期刊文献+
共找到428篇文章
< 1 2 22 >
每页显示 20 50 100
Image Thresholding Using Two-Dimensional Tsallis Cross Entropy Based on Either Chaotic Particle Swarm Optimization or Decomposition
1
作者 吴一全 张晓杰 吴诗婳 《China Communications》 SCIE CSCD 2011年第7期111-121,共11页
The segmentation effect of Tsallis entropy method is superior to that of Shannon entropy method, and the computation speed of two-dimensional Shannon cross entropy method can be further improved by optimization. The e... The segmentation effect of Tsallis entropy method is superior to that of Shannon entropy method, and the computation speed of two-dimensional Shannon cross entropy method can be further improved by optimization. The existing two-dimensional Tsallis cross entropy method is not the strict two-dimensional extension. Thus two new methods of image thresholding using two-dimensional Tsallis cross entropy based on either Chaotic Particle Swarm Optimization (CPSO) or decomposition are proposed. The former uses CPSO to find the optimal threshold. The recursive algorithm is adopted to avoid the repetitive computation of fitness function in iterative procedure. The computing speed is improved greatly. The latter converts the two-dimensional computation into two one-dimensional spaces, which makes the computational complexity further reduced from O(L2) to O(L). The experimental results show that, compared with the proposed recently two-dimensional Shannon or Tsallis cross entropy method, the two new methods can achieve superior segmentation results and reduce running time greatly. 展开更多
关键词 signal and information processing image segmentation threshold selection two-dimensional Tsallis cross entropy chaotic particle swarm optimization DECOMPOSITION
下载PDF
Quantum watermarking based on threshold segmentation using quantum informational entropy
2
作者 Jia Luo Ri-Gui Zhou +2 位作者 Wen-Wen Hu YaoChong Li Gao-Feng Luo 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第4期116-122,共7页
We propose a new quantum watermarking scheme based on threshold selection using informational entropy of quantum image.The core idea of this scheme is to embed information into object and background of cover image in ... We propose a new quantum watermarking scheme based on threshold selection using informational entropy of quantum image.The core idea of this scheme is to embed information into object and background of cover image in different ways.First,a threshold method adopting the quantum informational entropy is employed to determine a threshold value.The threshold value can then be further used for segmenting the cover image to a binary image,which is an authentication key for embedding and extraction information.By a careful analysis of the quantum circuits of the scheme,that is,translating into the basic gate sequences which show the low complexity of the scheme.One of the simulation-based experimental results is entropy difference which measures the similarity of two images by calculating the difference in quantum image informational entropy between watermarked image and cover image.Furthermore,the analyses of peak signal-to-noise ratio,histogram and capacity of the scheme are also provided. 展开更多
关键词 quantum image watermarking threshold segmentation quantum informational entropy quantum circuit
下载PDF
Fast recursive algorithm for two-dimensional Tsallis entropy thresholding method 被引量:2
