The estimation of shear strength of rock mass discontinuity is always a focal, but difficult, problem in the field of geotechnical engineering. Considering the disadvantages and limitation of exist- ing estimation met...The estimation of shear strength of rock mass discontinuity is always a focal, but difficult, problem in the field of geotechnical engineering. Considering the disadvantages and limitation of exist- ing estimation methods, a new approach based on the shadow area percentage (SAP) that can be used to quantify surface roughness is proposed in this article. Firstly, by the help of laser scanning technique, the three-dimensional model of the surface of rock discontinuity was established. Secondly, a light source was simulated, and there would be some shadows produced on the model surface. Thirdly, to obtain the value of SAP of each specimen, the shadow detection technique was introduced for use. Fourthly, compared with the result from direct shear testing and based on statistics, an empirical for- mula was found among SAP, normal stress, and shear strength. Data of Yujian (~ River were used as an example, and the following conclusions have been made. (1) In the case of equal normal stress, the peak shear stress is positively proportional to the SAP. (2) The formula for estimating was derived, and the predictions of peak-shear strength made with this equation well agreed with the experimental re- suits obtained in laboratory tests.展开更多
In modern transportation,pavement is one of the most important civil infrastructures for the movement of vehicles and pedestrians.Pavement service quality and service life are of great importance for civil engineers a...In modern transportation,pavement is one of the most important civil infrastructures for the movement of vehicles and pedestrians.Pavement service quality and service life are of great importance for civil engineers as they directly affect the regular service for the users.Therefore,monitoring the health status of pavement before irreversible damage occurs is essential for timely maintenance,which in turn ensures public transportation safety.Many pavement damages can be detected and analyzed by monitoring the structure dynamic responses and evaluating road surface conditions.Advanced technologies can be employed for the collection and analysis of such data,including various intrusive sensing techniques,image processing techniques,and machine learning methods.This review summarizes the state-ofthe-art of these three technologies in pavement engineering in recent years and suggests possible developments for future pavement monitoring and analysis based on these approaches.展开更多
Beetle wings are very specialized flight organs consisting of the veins and membranes.Therefore it is necessary from a bionic view to investigate the material properties of a beetle wing experimentally.In the present ...Beetle wings are very specialized flight organs consisting of the veins and membranes.Therefore it is necessary from a bionic view to investigate the material properties of a beetle wing experimentally.In the present study,we have used a Digital Image Correlation (DIC) technique to measure the elastic modulus of a beetle wing membrane.Specimens were prepared by carefully cutting a beetle hind wing into 3.0 mm by 7.0 mm segments (the gage length was 5 mm).We used a scanning electron microscope for a precise measurement of the thickness of the beetle wing membrane.The specimen was attached to a designed fixture to induce a uniform displacement by means of a micromanipulator.We used an ARAMISTM system based on the digital image correlation technique to measure the corresponding displacement of a specimen.The thickness of the beetle wing varied at different points of the membrane.The elastic modulus differed in relation to the membrane arrangement showing a structural anisotropy;the elastic modulus in the chordwise direction is approximately 2.65 GPa,which is three times larger than the elastic modulus in the spanwise direction of 0.84 GPa.As a result,the digital image correlation-based ARAMIS system was suc- cessfully used to measure the elastic modulus of a beetle wing.In addition to membrane's elastic modulus,we considered the Poisson's ratio of the membrane and measured the elastic modulus of a vein using an Instron universal tensile machine.The result reveals the Poisson's ratio is nearly zero and the elastic modulus of a vein is about 11 GPa.展开更多
In this paper, three techniques, line run coding, quadtree DF (Depth-First) representation and H coding for compressing classified satellite cloud images with no distortion are presented. In these three codings, the f...In this paper, three techniques, line run coding, quadtree DF (Depth-First) representation and H coding for compressing classified satellite cloud images with no distortion are presented. In these three codings, the first two were invented by other persons and the third one, by ourselves. As a result, the comparison among their compression rates is. given at the end of this paper. Further application of these image compression technique to satellite data and other meteorological data looks promising.展开更多
