDF
Colour Features Extraction Techniques and Approaches for Content-Based Image Retrieval (CBIR) System
18
作者 Muhammad Naim Abdullah Mohd Afizi Mohd Shukran +4 位作者 Mohd Rizal Mohd Isa Nor Suraya Mariam Ahmad Mohammad Adib Khairuddin Mohd Sidek Fadhil Mohd Yunus Fatimah Ahmad 《Journal of Materials Science and Chemical Engineering》 2021年第7期29-34,共6页
<div style="text-align:justify;"> An image retrieval system was developed purposely to provide an efficient tool for a set of images from a collection of images in the large database that matches the u... <div style="text-align:justify;"> An image retrieval system was developed purposely to provide an efficient tool for a set of images from a collection of images in the large database that matches the user’s requirements in similarity evaluations such as image content similarity, edge, and colour similarity. Retrieving images based on the contents which are colour, texture, and shape is called content-based image retrieval (CBIR). This paper discusses and describes about the colour features technique for image retrieval systems. Several colour features technique and algorithms produced by the previous researcher are used to calculate the similarity between extracted features. This paper also describes about the specific technique about the colour basis features and combined features (hybrid techniques) between colour and shape features. </div> 展开更多
关键词 Content-Based image retrieval Colour features CBIR
下载PDF
Content-Based Lace Image Retrieval System Using a Hierarchical Multifeature Scheme
19
作者 曹霞 李岳阳 +2 位作者 罗海驰 蒋高明 丛洪莲 《Journal of Donghua University(English Edition)》 EI CAS 2016年第4期562-565,568,共5页
An android-based lace image retrieval system based on content-based image retrieval (CBIR) technique is presented. This paper applies shape and texture features of lace image in our system and proposes a hierarchical ... An android-based lace image retrieval system based on content-based image retrieval (CBIR) technique is presented. This paper applies shape and texture features of lace image in our system and proposes a hierarchical multifeature scheme to facilitate coarseto-fine matching for efficient lace image retrieval in a large database. Experimental results demonstrate the feasibility and effectiveness of the proposed system meet the requirements of realtime. 展开更多
关键词 retrieval retrieval matching hierarchical texture CBIR Hierarchical registration facilitate preprocessing
下载PDF
Image block feature vectors based on a singular-value information metric and color-texture description 被引量:4
20
作者 王朔中 路兴 +1 位作者 苏胜君 张新鹏 《Journal of Shanghai University(English Edition)》 CAS 2007年第3期205-209,共5页
In this work, image feature vectors are formed for blocks containing sufficient information, which are selected using a singular-value criterion. When the ratio between the first two SVs axe below a given threshold, t... In this work, image feature vectors are formed for blocks containing sufficient information, which are selected using a singular-value criterion. When the ratio between the first two SVs axe below a given threshold, the block is considered informative. A total of 12 features including statistics of brightness, color components and texture measures are used to form intermediate vectors. Principal component analysis is then performed to reduce the dimension to 6 to give the final feature vectors. Relevance of the constructed feature vectors is demonstrated by experiments in which k-means clustering is used to group the vectors hence the blocks. Blocks falling into the same group show similar visual appearances. 展开更多
关键词 image feature COLOR TEXTURE content-based image retrieval (CBIR) image hashing
下载PDF
上一页 1 2 73 下一页 到第
使用帮助 返回顶部