3
作者 Tang Yinggan Di Qiuyan Guan Xinping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第3期619-624,共6页
Recently, a two-dimensional (2-D) Tsallis entropy thresholding method has been proposed as a new method for image segmentation. But the computation complexity of 2-D Tsallis entropy is very large and becomes an obst... Recently, a two-dimensional (2-D) Tsallis entropy thresholding method has been proposed as a new method for image segmentation. But the computation complexity of 2-D Tsallis entropy is very large and becomes an obstacle to real time image processing systems. A fast recursive algorithm for 2-D Tsallis entropy thresholding is proposed. The key variables involved in calculating 2-D Tsallis entropy are written in recursive form. Thus, many repeating calculations are avoided and the computation complexity reduces to O(L2) from O(L4). The effectiveness of the proposed algorithm is illustrated by experimental results. 展开更多
关键词 image segmentation thresholdING Tsallis entropy fast recursive algorithm
下载PDF
A New Adaptive Image Segmentation Method 被引量:2
4
作者 沈庭芝 方子文 +1 位作者 吴玲艳 王飞 《Journal of Beijing Institute of Technology》 EI CAS 1998年第3期316-321,共6页
Aim Researching the optimal thieshold of image segmentation. M^ethods An adaptiveimages segmentation method based on the entropy of histogram of gray-level picture and genetic. algorithm (GA) was presental. Results ... Aim Researching the optimal thieshold of image segmentation. M^ethods An adaptiveimages segmentation method based on the entropy of histogram of gray-level picture and genetic. algorithm (GA) was presental. Results In our approach, the segmentation problem was formulated as an optimization problem and the fitness of GA which can efficiently search the segmentation parameter space was regarded as the quality criterion. Conclusion The methodcan be adapted for optimal behold segmentation. 展开更多
关键词 genetic algorithm image segmentation entropy of histogram segmenting threshold
下载PDF
An improved binarization algorithm of wood image defect segmentation based on non-uniform background 被引量:14
5
作者 Wei Luo Liping Sun 《Journal of Forestry Research》 SCIE CAS CSCD 2019年第4期1527-1533,共7页
In this study,an image binarization optimization algorithm,based on local threshold algorithms,is proposed because global and traditional local threshold segmentation algorithms cannot effectively address the problems... In this study,an image binarization optimization algorithm,based on local threshold algorithms,is proposed because global and traditional local threshold segmentation algorithms cannot effectively address the problems of nonuniform backgrounds of wood defect images.The proposed algorithm calculates the threshold by the mean,standard deviation and the extreme value of the window.The results indicate that this modified algorithm enhances the image segmentation for wood defect images on a complex background,which is much superior to the global threshold algorithm and the Bernsen algorithm,and slightly better than the Niblack algorithm and Sauvola algorithm.Compared with similar models,the algorithm proposed in this paper has higher segmentation accuracy,as high as 92.6%for wood defect images with a complex background. 展开更多
关键词 NON-UNIFORM BACKGROUND image segmentation BINARIZATION local threshold WOOD DEFECT