Image steganography is a technique of concealing confidential information within an image without dramatically changing its outside look.Whereas vehicular ad hoc networks(VANETs),which enable vehicles to communicate w...Image steganography is a technique of concealing confidential information within an image without dramatically changing its outside look.Whereas vehicular ad hoc networks(VANETs),which enable vehicles to communicate with one another and with roadside infrastructure to enhance safety and traffic flow provide a range of value-added services,as they are an essential component of modern smart transportation systems.VANETs steganography has been suggested by many authors for secure,reliable message transfer between terminal/hope to terminal/hope and also to secure it from attack for privacy protection.This paper aims to determine whether using steganography is possible to improve data security and secrecy in VANET applications and to analyze effective steganography techniques for incorporating data into images while minimizing visual quality loss.According to simulations in literature and real-world studies,Image steganography proved to be an effectivemethod for secure communication on VANETs,even in difficult network conditions.In this research,we also explore a variety of steganography approaches for vehicular ad-hoc network transportation systems like vector embedding,statistics,spatial domain(SD),transform domain(TD),distortion,masking,and filtering.This study possibly shall help researchers to improve vehicle networks’ability to communicate securely and lay the door for innovative steganography methods.展开更多
Hypoparathyroidism is one of the main complications after total thyroidectomy,severely affecting patients’quality of life.How to effectively protect parathyroid function after surgery and reduce the incidence of hypo...Hypoparathyroidism is one of the main complications after total thyroidectomy,severely affecting patients’quality of life.How to effectively protect parathyroid function after surgery and reduce the incidence of hypoparathyroidism has always been a key research area in thyroid surgery.Therefore,precise localization of parathyroid glands during surgery,effective imaging,and accurate surgical resection have become hot topics of concern for thyroid surgeons.In response to this clinical phenomenon,this study compared several different imaging methods for parathyroid surgery,including nanocarbon,indocyanine green,near-infrared imaging techniques,and technetium-99m methoxyisobutylisonitrile combined with gamma probe imaging technology.The advantages and disadvantages of each method were analyzed,providing scientific recommendations for future parathyroid imaging.In recent years,some related basic and clinical research has also been conducted in thyroid surgery.This article reviewed relevant literature and provided an overview of the practical application progress of various imaging techniques in parathyroid surgery.展开更多
The rapid evolution of wireless communication technologies has underscored the critical role of antennas in ensuring seamless connectivity.Antenna defects,ranging from manufacturing imperfections to environmental wear...The rapid evolution of wireless communication technologies has underscored the critical role of antennas in ensuring seamless connectivity.Antenna defects,ranging from manufacturing imperfections to environmental wear,pose significant challenges to the reliability and performance of communication systems.This review paper navigates the landscape of antenna defect detection,emphasizing the need for a nuanced understanding of various defect types and the associated challenges in visual detection.This review paper serves as a valuable resource for researchers,engineers,and practitioners engaged in the design and maintenance of communication systems.The insights presented here pave the way for enhanced reliability in antenna systems through targeted defect detection measures.In this study,a comprehensive literature analysis on computer vision algorithms that are employed in end-of-line visual inspection of antenna parts is presented.The PRISMA principles will be followed throughout the review,and its goals are to provide a summary of recent research,identify relevant computer vision techniques,and evaluate how effective these techniques are in discovering defects during inspections.It contains articles from scholarly journals as well as papers presented at conferences up until June 2023.This research utilized search phrases that were relevant,and papers were chosen based on whether or not they met certain inclusion and exclusion criteria.In this study,several different computer vision approaches,such as feature extraction and defect classification,are broken down and analyzed.Additionally,their applicability and performance are discussed.The review highlights the significance of utilizing a wide variety of datasets and measurement criteria.The findings of this study add to the existing body of knowledge and point researchers in the direction of promising new areas of investigation,such as real-time inspection systems and multispectral imaging.This review,on its whole,offers a complete study of computer vision approaches for quality control in antenna parts.It does so by providing helpful insights and drawing attention to areas that require additional exploration.展开更多
