A coding-based method to solve the image matching problems in stereovision measurement is presented. The solution is to add and append an identity ID to the retro-reflect point, so it can be identified efficiently und...A coding-based method to solve the image matching problems in stereovision measurement is presented. The solution is to add and append an identity ID to the retro-reflect point, so it can be identified efficiently under the complicated circumstances and has the characteristics of rotation, zooming, and deformation independence. Its design architecture and implementation process in details based on the theory of stereovision measurement are described. The method is effective on reducing processing data time, improving accuracy of image matching and automation of measuring system through experiments.展开更多
For vision-based mobile robot navigation, images of the same scene may undergo a general affine transformation in the case of significant viewpoint changes. So, a novel method for detecting affine invariant interest p...For vision-based mobile robot navigation, images of the same scene may undergo a general affine transformation in the case of significant viewpoint changes. So, a novel method for detecting affine invariant interest points is proposed to obtain the invariant local features, which is coined polynomial local orientation tensor(PLOT). The new detector is based on image local orientation tensor that is constructed from the polynomial expansion of image signal. Firstly, the properties of local orientation tensor of PLOT are analyzed, and a suitable tuning parameter of local orientation tensor is chosen so as to extract invariant features. The initial interest points are detected by local maxima search for the smaller eigenvalues of the orientation tensor. Then, an iterative procedure is used to allow the initial interest points to converge to affine invariant interest points and regions. The performances of this detector are evaluated on the repeatability criteria and recall versus 1-precision graphs, and then are compared with other existing approaches. Experimental results for PLOT show strong performance under affine transformation in the real-world conditions.展开更多
The shadows similar to the vehicle and the spots caused by vehicle lamps need to be accurately detected in the vehicle segmentation involved in the video-based traffic parameter measurement. Generally, the road surfac...The shadows similar to the vehicle and the spots caused by vehicle lamps need to be accurately detected in the vehicle segmentation involved in the video-based traffic parameter measurement. Generally, the road surface is different from the vehicle surface in the gray-level architecture. An invariant gray-level architecture-the extremum image in the changing illumination environment is derived and a novel algorithm is presented for detecting shadows and spots. The gray-level structure that is not sensitive to the illumination is employed in the algorithm and the road surface mistaken as vehicles can be removed.展开更多
Augmented solar images were used to research the adaptability of four representative image extraction and matching algorithms in space weather domain.These include the scale-invariant feature transform algorithm,speed...Augmented solar images were used to research the adaptability of four representative image extraction and matching algorithms in space weather domain.These include the scale-invariant feature transform algorithm,speeded-up robust features algorithm,binary robust invariant scalable keypoints algorithm,and oriented fast and rotated brief algorithm.The performance of these algorithms was estimated in terms of matching accuracy,feature point richness,and running time.The experiment result showed that no algorithm achieved high accuracy while keeping low running time,and all algorithms are not suitable for image feature extraction and matching of augmented solar images.To solve this problem,an improved method was proposed by using two-frame matching to utilize the accuracy advantage of the scale-invariant feature transform algorithm and the speed advantage of the oriented fast and rotated brief algorithm.Furthermore,our method and the four representative algorithms were applied to augmented solar images.Our application experiments proved that our method achieved a similar high recognition rate to the scale-invariant feature transform algorithm which is significantly higher than other algorithms.Our method also obtained a similar low running time to the oriented fast and rotated brief algorithm,which is significantly lower than other algorithms.展开更多
Goafs are threats to safe mining.Their imaging effects or those of other complex geological bodies are often poor in conventional reflected wave images.Hence,accurate detection of goafs has become an important problem...Goafs are threats to safe mining.Their imaging effects or those of other complex geological bodies are often poor in conventional reflected wave images.Hence,accurate detection of goafs has become an important problem,to be solved with a sense of urgency.Based on scattering theory,we used an equivalent offset method to extract Common Scattering Point gathers,in order to analyze different scattering wave characteristics between Common Scattering Point and Common Mid Point gathers and to compare stack and migration imaging effects.Our research results show that the scattering wave imaging method is more efficient than the conventional imaging method and is therefore a more effective imaging method for detecting goafs and other complex geological bodies.It has important implications for safe mining procedures and infrastructures.展开更多