下载PDF
A Context Sensitive Multilevel Thresholding Using Swarm Based Algorithms 被引量:6
6
作者 Shreya Pare Anil Kumar +1 位作者 Varun Bajaj Girish Kumar Singh 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第6期1471-1486,共16页
In this paper, a comprehensive energy function is used to formulate the three most popular objective functions:Kapur's, Otsu and Tsalli's functions for performing effective multilevel color image thresholding.... In this paper, a comprehensive energy function is used to formulate the three most popular objective functions:Kapur's, Otsu and Tsalli's functions for performing effective multilevel color image thresholding. These new energy based objective criterions are further combined with the proficient search capability of swarm based algorithms to improve the efficiency and robustness. The proposed multilevel thresholding approach accurately determines the optimal threshold values by using generated energy curve, and acutely distinguishes different objects within the multi-channel complex images. The performance evaluation indices and experiments on different test images illustrate that Kapur's entropy aided with differential evolution and bacterial foraging optimization algorithm generates the most accurate and visually pleasing segmented images. 展开更多
关键词 COLOR image segmentation Kapur's entropy MULTILEVEL thresholdING OTSU method SWARM based optimization algorithms Tsalli's entropy
下载PDF
A Novel Method for Automated Lung Region Segmentation in Chest X-Ray Images
7
作者 Eri Matsuyama 《Journal of Biomedical Science and Engineering》 2021年第6期288-299,共12页
<span style="font-family:Verdana;">Detecting and segmenting the lung regions in chest X-ray images is an important part in artificial intelligence-based computer-aided diagnosis/detection (AI-CAD) syst... <span style="font-family:Verdana;">Detecting and segmenting the lung regions in chest X-ray images is an important part in artificial intelligence-based computer-aided diagnosis/detection (AI-CAD) systems for chest radiography. However, if the chest X-ray images themselves are used as training data for the AI-CAD system, the system might learn the irrelevant image-based information resulting in the decrease of system’s performance. In this study, we propose a lung region segmentation method that can automatically remove the shoulder and scapula regions, mediastinum, and diaphragm regions in advance from various chest X-ray images to be used as learning data. The proposed method consists of three main steps. First, employ the simple linear iterative clustering algorithm, the lazy snapping technique and local entropy filter to generate an entropy map. Second, apply morphological operations to the entropy map to obtain a lung mask. Third, perform automated segmentation of the lung field using the obtained mask. A total of 30 images were used for the experiments. In order to verify the effectiveness of the proposed method, two other texture maps, namely, the maps created from the standard deviation filtering and the range filtering, were used for comparison. As a result, the proposed method using the entropy map was able to appropriately remove the unnecessary regions. In addition, this method was able to remove the markers present in the image, but the other two methods could not. The experimental results have revealed that our proposed method is a highly generalizable and useful algorithm. We believe that this method might act an important role to enhance the performance of AI-CAD systems for chest X-ray images.</span> 展开更多