Obtaining high precision is an important consideration for astrometric studies using images from the Narrow Angle Camera(NAC)of the Cassini Imaging Science Subsystem(ISS).Selecting the best centering algorithm is key ...Obtaining high precision is an important consideration for astrometric studies using images from the Narrow Angle Camera(NAC)of the Cassini Imaging Science Subsystem(ISS).Selecting the best centering algorithm is key to enhancing astrometric accuracy.In this study,we compared the accuracy of five centering algorithms:Gaussian fitting,the modified moments method,and three point-spread function(PSF)fitting methods(effective PSF(ePSF),PSFEx,and extended PSF(x PSF)from the Cassini Imaging Central Laboratory for Operations(CICLOPS)).We assessed these algorithms using 70 ISS NAC star field images taken with CL1 and CL2 filters across different stellar magnitudes.The ePSF method consistently demonstrated the highest accuracy,achieving precision below 0.03 pixels for stars of magnitude 8-9.Compared to the previously considered best,the modified moments method,the e PSF method improved overall accuracy by about 10%and 21%in the sample and line directions,respectively.Surprisingly,the xPSF model provided by CICLOPS had lower precision than the ePSF.Conversely,the ePSF exhibits an improvement in measurement precision of 23%and 17%in the sample and line directions,respectively,over the xPSF.This discrepancy might be attributed to the xPSF focusing on photometry rather than astrometry.These findings highlight the necessity of constructing PSF models specifically tailored for astrometric purposes in NAC images and provide guidance for enhancing astrometric measurements using these ISS NAC images.展开更多
Attitude is one of the crucial parameters for space objects and plays a vital role in collision prediction and debris removal.Analyzing light curves to determine attitude is the most commonly used method.In photometri...Attitude is one of the crucial parameters for space objects and plays a vital role in collision prediction and debris removal.Analyzing light curves to determine attitude is the most commonly used method.In photometric observations,outliers may exist in the obtained light curves due to various reasons.Therefore,preprocessing is required to remove these outliers to obtain high quality light curves.Through statistical analysis,the reasons leading to outliers can be categorized into two main types:first,the brightness of the object significantly increases due to the passage of a star nearby,referred to as“stellar contamination,”and second,the brightness markedly decreases due to cloudy cover,referred to as“cloudy contamination.”The traditional approach of manually inspecting images for contamination is time-consuming and labor-intensive.However,we propose the utilization of machine learning methods as a substitute.Convolutional Neural Networks and SVMs are employed to identify cases of stellar contamination and cloudy contamination,achieving F1 scores of 1.00 and 0.98 on a test set,respectively.We also explore other machine learning methods such as ResNet-18 and Light Gradient Boosting Machine,then conduct comparative analyses of the results.展开更多
The Solar Polar-orbit Observatory(SPO),proposed by Chinese scientists,is designed to observe the solar polar regions in an unprecedented way with a spacecraft traveling in a large solar inclination angle and a small e...The Solar Polar-orbit Observatory(SPO),proposed by Chinese scientists,is designed to observe the solar polar regions in an unprecedented way with a spacecraft traveling in a large solar inclination angle and a small ellipticity.However,one of the most significant challenges lies in ultra-long-distance data transmission,particularly for the Magnetic and Helioseismic Imager(MHI),which is the most important payload and generates the largest volume of data in SPO.In this paper,we propose a tailored lossless data compression method based on the measurement mode and characteristics of MHI data.The background out of the solar disk is removed to decrease the pixel number of an image under compression.Multiple predictive coding methods are combined to eliminate the redundancy utilizing the correlation(space,spectrum,and polarization)in data set,improving the compression ratio.Experimental results demonstrate that our method achieves an average compression ratio of 3.67.The compression time is also less than the general observation period.The method exhibits strong feasibility and can be easily adapted to MHI.展开更多
We have developed a novel method for co-adding multiple under-sampled images that combines the iteratively reweighted least squares and divide-and-conquer algorithms.Our approach not only allows for the anti-aliasing ...We have developed a novel method for co-adding multiple under-sampled images that combines the iteratively reweighted least squares and divide-and-conquer algorithms.Our approach not only allows for the anti-aliasing of the images but also enables Point-Spread Function(PSF)deconvolution,resulting in enhanced restoration of extended sources,the highest peak signal-to-noise ratio,and reduced ringing artefacts.To test our method,we conducted numerical simulations that replicated observation runs of the China Space Station Telescope/the VLT Survey Telescope(VST)and compared our results to those obtained using previous algorithms.The simulation showed that our method outperforms previous approaches in several ways,such as restoring the profile of extended sources and minimizing ringing artefacts.Additionally,because our method relies on the inherent advantages of least squares fitting,it is more versatile and does not depend on the local uniformity hypothesis for the PSF.However,the new method consumes much more computation than the other approaches.展开更多
