The segmentation effect of Tsallis entropy method is superior to that of Shannon entropy method, and the computation speed of two-dimensional Shannon cross entropy method can be further improved by optimization. The e...The segmentation effect of Tsallis entropy method is superior to that of Shannon entropy method, and the computation speed of two-dimensional Shannon cross entropy method can be further improved by optimization. The existing two-dimensional Tsallis cross entropy method is not the strict two-dimensional extension. Thus two new methods of image thresholding using two-dimensional Tsallis cross entropy based on either Chaotic Particle Swarm Optimization (CPSO) or decomposition are proposed. The former uses CPSO to find the optimal threshold. The recursive algorithm is adopted to avoid the repetitive computation of fitness function in iterative procedure. The computing speed is improved greatly. The latter converts the two-dimensional computation into two one-dimensional spaces, which makes the computational complexity further reduced from O(L2) to O(L). The experimental results show that, compared with the proposed recently two-dimensional Shannon or Tsallis cross entropy method, the two new methods can achieve superior segmentation results and reduce running time greatly.展开更多
We propose a new quantum watermarking scheme based on threshold selection using informational entropy of quantum image.The core idea of this scheme is to embed information into object and background of cover image in ...We propose a new quantum watermarking scheme based on threshold selection using informational entropy of quantum image.The core idea of this scheme is to embed information into object and background of cover image in different ways.First,a threshold method adopting the quantum informational entropy is employed to determine a threshold value.The threshold value can then be further used for segmenting the cover image to a binary image,which is an authentication key for embedding and extraction information.By a careful analysis of the quantum circuits of the scheme,that is,translating into the basic gate sequences which show the low complexity of the scheme.One of the simulation-based experimental results is entropy difference which measures the similarity of two images by calculating the difference in quantum image informational entropy between watermarked image and cover image.Furthermore,the analyses of peak signal-to-noise ratio,histogram and capacity of the scheme are also provided.展开更多
Recently, a two-dimensional (2-D) Tsallis entropy thresholding method has been proposed as a new method for image segmentation. But the computation complexity of 2-D Tsallis entropy is very large and becomes an obst...Recently, a two-dimensional (2-D) Tsallis entropy thresholding method has been proposed as a new method for image segmentation. But the computation complexity of 2-D Tsallis entropy is very large and becomes an obstacle to real time image processing systems. A fast recursive algorithm for 2-D Tsallis entropy thresholding is proposed. The key variables involved in calculating 2-D Tsallis entropy are written in recursive form. Thus, many repeating calculations are avoided and the computation complexity reduces to O(L2) from O(L4). The effectiveness of the proposed algorithm is illustrated by experimental results.展开更多
Aim Researching the optimal thieshold of image segmentation. M^ethods An adaptiveimages segmentation method based on the entropy of histogram of gray-level picture and genetic. algorithm (GA) was presental. Results ...Aim Researching the optimal thieshold of image segmentation. M^ethods An adaptiveimages segmentation method based on the entropy of histogram of gray-level picture and genetic. algorithm (GA) was presental. Results In our approach, the segmentation problem was formulated as an optimization problem and the fitness of GA which can efficiently search the segmentation parameter space was regarded as the quality criterion. Conclusion The methodcan be adapted for optimal behold segmentation.展开更多
In this study,an image binarization optimization algorithm,based on local threshold algorithms,is proposed because global and traditional local threshold segmentation algorithms cannot effectively address the problems...In this study,an image binarization optimization algorithm,based on local threshold algorithms,is proposed because global and traditional local threshold segmentation algorithms cannot effectively address the problems of nonuniform backgrounds of wood defect images.The proposed algorithm calculates the threshold by the mean,standard deviation and the extreme value of the window.The results indicate that this modified algorithm enhances the image segmentation for wood defect images on a complex background,which is much superior to the global threshold algorithm and the Bernsen algorithm,and slightly better than the Niblack algorithm and Sauvola algorithm.Compared with similar models,the algorithm proposed in this paper has higher segmentation accuracy,as high as 92.6%for wood defect images with a complex background.展开更多
In this paper, a comprehensive energy function is used to formulate the three most popular objective functions:Kapur's, Otsu and Tsalli's functions for performing effective multilevel color image thresholding....In this paper, a comprehensive energy function is used to formulate the three most popular objective functions:Kapur's, Otsu and Tsalli's functions for performing effective multilevel color image thresholding. These new energy based objective criterions are further combined with the proficient search capability of swarm based algorithms to improve the efficiency and robustness. The proposed multilevel thresholding approach accurately determines the optimal threshold values by using generated energy curve, and acutely distinguishes different objects within the multi-channel complex images. The performance evaluation indices and experiments on different test images illustrate that Kapur's entropy aided with differential evolution and bacterial foraging optimization algorithm generates the most accurate and visually pleasing segmented images.展开更多