In 3D urban visualization, large data volumes related to buildings are a major factor that limits the delivery and browsing speed in a web-based computer system. This paper proposes a new approach based on the level o...In 3D urban visualization, large data volumes related to buildings are a major factor that limits the delivery and browsing speed in a web-based computer system. This paper proposes a new approach based on the level of detail (LOD) technique advanced in 3D visualization in computer graphics. The key idea of LOD technique is to generalize details of object surfaces without losing details for delivery and displaying objects. This technique has been successfully used in visualizing one or a few multiple objects in films and other industries. However, applying the technique to 3D urban visualization requires an effective generalization method for urban buildings. Conventional two-dimensional (2D) generalization method at different scales provides a good generalization reference for 3D urban visualization, Yet, it is difficult to determine when and where to retrieve data for displaying buildings. To solve this problem, this paper defines an imaging scale point and image scale region for judging when and where to get the fight data for visualization. The results show that the average response time of view transformations is much decreased.展开更多
The principle objective of the paper is to study the acoustic radiation problem of the 3D space domain with control boundary. By using the conformal transformation theory, the Green's function for acoustic point s...The principle objective of the paper is to study the acoustic radiation problem of the 3D space domain with control boundary. By using the conformal transformation theory, the Green's function for acoustic point source in the control domain space is obtained. With it, the expression of acoustic radiation function of the control domain is formed. Discussion about the acoustic radiation of pulsating sphere in right-angle space is drawn in the end, including the acoustic radiation directivity effect by the boundary characteristics, acoustic radiation frequency and acoustic source location. Numerical results show that: for the lower frequency radiation, the infection of free surface is significant; for the high frequency radiation, the infection of location is significant on the contrary. The research provides a new method for boundary characteristic problem of the structural-acoustic acoustic.展开更多
Endogenous biomolecules in cells are the basis of all life activities.Directly visualizing the structural characteristics and dynamic behaviors of cellular biomolecules is signiffcant for understanding the molecular m...Endogenous biomolecules in cells are the basis of all life activities.Directly visualizing the structural characteristics and dynamic behaviors of cellular biomolecules is signiffcant for understanding the molecular mechanisms in various biological processes.Singlemolecule localization microscopy(SMLM)can circumvent the optical diffraction limit,achieving analysis of the ffne structures and biological processes in living cells with nanoscale resolution.However,the large size of traditional imaging probes prevents SMLM from accurately locating ffne structures and densely distributed biomolecules within cells.In recent years,nucleic acid probes have emerged as potential tools to replace conventional SMLM probes by virtue of their small size and high speciffcity.In addition,due to their programmability,nucleic acid probes with different conformations can be constructed via sequence design,further extending the application of SMLM in bioanalysis.Here,we discuss the design concepts of different conformational nucleic acid probes for SMLM and summarize the application of SMLM based on nucleic acid probes in the ffeld of biomolecules.Furthermore,we provide a summary and future perspectives of the nucleic acid probe-based SMLM technology,aiming to provide guidance for the acquisition of nanoscale information about cellular biological processes.展开更多
基金This project is supported by National Natural Science Foundation of China(No.50475176) and Municipal Natural Science Foundation of Beijing(No.KZ200511232019).
文摘A coding-based method to solve the image matching problems in stereovision measurement is presented. The solution is to add and append an identity ID to the retro-reflect point, so it can be identified efficiently under the complicated circumstances and has the characteristics of rotation, zooming, and deformation independence. Its design architecture and implementation process in details based on the theory of stereovision measurement are described. The method is effective on reducing processing data time, improving accuracy of image matching and automation of measuring system through experiments.
基金Projects(61203332,61203208) supported by the National Natural Science Foundation of China
文摘For vision-based mobile robot navigation, images of the same scene may undergo a general affine transformation in the case of significant viewpoint changes. So, a novel method for detecting affine invariant interest points is proposed to obtain the invariant local features, which is coined polynomial local orientation tensor(PLOT). The new detector is based on image local orientation tensor that is constructed from the polynomial expansion of image signal. Firstly, the properties of local orientation tensor of PLOT are analyzed, and a suitable tuning parameter of local orientation tensor is chosen so as to extract invariant features. The initial interest points are detected by local maxima search for the smaller eigenvalues of the orientation tensor. Then, an iterative procedure is used to allow the initial interest points to converge to affine invariant interest points and regions. The performances of this detector are evaluated on the repeatability criteria and recall versus 1-precision graphs, and then are compared with other existing approaches. Experimental results for PLOT show strong performance under affine transformation in the real-world conditions.
文摘The shadows similar to the vehicle and the spots caused by vehicle lamps need to be accurately detected in the vehicle segmentation involved in the video-based traffic parameter measurement. Generally, the road surface is different from the vehicle surface in the gray-level architecture. An invariant gray-level architecture-the extremum image in the changing illumination environment is derived and a novel algorithm is presented for detecting shadows and spots. The gray-level structure that is not sensitive to the illumination is employed in the algorithm and the road surface mistaken as vehicles can be removed.