Benign gallbladder diseases usually present with intraluminal lesions and localized or diffuse wall thickening.Intraluminal lesions of the gallbladder include gallstones,cholesterol polyps,adenomas,or sludge and polyp...Benign gallbladder diseases usually present with intraluminal lesions and localized or diffuse wall thickening.Intraluminal lesions of the gallbladder include gallstones,cholesterol polyps,adenomas,or sludge and polypoid type of gallbladder cancer must subsequently be excluded.Polyp size,stalk width,and enhancement intensity on contrast-enhanced ultrasound and degree of diffusion restriction may help differentiate cholesterol polyps and adenomas from gallbladder cancer.Localized gallbladder wall thickening is largely due to segmental or focal gallbladder adenomyomatosis,although infiltrative cancer may present similarly.Identification of Rokitansky-Aschoff sinuses is pivotal in diagnosing adenomyomatosis.The layered pattern,degree of enhancement,and integrity of the wall are imaging clues that help discriminate innocuous thickening from gallbladder cancer.High-resolution ultrasound is especially useful for analyzing the layering of gallbladder wall.A diffusely thickened wall is frequently seen in inflammatory processes of the gallbladder.Nevertheless,it is important to check for coexistent cancer in instances of acute cholecystitis.Ultrasound used alone is limited in evaluating complicated cholecystitis and often requires complementary computed tomography.In chronic cholecystitis,preservation of a two-layered wall and weak wall enhancement are diagnostic clues for excluding malignancy.Magnetic resonance imaging in conjunction with diffusion-weighted imaging helps to differentiate xathogranulomatous cholecystitis from gallbladder cancer by identifying the presence of fat and degree of diffusion restriction.Such distinctions require a familiarity with typical imaging features of various gallbladder diseases and an understanding of the roles that assorted imaging modalities play in gallbladder evaluations.展开更多
The investigation of small bowel morphology is often mandatory in many patients with Crohn's disease. Traditional radiological techniques (small bowel enteroclysis and small bowel follow-through) have long been th...The investigation of small bowel morphology is often mandatory in many patients with Crohn's disease. Traditional radiological techniques (small bowel enteroclysis and small bowel follow-through) have long been the only suitable methods for this purpose. In recent years, several alternative imaging techniques have been proposed. To review the most recent advances in imaging studies of the small bowel, with particular reference to their possible application in Crohn's disease, we conducted a complete review of the most important studies in which traditional and newer imaging methods were performed and compared in patients with Crohn's disease. Several radiological and endoscopic techniques are now available for the study of the small bowel; each of them is characterized by a distinct profile of favourable and unfavourable features. In some cases, they may also be used as complementary rather than alternative techniques. In everyday practice, the choice of the technique to be used stands upon its availability and a careful evaluation of diagnostic accuracy, clinical usefulness, safety and cost. The recent development ofinnovative imaging techniques has opened a new and exciting area in the exploration of the small bowel in Crohn's disease patients.展开更多
Hard X-ray Imager(HXI)is one of the three scientific instruments onboard the Advanced Spacebased Solar Observatory(ASO-S)mission,which is proposed for the 25th solar maximum by the Chinese solar community.HXI is desig...Hard X-ray Imager(HXI)is one of the three scientific instruments onboard the Advanced Spacebased Solar Observatory(ASO-S)mission,which is proposed for the 25th solar maximum by the Chinese solar community.HXI is designed to investigate the non-thermal high-energy electrons accelerated in solar flares by providing images of solar flaring regions in the energy range from 30 keV to 200 keV.The imaging principle of HXI is based on spatially modulated Fourier synthesis and utilizes about 91 sets of bi-grid sub-collimators and corresponding LaBr3 detectors to obtain Fourier components with a spatial resolution of about 3 arcsec and a time resolution better than 0.5 s.An engineering prototype has been developed and tested to verify the feasibility of design.In this paper,we present background,instrument design and the development and test status of the prototype.展开更多