<span style="font-family:Verdana;">Detecting and segmenting the lung regions in chest X-ray images is an important part in artificial intelligence-based computer-aided diagnosis/detection (AI-CAD) syst...<span style="font-family:Verdana;">Detecting and segmenting the lung regions in chest X-ray images is an important part in artificial intelligence-based computer-aided diagnosis/detection (AI-CAD) systems for chest radiography. However, if the chest X-ray images themselves are used as training data for the AI-CAD system, the system might learn the irrelevant image-based information resulting in the decrease of system’s performance. In this study, we propose a lung region segmentation method that can automatically remove the shoulder and scapula regions, mediastinum, and diaphragm regions in advance from various chest X-ray images to be used as learning data. The proposed method consists of three main steps. First, employ the simple linear iterative clustering algorithm, the lazy snapping technique and local entropy filter to generate an entropy map. Second, apply morphological operations to the entropy map to obtain a lung mask. Third, perform automated segmentation of the lung field using the obtained mask. A total of 30 images were used for the experiments. In order to verify the effectiveness of the proposed method, two other texture maps, namely, the maps created from the standard deviation filtering and the range filtering, were used for comparison. As a result, the proposed method using the entropy map was able to appropriately remove the unnecessary regions. In addition, this method was able to remove the markers present in the image, but the other two methods could not. The experimental results have revealed that our proposed method is a highly generalizable and useful algorithm. We believe that this method might act an important role to enhance the performance of AI-CAD systems for chest X-ray images.</span>展开更多
Two dimensional(2 D) entropy method has to pay the price of time when applied to image segmentation. So the genetic algorithm is introduced to improve the computational efficiency of the 2 D entropy method. The pro...Two dimensional(2 D) entropy method has to pay the price of time when applied to image segmentation. So the genetic algorithm is introduced to improve the computational efficiency of the 2 D entropy method. The proposed method uses both the gray value of a pixel and the local average gray value of an image. At the same time, the simple genetic algorithm is improved by using better reproduction and crossover operators. Thus the proposed method makes up the 2 D entropy method’s drawback of being time consuming, and yields satisfactory segmentation results. Experimental results show that the proposed method can save computational time when it provides good quality segmentation.展开更多
Multilevel thresholding is a simple and effective method in numerous image segmentation applications.In this paper,we propose a new multilevel thresholding method that uses cooperative pigeon-inspired optimization alg...Multilevel thresholding is a simple and effective method in numerous image segmentation applications.In this paper,we propose a new multilevel thresholding method that uses cooperative pigeon-inspired optimization algorithm with dynamic distance threshold(CPIOD)for boosting applicability and the practicality of the optimum thresholding techniques.Firstly,we employ the cooperative be havior in the map and compass operator of the pigeon-inspired optimization algorithm to overcome the"curse of dimensionality"and help the algorithm converge fast.Then,a distance threshold is added to maintain the diversity of the pigeon population and increase the vitality to avoid local optimization.Tsallis entropy is used as the objective function to evaluate the optimum thresholds for the considered gray scale images.Four benchmark images are applied to test the property and the stability of the proposed CPIOD algorithm and three other optimization algorithms in multilevel thresholding problems.Segmentation results of four optimization algorithms show that CPIOD algorithm can not only get higher quality segmentation results,but also has better stability.展开更多
The extraction of water bodies is essential for monitoring water resources,ecosystem services and the hydrological cycle,so analyzing water bodies from remote sensing images is necessary.The water index is designed to...The extraction of water bodies is essential for monitoring water resources,ecosystem services and the hydrological cycle,so analyzing water bodies from remote sensing images is necessary.The water index is designed to highlight water bodies in remote sensing images.We employ a new water index and digital image processing technology to extract water bodies automatically and accurately from Landsat 8 OLI images.Firstly,we preprocess Landsat 8 OLI images with radiometric calibration and atmospheric correction.Subsequently,we apply KT transformation,LBV transformation,AWEI nsh,and HIS transformation to the preprocessed image to calculate a new water index.Then,we perform linear feature enhancement and improve the local adaptive threshold segmentation method to extract small water bodies accurately.Meanwhile,we employ morphological enhancement and improve the local adaptive threshold segmentation method to extract large water bodies.Finally,we combine small and large water bodies to get complete water bodies.Compared with other traditional methods,our method has apparent advantages in water extraction,particularly in the extraction of small water bodies.展开更多