关键词 Chest X-Ray image segmentation thresholdING Simple Linear Iterative Clustering Lazy Snapping entropy Filtering MASKING AI-CAD
下载PDF
Two-Dimensional Entropy Method Based on Genetic Algorithm 被引量:4
8
作者 王蕾 沈庭芝 《Journal of Beijing Institute of Technology》 EI CAS 2002年第2期184-188,共5页
Two dimensional(2 D) entropy method has to pay the price of time when applied to image segmentation. So the genetic algorithm is introduced to improve the computational efficiency of the 2 D entropy method. The pro... Two dimensional(2 D) entropy method has to pay the price of time when applied to image segmentation. So the genetic algorithm is introduced to improve the computational efficiency of the 2 D entropy method. The proposed method uses both the gray value of a pixel and the local average gray value of an image. At the same time, the simple genetic algorithm is improved by using better reproduction and crossover operators. Thus the proposed method makes up the 2 D entropy method’s drawback of being time consuming, and yields satisfactory segmentation results. Experimental results show that the proposed method can save computational time when it provides good quality segmentation. 展开更多
关键词 thresholdING image segmentation entropy method genetic algorithm
下载PDF
Multilevel Image Thresholding Using Tsallis Entropy and Cooperative Pigeon-inspired Optimization Bionic Algorithm 被引量:6
9
作者 Yiin Wang Guangbin Zhang Xiaofeng Zhang 《Journal of Bionic Engineering》 SCIE EI CSCD 2019年第5期954-964,共11页
Multilevel thresholding is a simple and effective method in numerous image segmentation applications.In this paper,we propose a new multilevel thresholding method that uses cooperative pigeon-inspired optimization alg... Multilevel thresholding is a simple and effective method in numerous image segmentation applications.In this paper,we propose a new multilevel thresholding method that uses cooperative pigeon-inspired optimization algorithm with dynamic distance threshold(CPIOD)for boosting applicability and the practicality of the optimum thresholding techniques.Firstly,we employ the cooperative be havior in the map and compass operator of the pigeon-inspired optimization algorithm to overcome the"curse of dimensionality"and help the algorithm converge fast.Then,a distance threshold is added to maintain the diversity of the pigeon population and increase the vitality to avoid local optimization.Tsallis entropy is used as the objective function to evaluate the optimum thresholds for the considered gray scale images.Four benchmark images are applied to test the property and the stability of the proposed CPIOD algorithm and three other optimization algorithms in multilevel thresholding problems.Segmentation results of four optimization algorithms show that CPIOD algorithm can not only get higher quality segmentation results,but also has better stability. 展开更多
关键词 bionic algorithm MULTILEVEL thresholding TSALLIS entropy pigeon-inspired OPTIMIZATION image segmentation
原文传递
Automated Extraction for Water Bodies Using New Water Index from Landsat 8 OLI Images 被引量:4
