In machine-vision-based systems for detecting foreign fibers, due to the background of the cotton layer has the absolute advantage in the whole image, while the foreign fiber only account for a very small part, and w...In machine-vision-based systems for detecting foreign fibers, due to the background of the cotton layer has the absolute advantage in the whole image, while the foreign fiber only account for a very small part, and what’s more, the brightness and contrast of the image are all poor. Using the traditional image segmentation method, the segmentation results are very poor. By adopting the maximum entropy and genetic algorithm, the maximum entropy function was used as the fitness function of genetic algorithm. Through continuous optimization, the optimal segmentation threshold is determined. Experimental results prove that the image segmentation of this paper not only fast and accurate, but also has strong adaptability.展开更多
A new image thresholding method is introduced, which is based on 2-D histgram and minimizing the measures of fuzziness of an input image. A new definition of fuzzy membership function is proposed, it denotes the chara...A new image thresholding method is introduced, which is based on 2-D histgram and minimizing the measures of fuzziness of an input image. A new definition of fuzzy membership function is proposed, it denotes the characteristic relationship between the gray level of each pixel and the average value of its neighborhood. When the threshold is not located at the obvious and deep valley of the histgram, genetic algorithm is devoted to the problem of selecting the appropriate threshold value. The experimental results indicate that the proposed method has good performance.展开更多
Two dimensional(2 D) entropy method has to pay the price of time when applied to image segmentation. So the genetic algorithm is introduced to improve the computational efficiency of the 2 D entropy method. The pro...Two dimensional(2 D) entropy method has to pay the price of time when applied to image segmentation. So the genetic algorithm is introduced to improve the computational efficiency of the 2 D entropy method. The proposed method uses both the gray value of a pixel and the local average gray value of an image. At the same time, the simple genetic algorithm is improved by using better reproduction and crossover operators. Thus the proposed method makes up the 2 D entropy method’s drawback of being time consuming, and yields satisfactory segmentation results. Experimental results show that the proposed method can save computational time when it provides good quality segmentation.展开更多
Aim Researching the optimal thieshold of image segmentation. M^ethods An adaptiveimages segmentation method based on the entropy of histogram of gray-level picture and genetic. algorithm (GA) was presental. Results ...Aim Researching the optimal thieshold of image segmentation. M^ethods An adaptiveimages segmentation method based on the entropy of histogram of gray-level picture and genetic. algorithm (GA) was presental. Results In our approach, the segmentation problem was formulated as an optimization problem and the fitness of GA which can efficiently search the segmentation parameter space was regarded as the quality criterion. Conclusion The methodcan be adapted for optimal behold segmentation.展开更多
In this paper, a comprehensive energy function is used to formulate the three most popular objective functions:Kapur's, Otsu and Tsalli's functions for performing effective multilevel color image thresholding....In this paper, a comprehensive energy function is used to formulate the three most popular objective functions:Kapur's, Otsu and Tsalli's functions for performing effective multilevel color image thresholding. These new energy based objective criterions are further combined with the proficient search capability of swarm based algorithms to improve the efficiency and robustness. The proposed multilevel thresholding approach accurately determines the optimal threshold values by using generated energy curve, and acutely distinguishes different objects within the multi-channel complex images. The performance evaluation indices and experiments on different test images illustrate that Kapur's entropy aided with differential evolution and bacterial foraging optimization algorithm generates the most accurate and visually pleasing segmented images.展开更多
Recently, a two-dimensional (2-D) Tsallis entropy thresholding method has been proposed as a new method for image segmentation. But the computation complexity of 2-D Tsallis entropy is very large and becomes an obst...Recently, a two-dimensional (2-D) Tsallis entropy thresholding method has been proposed as a new method for image segmentation. But the computation complexity of 2-D Tsallis entropy is very large and becomes an obstacle to real time image processing systems. A fast recursive algorithm for 2-D Tsallis entropy thresholding is proposed. The key variables involved in calculating 2-D Tsallis entropy are written in recursive form. Thus, many repeating calculations are avoided and the computation complexity reduces to O(L2) from O(L4). The effectiveness of the proposed algorithm is illustrated by experimental results.展开更多
Multilevel thresholding is a simple and effective method in numerous image segmentation applications.In this paper,we propose a new multilevel thresholding method that uses cooperative pigeon-inspired optimization alg...Multilevel thresholding is a simple and effective method in numerous image segmentation applications.In this paper,we propose a new multilevel thresholding method that uses cooperative pigeon-inspired optimization algorithm with dynamic distance threshold(CPIOD)for boosting applicability and the practicality of the optimum thresholding techniques.Firstly,we employ the cooperative be havior in the map and compass operator of the pigeon-inspired optimization algorithm to overcome the"curse of dimensionality"and help the algorithm converge fast.Then,a distance threshold is added to maintain the diversity of the pigeon population and increase the vitality to avoid local optimization.Tsallis entropy is used as the objective function to evaluate the optimum thresholds for the considered gray scale images.Four benchmark images are applied to test the property and the stability of the proposed CPIOD algorithm and three other optimization algorithms in multilevel thresholding problems.Segmentation results of four optimization algorithms show that CPIOD algorithm can not only get higher quality segmentation results,but also has better stability.展开更多
文摘In machine-vision-based systems for detecting foreign fibers, due to the background of the cotton layer has the absolute advantage in the whole image, while the foreign fiber only account for a very small part, and what’s more, the brightness and contrast of the image are all poor. Using the traditional image segmentation method, the segmentation results are very poor. By adopting the maximum entropy and genetic algorithm, the maximum entropy function was used as the fitness function of genetic algorithm. Through continuous optimization, the optimal segmentation threshold is determined. Experimental results prove that the image segmentation of this paper not only fast and accurate, but also has strong adaptability.