基金Supported by the Key Research Program of the Chinese Academy of Sciences(ZDRE-KT-2021-3)。
文摘Augmented solar images were used to research the adaptability of four representative image extraction and matching algorithms in space weather domain.These include the scale-invariant feature transform algorithm,speeded-up robust features algorithm,binary robust invariant scalable keypoints algorithm,and oriented fast and rotated brief algorithm.The performance of these algorithms was estimated in terms of matching accuracy,feature point richness,and running time.The experiment result showed that no algorithm achieved high accuracy while keeping low running time,and all algorithms are not suitable for image feature extraction and matching of augmented solar images.To solve this problem,an improved method was proposed by using two-frame matching to utilize the accuracy advantage of the scale-invariant feature transform algorithm and the speed advantage of the oriented fast and rotated brief algorithm.Furthermore,our method and the four representative algorithms were applied to augmented solar images.Our application experiments proved that our method achieved a similar high recognition rate to the scale-invariant feature transform algorithm which is significantly higher than other algorithms.Our method also obtained a similar low running time to the oriented fast and rotated brief algorithm,which is significantly lower than other algorithms.
基金Financial support for this work,provided by the Key National Project(No.2008ZX05035)the State Science and Technology Support Program,the National Natural Science Foundation of China (Nos.40574057,40874054,40804026)the State Basic Research and Development Program of China(No.2007CB209406)
文摘Goafs are threats to safe mining.Their imaging effects or those of other complex geological bodies are often poor in conventional reflected wave images.Hence,accurate detection of goafs has become an important problem,to be solved with a sense of urgency.Based on scattering theory,we used an equivalent offset method to extract Common Scattering Point gathers,in order to analyze different scattering wave characteristics between Common Scattering Point and Common Mid Point gathers and to compare stack and migration imaging effects.Our research results show that the scattering wave imaging method is more efficient than the conventional imaging method and is therefore a more effective imaging method for detecting goafs and other complex geological bodies.It has important implications for safe mining procedures and infrastructures.
基金Project 40471109 supported by the National Natural Science Foundation of China
文摘In 3D urban visualization, large data volumes related to buildings are a major factor that limits the delivery and browsing speed in a web-based computer system. This paper proposes a new approach based on the level of detail (LOD) technique advanced in 3D visualization in computer graphics. The key idea of LOD technique is to generalize details of object surfaces without losing details for delivery and displaying objects. This technique has been successfully used in visualizing one or a few multiple objects in films and other industries. However, applying the technique to 3D urban visualization requires an effective generalization method for urban buildings. Conventional two-dimensional (2D) generalization method at different scales provides a good generalization reference for 3D urban visualization, Yet, it is difficult to determine when and where to retrieve data for displaying buildings. To solve this problem, this paper defines an imaging scale point and image scale region for judging when and where to get the fight data for visualization. The results show that the average response time of view transformations is much decreased.
文摘The principle objective of the paper is to study the acoustic radiation problem of the 3D space domain with control boundary. By using the conformal transformation theory, the Green's function for acoustic point source in the control domain space is obtained. With it, the expression of acoustic radiation function of the control domain is formed. Discussion about the acoustic radiation of pulsating sphere in right-angle space is drawn in the end, including the acoustic radiation directivity effect by the boundary characteristics, acoustic radiation frequency and acoustic source location. Numerical results show that: for the lower frequency radiation, the infection of free surface is significant; for the high frequency radiation, the infection of location is significant on the contrary. The research provides a new method for boundary characteristic problem of the structural-acoustic acoustic.
基金supported by the Natural Science Foundation of Hunan Province(2022JJ20005)National Natural Science Foundation of China(22174038,21925401,and 52221001),and Tencent Foundation.
文摘Endogenous biomolecules in cells are the basis of all life activities.Directly visualizing the structural characteristics and dynamic behaviors of cellular biomolecules is signiffcant for understanding the molecular mechanisms in various biological processes.Singlemolecule localization microscopy(SMLM)can circumvent the optical diffraction limit,achieving analysis of the ffne structures and biological processes in living cells with nanoscale resolution.However,the large size of traditional imaging probes prevents SMLM from accurately locating ffne structures and densely distributed biomolecules within cells.In recent years,nucleic acid probes have emerged as potential tools to replace conventional SMLM probes by virtue of their small size and high speciffcity.In addition,due to their programmability,nucleic acid probes with different conformations can be constructed via sequence design,further extending the application of SMLM in bioanalysis.Here,we discuss the design concepts of different conformational nucleic acid probes for SMLM and summarize the application of SMLM based on nucleic acid probes in the ffeld of biomolecules.Furthermore,we provide a summary and future perspectives of the nucleic acid probe-based SMLM technology,aiming to provide guidance for the acquisition of nanoscale information about cellular biological processes.