10
作者 Pu YAN Yue FANG +2 位作者 Jie CHEN Gang WANG Qingwei TANG 《Journal of Geodesy and Geoinformation Science》 CSCD 2023年第1期59-75,共17页
The extraction of water bodies is essential for monitoring water resources,ecosystem services and the hydrological cycle,so analyzing water bodies from remote sensing images is necessary.The water index is designed to... The extraction of water bodies is essential for monitoring water resources,ecosystem services and the hydrological cycle,so analyzing water bodies from remote sensing images is necessary.The water index is designed to highlight water bodies in remote sensing images.We employ a new water index and digital image processing technology to extract water bodies automatically and accurately from Landsat 8 OLI images.Firstly,we preprocess Landsat 8 OLI images with radiometric calibration and atmospheric correction.Subsequently,we apply KT transformation,LBV transformation,AWEI nsh,and HIS transformation to the preprocessed image to calculate a new water index.Then,we perform linear feature enhancement and improve the local adaptive threshold segmentation method to extract small water bodies accurately.Meanwhile,we employ morphological enhancement and improve the local adaptive threshold segmentation method to extract large water bodies.Finally,we combine small and large water bodies to get complete water bodies.Compared with other traditional methods,our method has apparent advantages in water extraction,particularly in the extraction of small water bodies. 展开更多
关键词 water bodies extraction Landsat 8 OLI images water index improved local adaptive threshold segmentation linear feature enhancement
下载PDF
Multi-verse Optimizer with Rosenbrock and Diffusion Mechanisms for Multilevel Threshold Image Segmentation from COVID-19 Chest X-Ray Images 被引量:1
11
作者 Yan Han Weibin Chen +1 位作者 Ali Asghar Heidari Huiling Chen 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第3期1198-1262,共65页
Coronavirus Disease 2019(COVID-19)is the most severe epidemic that is prevalent all over the world.How quickly and accurately identifying COVID-19 is of great significance to controlling the spread speed of the epidem... Coronavirus Disease 2019(COVID-19)is the most severe epidemic that is prevalent all over the world.How quickly and accurately identifying COVID-19 is of great significance to controlling the spread speed of the epidemic.Moreover,it is essential to accurately and rapidly identify COVID-19 lesions by analyzing Chest X-ray images.As we all know,image segmentation is a critical stage in image processing and analysis.To achieve better image segmentation results,this paper proposes to improve the multi-verse optimizer algorithm using the Rosenbrock method and diffusion mechanism named RDMVO.Then utilizes RDMVO to calculate the maximum Kapur’s entropy for multilevel threshold image segmentation.This image segmentation scheme is called RDMVO-MIS.We ran two sets of experiments to test the performance of RDMVO and RDMVO-MIS.First,RDMVO was compared with other excellent peers on IEEE CEC2017 to test the performance of RDMVO on benchmark functions.Second,the image segmentation experiment was carried out using RDMVO-MIS,and some meta-heuristic algorithms were selected as comparisons.The test image dataset includes Berkeley images and COVID-19 Chest X-ray images.The experimental results verify that RDMVO is highly competitive in benchmark functions and image segmentation experiments compared with other meta-heuristic algorithms. 展开更多