基金This project was supported by Science and Technology Research Emphasis Fund of Ministry of Education(204010) .
文摘A new image thresholding method is introduced, which is based on 2-D histgram and minimizing the measures of fuzziness of an input image. A new definition of fuzzy membership function is proposed, it denotes the characteristic relationship between the gray level of each pixel and the average value of its neighborhood. When the threshold is not located at the obvious and deep valley of the histgram, genetic algorithm is devoted to the problem of selecting the appropriate threshold value. The experimental results indicate that the proposed method has good performance.
文摘Two dimensional(2 D) entropy method has to pay the price of time when applied to image segmentation. So the genetic algorithm is introduced to improve the computational efficiency of the 2 D entropy method. The proposed method uses both the gray value of a pixel and the local average gray value of an image. At the same time, the simple genetic algorithm is improved by using better reproduction and crossover operators. Thus the proposed method makes up the 2 D entropy method’s drawback of being time consuming, and yields satisfactory segmentation results. Experimental results show that the proposed method can save computational time when it provides good quality segmentation.
文摘Aim Researching the optimal thieshold of image segmentation. M^ethods An adaptiveimages segmentation method based on the entropy of histogram of gray-level picture and genetic. algorithm (GA) was presental. Results In our approach, the segmentation problem was formulated as an optimization problem and the fitness of GA which can efficiently search the segmentation parameter space was regarded as the quality criterion. Conclusion The methodcan be adapted for optimal behold segmentation.
文摘In this paper, a comprehensive energy function is used to formulate the three most popular objective functions:Kapur's, Otsu and Tsalli's functions for performing effective multilevel color image thresholding. These new energy based objective criterions are further combined with the proficient search capability of swarm based algorithms to improve the efficiency and robustness. The proposed multilevel thresholding approach accurately determines the optimal threshold values by using generated energy curve, and acutely distinguishes different objects within the multi-channel complex images. The performance evaluation indices and experiments on different test images illustrate that Kapur's entropy aided with differential evolution and bacterial foraging optimization algorithm generates the most accurate and visually pleasing segmented images.
基金supported by the National Natural Science Foundation of China for Distinguished Young Scholars(60525303)Doctoral Foundation of Yanshan University(B243).
文摘Recently, a two-dimensional (2-D) Tsallis entropy thresholding method has been proposed as a new method for image segmentation. But the computation complexity of 2-D Tsallis entropy is very large and becomes an obstacle to real time image processing systems. A fast recursive algorithm for 2-D Tsallis entropy thresholding is proposed. The key variables involved in calculating 2-D Tsallis entropy are written in recursive form. Thus, many repeating calculations are avoided and the computation complexity reduces to O(L2) from O(L4). The effectiveness of the proposed algorithm is illustrated by experimental results.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.11574191 and 11674208).
文摘Multilevel thresholding is a simple and effective method in numerous image segmentation applications.In this paper,we propose a new multilevel thresholding method that uses cooperative pigeon-inspired optimization algorithm with dynamic distance threshold(CPIOD)for boosting applicability and the practicality of the optimum thresholding techniques.Firstly,we employ the cooperative be havior in the map and compass operator of the pigeon-inspired optimization algorithm to overcome the"curse of dimensionality"and help the algorithm converge fast.Then,a distance threshold is added to maintain the diversity of the pigeon population and increase the vitality to avoid local optimization.Tsallis entropy is used as the objective function to evaluate the optimum thresholds for the considered gray scale images.Four benchmark images are applied to test the property and the stability of the proposed CPIOD algorithm and three other optimization algorithms in multilevel thresholding problems.Segmentation results of four optimization algorithms show that CPIOD algorithm can not only get higher quality segmentation results,but also has better stability.