Coronavirus Disease 2019(COVID-19)is the most severe epidemic that is prevalent all over the world.How quickly and accurately identifying COVID-19 is of great significance to controlling the spread speed of the epidem...Coronavirus Disease 2019(COVID-19)is the most severe epidemic that is prevalent all over the world.How quickly and accurately identifying COVID-19 is of great significance to controlling the spread speed of the epidemic.Moreover,it is essential to accurately and rapidly identify COVID-19 lesions by analyzing Chest X-ray images.As we all know,image segmentation is a critical stage in image processing and analysis.To achieve better image segmentation results,this paper proposes to improve the multi-verse optimizer algorithm using the Rosenbrock method and diffusion mechanism named RDMVO.Then utilizes RDMVO to calculate the maximum Kapur’s entropy for multilevel threshold image segmentation.This image segmentation scheme is called RDMVO-MIS.We ran two sets of experiments to test the performance of RDMVO and RDMVO-MIS.First,RDMVO was compared with other excellent peers on IEEE CEC2017 to test the performance of RDMVO on benchmark functions.Second,the image segmentation experiment was carried out using RDMVO-MIS,and some meta-heuristic algorithms were selected as comparisons.The test image dataset includes Berkeley images and COVID-19 Chest X-ray images.The experimental results verify that RDMVO is highly competitive in benchmark functions and image segmentation experiments compared with other meta-heuristic algorithms.展开更多
Achieving a good recognition rate for degraded document images is difficult as degraded document images suffer from low contrast,bleedthrough,and nonuniform illumination effects.Unlike the existing baseline thresholdi...Achieving a good recognition rate for degraded document images is difficult as degraded document images suffer from low contrast,bleedthrough,and nonuniform illumination effects.Unlike the existing baseline thresholding techniques that use fixed thresholds and windows,the proposed method introduces a concept for obtaining dynamic windows according to the image content to achieve better binarization.To enhance a low-contrast image,we proposed a new mean histogram stretching method for suppressing noisy pixels in the background and,simultaneously,increasing pixel contrast at edges or near edges,which results in an enhanced image.For the enhanced image,we propose a new method for deriving adaptive local thresholds for dynamic windows.The dynamic window is derived by exploiting the advantage of Otsu thresholding.To assess the performance of the proposed method,we have used standard databases,namely,document image binarization contest(DIBCO),for experimentation.The comparative study on well-known existing methods indicates that the proposed method outperforms the existing methods in terms of quality and recognition rate.展开更多
基金supported by National Natural Science Foundation of China under Grant No.60872065Open Foundation of State Key Laboratory for Novel Software Technology at Nanjing University under Grant No.KFKT2010B17
文摘The segmentation effect of Tsallis entropy method is superior to that of Shannon entropy method, and the computation speed of two-dimensional Shannon cross entropy method can be further improved by optimization. The existing two-dimensional Tsallis cross entropy method is not the strict two-dimensional extension. Thus two new methods of image thresholding using two-dimensional Tsallis cross entropy based on either Chaotic Particle Swarm Optimization (CPSO) or decomposition are proposed. The former uses CPSO to find the optimal threshold. The recursive algorithm is adopted to avoid the repetitive computation of fitness function in iterative procedure. The computing speed is improved greatly. The latter converts the two-dimensional computation into two one-dimensional spaces, which makes the computational complexity further reduced from O(L2) to O(L). The experimental results show that, compared with the proposed recently two-dimensional Shannon or Tsallis cross entropy method, the two new methods can achieve superior segmentation results and reduce running time greatly.
基金supported by the National Natural Science Foundation of China(Grant No.6217070290)the Shanghai Science and Technology Project(Grant Nos.21JC1402800 and 20040501500)+2 种基金the Scientific Research Fund of Hunan Provincial Education Department(Grant No.21A0470)the Hunan Provincial Natural Science Foundation of China(Grant No.2020JJ4557)Top-Notch Innovative Talent Program for Postgraduate Students of Shanghai Maritime University(Grant No.2021YBR009)。
文摘We propose a new quantum watermarking scheme based on threshold selection using informational entropy of quantum image.The core idea of this scheme is to embed information into object and background of cover image in different ways.First,a threshold method adopting the quantum informational entropy is employed to determine a threshold value.The threshold value can then be further used for segmenting the cover image to a binary image,which is an authentication key for embedding and extraction information.By a careful analysis of the quantum circuits of the scheme,that is,translating into the basic gate sequences which show the low complexity of the scheme.One of the simulation-based experimental results is entropy difference which measures the similarity of two images by calculating the difference in quantum image informational entropy between watermarked image and cover image.Furthermore,the analyses of peak signal-to-noise ratio,histogram and capacity of the scheme are also provided.