Objective: We studied the application of CT image fusion in the evaluation of radiation treatment planning for non-small cell lung cancer (NSCLC). Methods: Eleven patients with NSCLC, who were treated with three-dimen...Objective: We studied the application of CT image fusion in the evaluation of radiation treatment planning for non-small cell lung cancer (NSCLC). Methods: Eleven patients with NSCLC, who were treated with three-dimensional con-formal radiation therapy, were studied. Each patient underwent twice sequential planning CT scan, i.e., at pre-treatment, and at mid-treatment for field reduction planning. Three treatment plans were established in each patient: treatment plan A was based on the pre-treatment planning CT scans for the first course of treatment, plan B on the mid-treatment planning CT scans for the second course of treatment, and treatment plan F on the fused images for the whole treatment. The irradiation doses received by organs at risk in the whole treatment with treatment A and B plans were estimated by the plus of the parameters in treatment plan A and B, assuming that the parameters involve the different tissues (i.e. V20=AV20+BV20), or the same tissues within an organ (i.e. Dmax=ADmax+BDmax). The assessment parameters in the treatment plan F were calculated on the basis of the DVH of the whole treatment. Then the above assessment results were compared. Results: There were marked differ-ences between the assessment results derived from the plus of assessment parameters in treatment plan A and B, and the ones derived from treatment plan F. Conclusion: When a treatment plan is altered during the course of radiation treatment, image fusion technique should be performed in the establishment of a new one. The estimation of the assessment parameters for the whole treatment with treatment plan A and B by simple plus, is inaccurate.展开更多
In the world,nonalcoholic fatty liver disease(NAFLD)accounts for majority of diffuse hepatic diseases.Notably,substantial liver fat accumulation can trigger and accelerate hepatic fibrosis,thus contributing to disease...In the world,nonalcoholic fatty liver disease(NAFLD)accounts for majority of diffuse hepatic diseases.Notably,substantial liver fat accumulation can trigger and accelerate hepatic fibrosis,thus contributing to disease progression.Moreover,the presence of NAFLD not only puts adverse influences for liver but is also associated with an increased risk of type 2 diabetes and cardiovascular diseases.Therefore,early detection and quantified measurement of hepatic fat content are of great importance.Liver biopsy is currently the most accurate method for the evaluation of hepatic steatosis.However,liver biopsy has several limitations,namely,its invasiveness,sampling error,high cost and moderate intraobserver and interobserver reproducibility.Recently,various quantitative imaging techniques have been developed for the diagnosis and quantified measurement of hepatic fat content,including ultrasound-or magnetic resonancebased methods.These quantitative imaging techniques can provide objective continuous metrics associated with liver fat content and be recorded for comparison when patients receive check-ups to evaluate changes in liver fat content,which is useful for longitudinal follow-up.In this review,we introduce several imaging techniques and describe their diagnostic performance for the diagnosis and quantified measurement of hepatic fat content.展开更多
Taking a large number of images,the Cassini Imaging Science Subsystem(ISS)has been routinely used in astrometry.In ISS images,disk-resolved objects often lead to false detection of stars that disturb the camera pointi...Taking a large number of images,the Cassini Imaging Science Subsystem(ISS)has been routinely used in astrometry.In ISS images,disk-resolved objects often lead to false detection of stars that disturb the camera pointing correction.The aim of this study was to develop an automated processing method to remove the false image stars in disk-resolved objects in ISS images.The method included the following steps:extracting edges,segmenting boundary arcs,fitting circles and excluding false image stars.The proposed method was tested using 200 ISS images.Preliminary experimental results show that it can remove the false image stars in more than 95%of ISS images with disk-resolved objects in a fully automatic manner,i.e.,outperforming the traditional circle detection based on Circular Hough Transform(CHT)by 17%.In addition,its speed is more than twice as fast as that of the CHT method.It is also more robust(no manual parameter tuning is needed)when compared with CHT.The proposed method was also applied to a set of ISS images of Rhea to eliminate the mismatch in pointing correction in automatic procedure.Experiment results showed that the precision of final astrometry results can be improve by roughly 2 times that of automatic procedure without the method.It proved that the proposed method is helpful in the astrometry of ISS images in a fully automatic manner.展开更多