关键词 COVID-19 Multilevel threshold image segmentation Kapur’s entropy Multi-verse optimizer Meta-heuristic algorithm Bionic algorithm
原文传递
Novel Adaptive Binarization Method for Degraded Document Images 被引量:1
12
作者 Siti Norul Huda Sheikh Abdullah Saad M.Ismail +1 位作者 Mohammad Kamrul Hasan Palaiahnakote Shivakumara 《Computers, Materials & Continua》 SCIE EI 2021年第6期3815-3832,共18页
Achieving a good recognition rate for degraded document images is difficult as degraded document images suffer from low contrast,bleedthrough,and nonuniform illumination effects.Unlike the existing baseline thresholdi... Achieving a good recognition rate for degraded document images is difficult as degraded document images suffer from low contrast,bleedthrough,and nonuniform illumination effects.Unlike the existing baseline thresholding techniques that use fixed thresholds and windows,the proposed method introduces a concept for obtaining dynamic windows according to the image content to achieve better binarization.To enhance a low-contrast image,we proposed a new mean histogram stretching method for suppressing noisy pixels in the background and,simultaneously,increasing pixel contrast at edges or near edges,which results in an enhanced image.For the enhanced image,we propose a new method for deriving adaptive local thresholds for dynamic windows.The dynamic window is derived by exploiting the advantage of Otsu thresholding.To assess the performance of the proposed method,we have used standard databases,namely,document image binarization contest(DIBCO),for experimentation.The comparative study on well-known existing methods indicates that the proposed method outperforms the existing methods in terms of quality and recognition rate. 展开更多
关键词 global and local thresholding adaptive binarization degraded document image image histogram document image binarization contest
下载PDF
月球探测器鲁棒环形山检测及光学导航方法
13
作者 吴鹏 穆荣军 +1 位作者 邓雁鹏 崔乃刚 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第2期238-246,共9页
针对月球探测器环形山检测方法受光照影响、鲁棒性差的问题,本文提出一种基于极大熵阈值三值化的鲁棒环形山检测算法。采用不同滤波核对图像进行去噪平滑,然后对处理后的图像进行极大熵阈值分割、将图像信息三值化,去除图像对光源的敏感... 针对月球探测器环形山检测方法受光照影响、鲁棒性差的问题,本文提出一种基于极大熵阈值三值化的鲁棒环形山检测算法。采用不同滤波核对图像进行去噪平滑,然后对处理后的图像进行极大熵阈值分割、将图像信息三值化,去除图像对光源的敏感性,同时最大程度保留图像信息;提出一种归一化多指标约束环形山匹配和拟合方法完成环形山提取,将环形山提取算法应用于光学导航中进行打靶实验验证算法实时性表现。仿真结果表明:与传统基于形态学或自适应边缘检测的方法相比,本文方法在较大尺度条件下提取出连续、光滑的环形山边缘,有效环形山数量提升35%以上,同时实时性更好、计算消耗降低40%;基于鲁棒环形山提取的光学导航算法实时性更好。 展开更多
关键词 环形山检测 极大熵阈值 月球探测 光学导航 障碍感知与规避 图像分割 月球探测器 信息熵
下载PDF
不均匀光照下的合作目标图像分割方法
14
作者 黄亮 郝颖明 《计算机应用》 CSCD 北大核心 2024年第S01期229-234,共6页
针对复杂光照条件下目标测量中,合作目标图像很难被快速、准确分割这一难题,将模糊积分引入图像分割领域,改进传统的局部自适应阈值算法。首先,采用面积求和表(SAT)算法求出合作目标图像的积分图像;其次,根据模糊测度和所选择的离散模... 针对复杂光照条件下目标测量中,合作目标图像很难被快速、准确分割这一难题,将模糊积分引入图像分割领域,改进传统的局部自适应阈值算法。首先,采用面积求和表(SAT)算法求出合作目标图像的积分图像;其次,根据模糊测度和所选择的离散模糊积分公式计算模糊积分图像;最后,根据模糊积分图像计算每个像素点的阈值,对原图像进行二值化。实验结果表明,改进后的基于模糊积分的局部自适应阈值算法分割的平均结构相似性(SSIM)指标相较于改进前普遍提升了10%~30%,分割效率大幅提升,最终成功地分割合作目标图像。 展开更多
关键词 合作目标图像 阈值分割 局部自适应阈值分割 模糊测度 模糊积分
下载PDF
熵最优与改进SCA的图像分割及其图像识别应用
15
作者 孙博玲 孙博文 《计算机工程与设计》 北大核心 2024年第5期1516-1524,共9页