基金supported by the National Natural Science Foundation of China for Distinguished Young Scholars(60525303)Doctoral Foundation of Yanshan University(B243).
文摘Recently, a two-dimensional (2-D) Tsallis entropy thresholding method has been proposed as a new method for image segmentation. But the computation complexity of 2-D Tsallis entropy is very large and becomes an obstacle to real time image processing systems. A fast recursive algorithm for 2-D Tsallis entropy thresholding is proposed. The key variables involved in calculating 2-D Tsallis entropy are written in recursive form. Thus, many repeating calculations are avoided and the computation complexity reduces to O(L2) from O(L4). The effectiveness of the proposed algorithm is illustrated by experimental results.
文摘Aim Researching the optimal thieshold of image segmentation. M^ethods An adaptiveimages segmentation method based on the entropy of histogram of gray-level picture and genetic. algorithm (GA) was presental. Results In our approach, the segmentation problem was formulated as an optimization problem and the fitness of GA which can efficiently search the segmentation parameter space was regarded as the quality criterion. Conclusion The methodcan be adapted for optimal behold segmentation.
基金supported by National Forestry Public Welfare Industry Scientific Research Special Subsidy Project(201304502)
文摘In this study,an image binarization optimization algorithm,based on local threshold algorithms,is proposed because global and traditional local threshold segmentation algorithms cannot effectively address the problems of nonuniform backgrounds of wood defect images.The proposed algorithm calculates the threshold by the mean,standard deviation and the extreme value of the window.The results indicate that this modified algorithm enhances the image segmentation for wood defect images on a complex background,which is much superior to the global threshold algorithm and the Bernsen algorithm,and slightly better than the Niblack algorithm and Sauvola algorithm.Compared with similar models,the algorithm proposed in this paper has higher segmentation accuracy,as high as 92.6%for wood defect images with a complex background.
文摘In this paper, a comprehensive energy function is used to formulate the three most popular objective functions:Kapur's, Otsu and Tsalli's functions for performing effective multilevel color image thresholding. These new energy based objective criterions are further combined with the proficient search capability of swarm based algorithms to improve the efficiency and robustness. The proposed multilevel thresholding approach accurately determines the optimal threshold values by using generated energy curve, and acutely distinguishes different objects within the multi-channel complex images. The performance evaluation indices and experiments on different test images illustrate that Kapur's entropy aided with differential evolution and bacterial foraging optimization algorithm generates the most accurate and visually pleasing segmented images.
文摘<span style="font-family:Verdana;">Detecting and segmenting the lung regions in chest X-ray images is an important part in artificial intelligence-based computer-aided diagnosis/detection (AI-CAD) systems for chest radiography. However, if the chest X-ray images themselves are used as training data for the AI-CAD system, the system might learn the irrelevant image-based information resulting in the decrease of system’s performance. In this study, we propose a lung region segmentation method that can automatically remove the shoulder and scapula regions, mediastinum, and diaphragm regions in advance from various chest X-ray images to be used as learning data. The proposed method consists of three main steps. First, employ the simple linear iterative clustering algorithm, the lazy snapping technique and local entropy filter to generate an entropy map. Second, apply morphological operations to the entropy map to obtain a lung mask. Third, perform automated segmentation of the lung field using the obtained mask. A total of 30 images were used for the experiments. In order to verify the effectiveness of the proposed method, two other texture maps, namely, the maps created from the standard deviation filtering and the range filtering, were used for comparison. As a result, the proposed method using the entropy map was able to appropriately remove the unnecessary regions. In addition, this method was able to remove the markers present in the image, but the other two methods could not. The experimental results have revealed that our proposed method is a highly generalizable and useful algorithm. We believe that this method might act an important role to enhance the performance of AI-CAD systems for chest X-ray images.</span>
文摘Two dimensional(2 D) entropy method has to pay the price of time when applied to image segmentation. So the genetic algorithm is introduced to improve the computational efficiency of the 2 D entropy method. The proposed method uses both the gray value of a pixel and the local average gray value of an image. At the same time, the simple genetic algorithm is improved by using better reproduction and crossover operators. Thus the proposed method makes up the 2 D entropy method’s drawback of being time consuming, and yields satisfactory segmentation results. Experimental results show that the proposed method can save computational time when it provides good quality segmentation.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.11574191 and 11674208).