An accurate determination of the landing trajectory of Chang'e-3 (CE-3) is significant for verifying orbital control strategy, optimizing orbital planning, accu- rately determining the landing site of CE-3 and anal...An accurate determination of the landing trajectory of Chang'e-3 (CE-3) is significant for verifying orbital control strategy, optimizing orbital planning, accu- rately determining the landing site of CE-3 and analyzing the geological background of the landing site. Due to complexities involved in the landing process, there are some differences between the planned trajectory and the actual trajectory of CE-3. The land- ing camera on CE-3 recorded a sequence of the landing process with a frequency of 10 frames per second. These images recorded by the landing camera and high-resolution images of the lunar surface are utilized to calculate the position of the probe, so as to reconstruct its precise trajectory. This paper proposes using the method of trajectory reconstruction by Single Image Space Resection to make a detailed study of the hov- ering stage at a height of 100 m above the lunar surface. Analysis of the data shows that the closer CE-3 came to the lunar surface, the higher the spatial resolution of im- ages that were acquired became, and the more accurately the horizontal and vertical position of CE-3 could be determined. The horizontal and vertical accuracies were 7.09 m and 4.27 m respectively during the hovering stage at a height of 100.02 m. The reconstructed trajectory can reflect the change in CE-3's position during the powered descent process. A slight movement in CE-3 during the hovering stage is also clearly demonstrated. These results will provide a basis for analysis of orbit control strategy, and it will be conducive to adjustment and optimization of orbit control strategy in follow-up missions.展开更多
The scientific satellite SST (Space Solar Telescope) is an important research project strongly supported by the Chinese Academy of Sciences. Every day, SST acquires 50 GB of data (after processing) but only 10GB can b...The scientific satellite SST (Space Solar Telescope) is an important research project strongly supported by the Chinese Academy of Sciences. Every day, SST acquires 50 GB of data (after processing) but only 10GB can be transmitted to the ground because of limited time of satellite passage and limited channel volume. Therefore, the data must be compressed before transmission. Wavelets analysis is a new technique developed over the last 10 years, with great potential of application. We start with a brief introduction to the essential principles of wavelet analysis, and then describe the main idea of embedded zerotree wavelet coding, used for compressing the SST images. The results show that this coding is adequate for the job.展开更多
Suppressing the interference of atmospheric turbulence and obtaining observation data with a high spatial resolution are an issue to be solved urgently for ground observations. One way to solve this problem is to perf...Suppressing the interference of atmospheric turbulence and obtaining observation data with a high spatial resolution are an issue to be solved urgently for ground observations. One way to solve this problem is to perform a statistical reconstruction of short-exposure speckle images. Combining the rapidity of Shift-Add and the accuracy of speckle masking, this paper proposes a novel reconstruction algorithm-NASIR(Non-rigid Alignment based Solar Image Reconstruction). NASIR reconstructs the phase of the object image at each frequency by building a computational model between geometric distortion and intensity distribution and reconstructs the modulus of the object image on the aligned speckle images by speckle interferometry. We analyzed the performance of NASIR by using the correlation coefficient, power spectrum, and coefficient of variation of intensity profile in processing data obtained by the NVST(1 m New Vacuum Solar Telescope). The reconstruction experiments and analysis results show that the quality of images reconstructed by NASIR is close to speckle masking when the seeing is good, while NASIR has excellent robustness when the seeing condition becomes worse. Furthermore, NASIR reconstructs the entire field of view in parallel in one go, without phase recursion and block-by-block reconstruction, so its computation time is less than half that of speckle masking. Therefore, we consider NASIR is a robust and highquality fast reconstruction method that can serve as an effective tool for data filtering and quick look.展开更多
基金supported by the China Geological Survey (No.1212011014030)the Major State Basic Research Development Program of China (973 Program) (No.2011CB710600)
文摘The estimation of shear strength of rock mass discontinuity is always a focal, but difficult, problem in the field of geotechnical engineering. Considering the disadvantages and limitation of exist- ing estimation methods, a new approach based on the shadow area percentage (SAP) that can be used to quantify surface roughness is proposed in this article. Firstly, by the help of laser scanning technique, the three-dimensional model of the surface of rock discontinuity was established. Secondly, a light source was simulated, and there would be some shadows produced on the model surface. Thirdly, to obtain the value of SAP of each specimen, the shadow detection technique was introduced for use. Fourthly, compared with the result from direct shear testing and based on statistics, an empirical for- mula was found among SAP, normal stress, and shear strength. Data of Yujian (~ River were used as an example, and the following conclusions have been made. (1) In the case of equal normal stress, the peak shear stress is positively proportional to the SAP. (2) The formula for estimating was derived, and the predictions of peak-shear strength made with this equation well agreed with the experimental re- suits obtained in laboratory tests.