针对传统图像分割效率低、精度差的不足,提出一种混合变异正余弦算法的多阈值图像分割方法。为提高SCA算法的寻优性能,设计拉丁超立方种群初始化改进种群多样性;以非线性转换因子动态调节算法搜索能力;融入惯性权重机制提升算法全局寻优... 针对传统图像分割效率低、精度差的不足,提出一种混合变异正余弦算法的多阈值图像分割方法。为提高SCA算法的寻优性能,设计拉丁超立方种群初始化改进种群多样性;以非线性转换因子动态调节算法搜索能力;融入惯性权重机制提升算法全局寻优;结合高斯和拉普拉斯分布混合变异对个体扰动,使算法跳离局部最优。将Cross熵作为适应度函数,利用HMSCA求解分割阈值。实验结果表明,该算法可以提升图像分割精度和效率。将其应用于火灾图像识别,能够实现火焰源与背景分离,得到更好的分割效果。 展开更多
关键词 图像分割 正余弦算法 拉丁超立方 混合变异 多阈值 图像熵 火灾图像
下载PDF
改进?鱼优化算法和熵测度的图像多阈值分割 被引量:1
16
作者 刘庆鑫 李霓 +1 位作者 贾鹤鸣 齐琦 《智能系统学报》 CSCD 北大核心 2024年第2期381-391,共11页
针对传统图像多阈值分割方法存在效率低、分割质量差等问题,提出一种改进?鱼优化算法并结合熵测度(weight lens remora optimization algorithm,WLROA)的图像多阈值分割方法。针对?鱼优化算法易陷入局部极值等缺陷,引入透镜成像反向学... 针对传统图像多阈值分割方法存在效率低、分割质量差等问题,提出一种改进?鱼优化算法并结合熵测度(weight lens remora optimization algorithm,WLROA)的图像多阈值分割方法。针对?鱼优化算法易陷入局部极值等缺陷,引入透镜成像反向学习策略,生成透镜反向解来增加种群多样性,进而提高算法跳出局部极值能力;提出一种自适应权重因子,对个体位置进行自适应扰动,提高算法探索能力。以最小化交叉熵作为优化目标,利用WLROA确定最小交叉熵并获得相应分割阈值。选取部分伯克利大学分割数据集图像和遥感图像测试提出算法的分割性能,测试结果表明,WLROA与其他知名算法相比具有更好的分割效果,能够有效实现复杂图像的精确处理。 展开更多
关键词 图像处理 多阈值分割 ?鱼优化算法 最小交叉熵 透镜成像反向学习 自适应权重因子 全局优化 遥感图像
下载PDF
基于灰狼自适应阈值分割和改进模糊增强的红外图像NSCT增强算法 被引量:1
17
作者 许霄霄 张昕 +2 位作者 姚强 朱佳祥 王昕 《电测与仪表》 北大核心 2024年第1期46-51,共6页
研究低成本和便携的红外成像技术是最近几年带电检测的发展趋势,为减少红外检测环境、红外传感器以及其他因素的影响,解决红外检测中红外图像含噪声干扰、模糊和对比度低的问题,文章设计了一种基于灰狼自适应阈值分割和改进模糊增强的... 研究低成本和便携的红外成像技术是最近几年带电检测的发展趋势,为减少红外检测环境、红外传感器以及其他因素的影响,解决红外检测中红外图像含噪声干扰、模糊和对比度低的问题,文章设计了一种基于灰狼自适应阈值分割和改进模糊增强的红外图像NSCT增强算法。对原始红外图像进行NSCT域变换;变换后含有噪声的高频分量采用VT去噪后,接着采用改进模糊增强处理;对变换后含有电力设备主体的低频分量进行灰狼自适应阈值分割为背景和前景部分,随后分别进行增强处理;最后将处理后的各分量进行逆NSCT变换。经对比应用,验证了该算法应用在变电站电力设备红外检测上的优越性:文章算法与其他算法相比在边缘强度、信息熵、对比度、标准差、峰值信噪比五类评价指标上的涨幅至少为3.94%、2.16%、9.86%、7.45%、21.86%。文章算法处理后的红外图像符合人眼视觉效果,更易于人眼识别故障,有利于电力设备热故障的检测与故障定位。 展开更多
关键词 红外检测 红外图像 灰狼自适应阈值分割 改进模糊增强 NSCT变换
下载PDF
基于全局阈值分割的泥沙粒度分布测量及校正
18
作者 耿晶晶 唐立模 +2 位作者 陈红 林青炜 刘双洪 《泥沙研究》 CAS CSCD 北大核心 2024年第5期25-33,共9页
针对泥沙颗粒灰度图像中的噪声和边缘模糊问题,提出了一种新的基于全局阈值分割方法。通过利用背景像素的正态分布特征和像素灰度值的突变点作为参考阈值,实现了有效的阈值分割,进而采用SURF检测和FLANN匹配方法验证了图像分割的准确性... 针对泥沙颗粒灰度图像中的噪声和边缘模糊问题,提出了一种新的基于全局阈值分割方法。通过利用背景像素的正态分布特征和像素灰度值的突变点作为参考阈值,实现了有效的阈值分割,进而采用SURF检测和FLANN匹配方法验证了图像分割的准确性和可靠性。构建了泥沙颗粒形状测定系统,通过线性修正方法对系统误差进行了修正,将误差范围控制在±0.01 mm以内。进一步将该方法与马尔文激光粒度仪法进行了比较分析。结果表明:在D50—D60尺度下,两种方法的测量结果基本一致;当颗粒粒径小于D50时,测量结果偏大,大于D60时,测量结果偏小,平均百分位偏差在±0.02 mm范围内,相对百分位偏差在7%以内,证明了该方法的可靠性。 展开更多
关键词 图像识别 全局阈值分割 泥沙粒径级配 激光粒度仪
下载PDF
基于增强教与学优化算法的图像分割
19
作者 李理 周湘贞 《贵阳学院学报(自然科学版)》 2024年第2期105-109,共5页
为提高分割图像的质量和提高计算效率,提出了一种基于增强教与学优化算法(ETLBO)的图像分割方法。所提ETLBO利用逆向学习技术,提高全局搜索速度和优化准确度,改进全局寻优性能,并保留了经典课程教与学优化算法计算成本低、稳定性高的优... 为提高分割图像的质量和提高计算效率,提出了一种基于增强教与学优化算法(ETLBO)的图像分割方法。所提ETLBO利用逆向学习技术,提高全局搜索速度和优化准确度,改进全局寻优性能,并保留了经典课程教与学优化算法计算成本低、稳定性高的优点。此外,采用最小交叉熵(MCE)的概念,将图像分割的多级阈值化问题转换为优化问题,利用ETLBO得到多级最优阈值组合,实现分割图像和原始图像之间的交叉熵最小化,提高分割图像的视觉质量。实验结果表明,所提方法在分割图像的均匀性和适应度方面的性能优于其他先进方法,且计算效率更高。 展开更多
关键词 图像分割 多级阈值化 最小交叉熵 教与学优化 逆向学习技术
下载PDF
基于改进蜉蝣算法优化多阈值图像分割
20
作者 贺航 许连杰 +2 位作者 李高源 吕容飞 王喜良 《科学技术与工程》 北大核心 2024年第12期5059-5068,共10页
针对图像多阈值分割中存在分割效率低、计算时间长以及精度不高等问题,提出了一种基于改进蜉蝣算法的多阈值图像分割算法。首先,在初始化阶段引入类随机采样方法中的Sobol序列,增强种群的遍历性和多样性;其次,提出一种自适应非线性惯性... 针对图像多阈值分割中存在分割效率低、计算时间长以及精度不高等问题,提出了一种基于改进蜉蝣算法的多阈值图像分割算法。首先,在初始化阶段引入类随机采样方法中的Sobol序列,增强种群的遍历性和多样性;其次,提出一种自适应非线性惯性权重,平衡了全局与局部寻优能力,提高了算法的收敛效率,利于种群向最优解逼近;最后,采用指数熵作为计算适应度的目标函数,通过改进蜉蝣算法对图像分割的多阈值组合进行寻优,确定最优分割阈值。为了验证该改进算法的有效性,选择了伯克利图像来进行分割验证,并与其他智能算法进行比较。实验结果表明:该改进算法在分割准确性、计算时间、结构衡量指标(structure similarity index measure,SSIM)和峰值信噪比(peak signal-to-noise ratio,PSNR)上均优于对比算法,能快速有效地解决复杂多目标图像的多阈值分割问题,具有较强的工程实用性。 展开更多
关键词 多阈值图像分割 蜉蝣算法 Sobol序列 惯性权重 指数熵 智能优化算法
下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部