文摘Multilevel thresholding is a simple and effective method in numerous image segmentation applications.In this paper,we propose a new multilevel thresholding method that uses cooperative pigeon-inspired optimization algorithm with dynamic distance threshold(CPIOD)for boosting applicability and the practicality of the optimum thresholding techniques.Firstly,we employ the cooperative be havior in the map and compass operator of the pigeon-inspired optimization algorithm to overcome the"curse of dimensionality"and help the algorithm converge fast.Then,a distance threshold is added to maintain the diversity of the pigeon population and increase the vitality to avoid local optimization.Tsallis entropy is used as the objective function to evaluate the optimum thresholds for the considered gray scale images.Four benchmark images are applied to test the property and the stability of the proposed CPIOD algorithm and three other optimization algorithms in multilevel thresholding problems.Segmentation results of four optimization algorithms show that CPIOD algorithm can not only get higher quality segmentation results,but also has better stability.
基金Auhui Provincial Key Research and Development Project(No.202004a07020050)National Natural Science Foundation of China Youth Program(No.61901006)。
文摘The extraction of water bodies is essential for monitoring water resources,ecosystem services and the hydrological cycle,so analyzing water bodies from remote sensing images is necessary.The water index is designed to highlight water bodies in remote sensing images.We employ a new water index and digital image processing technology to extract water bodies automatically and accurately from Landsat 8 OLI images.Firstly,we preprocess Landsat 8 OLI images with radiometric calibration and atmospheric correction.Subsequently,we apply KT transformation,LBV transformation,AWEI nsh,and HIS transformation to the preprocessed image to calculate a new water index.Then,we perform linear feature enhancement and improve the local adaptive threshold segmentation method to extract small water bodies accurately.Meanwhile,we employ morphological enhancement and improve the local adaptive threshold segmentation method to extract large water bodies.Finally,we combine small and large water bodies to get complete water bodies.Compared with other traditional methods,our method has apparent advantages in water extraction,particularly in the extraction of small water bodies.
基金supported by the Natural Science Foundation of Zhejiang Province(LY21F020001,LZ22F020005)National Natural Science Foundation of China(62076185,U1809209)+1 种基金Science and Technology Plan Project of Wenzhou,China(ZG2020026)We also acknowledge the respected editor and reviewers'efforts to enhance the quality of this research.
文摘Coronavirus Disease 2019(COVID-19)is the most severe epidemic that is prevalent all over the world.How quickly and accurately identifying COVID-19 is of great significance to controlling the spread speed of the epidemic.Moreover,it is essential to accurately and rapidly identify COVID-19 lesions by analyzing Chest X-ray images.As we all know,image segmentation is a critical stage in image processing and analysis.To achieve better image segmentation results,this paper proposes to improve the multi-verse optimizer algorithm using the Rosenbrock method and diffusion mechanism named RDMVO.Then utilizes RDMVO to calculate the maximum Kapur’s entropy for multilevel threshold image segmentation.This image segmentation scheme is called RDMVO-MIS.We ran two sets of experiments to test the performance of RDMVO and RDMVO-MIS.First,RDMVO was compared with other excellent peers on IEEE CEC2017 to test the performance of RDMVO on benchmark functions.Second,the image segmentation experiment was carried out using RDMVO-MIS,and some meta-heuristic algorithms were selected as comparisons.The test image dataset includes Berkeley images and COVID-19 Chest X-ray images.The experimental results verify that RDMVO is highly competitive in benchmark functions and image segmentation experiments compared with other meta-heuristic algorithms.
基金funded by the Ministry of Higher Education,Malaysia for providing facilities and financial support under the Long Research Grant Scheme LRGS-1-2019-UKM-UKM-2-7.
文摘Achieving a good recognition rate for degraded document images is difficult as degraded document images suffer from low contrast,bleedthrough,and nonuniform illumination effects.Unlike the existing baseline thresholding techniques that use fixed thresholds and windows,the proposed method introduces a concept for obtaining dynamic windows according to the image content to achieve better binarization.To enhance a low-contrast image,we proposed a new mean histogram stretching method for suppressing noisy pixels in the background and,simultaneously,increasing pixel contrast at edges or near edges,which results in an enhanced image.For the enhanced image,we propose a new method for deriving adaptive local thresholds for dynamic windows.The dynamic window is derived by exploiting the advantage of Otsu thresholding.To assess the performance of the proposed method,we have used standard databases,namely,document image binarization contest(DIBCO),for experimentation.The comparative study on well-known existing methods indicates that the proposed method outperforms the existing methods in terms of quality and recognition rate.