基金supported by the National Key R&D Program of China(2017YFF0205600)the International Research Cooperation Seed Fund of Beijing University of Technology(2018A08)+1 种基金Science and Technology Project of Beijing Municipal Commission of Transport(2018-kjc-01-213)the Construction of Service Capability of Scientific and Technological Innovation-Municipal Level of Fundamental Research Funds(Scientific Research Categories)of Beijing City(PXM2019_014204_500032).
文摘In modern transportation,pavement is one of the most important civil infrastructures for the movement of vehicles and pedestrians.Pavement service quality and service life are of great importance for civil engineers as they directly affect the regular service for the users.Therefore,monitoring the health status of pavement before irreversible damage occurs is essential for timely maintenance,which in turn ensures public transportation safety.Many pavement damages can be detected and analyzed by monitoring the structure dynamic responses and evaluating road surface conditions.Advanced technologies can be employed for the collection and analysis of such data,including various intrusive sensing techniques,image processing techniques,and machine learning methods.This review summarizes the state-ofthe-art of these three technologies in pavement engineering in recent years and suggests possible developments for future pavement monitoring and analysis based on these approaches.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF)the Ministry of Education, Science and Technology (Grant number: 2009-0083068)
文摘Beetle wings are very specialized flight organs consisting of the veins and membranes.Therefore it is necessary from a bionic view to investigate the material properties of a beetle wing experimentally.In the present study,we have used a Digital Image Correlation (DIC) technique to measure the elastic modulus of a beetle wing membrane.Specimens were prepared by carefully cutting a beetle hind wing into 3.0 mm by 7.0 mm segments (the gage length was 5 mm).We used a scanning electron microscope for a precise measurement of the thickness of the beetle wing membrane.The specimen was attached to a designed fixture to induce a uniform displacement by means of a micromanipulator.We used an ARAMISTM system based on the digital image correlation technique to measure the corresponding displacement of a specimen.The thickness of the beetle wing varied at different points of the membrane.The elastic modulus differed in relation to the membrane arrangement showing a structural anisotropy;the elastic modulus in the chordwise direction is approximately 2.65 GPa,which is three times larger than the elastic modulus in the spanwise direction of 0.84 GPa.As a result,the digital image correlation-based ARAMIS system was suc- cessfully used to measure the elastic modulus of a beetle wing.In addition to membrane's elastic modulus,we considered the Poisson's ratio of the membrane and measured the elastic modulus of a vein using an Instron universal tensile machine.The result reveals the Poisson's ratio is nearly zero and the elastic modulus of a vein is about 11 GPa.
文摘In this paper, three techniques, line run coding, quadtree DF (Depth-First) representation and H coding for compressing classified satellite cloud images with no distortion are presented. In these three codings, the first two were invented by other persons and the third one, by ourselves. As a result, the comparison among their compression rates is. given at the end of this paper. Further application of these image compression technique to satellite data and other meteorological data looks promising.
基金Dr.Arshiya Sajid Ansari would like to thank the Deanship of Scientific Research at Majmaah University for supporting this work under Project No.R-2023-910.
文摘Image steganography is a technique of concealing confidential information within an image without dramatically changing its outside look.Whereas vehicular ad hoc networks(VANETs),which enable vehicles to communicate with one another and with roadside infrastructure to enhance safety and traffic flow provide a range of value-added services,as they are an essential component of modern smart transportation systems.VANETs steganography has been suggested by many authors for secure,reliable message transfer between terminal/hope to terminal/hope and also to secure it from attack for privacy protection.This paper aims to determine whether using steganography is possible to improve data security and secrecy in VANET applications and to analyze effective steganography techniques for incorporating data into images while minimizing visual quality loss.According to simulations in literature and real-world studies,Image steganography proved to be an effectivemethod for secure communication on VANETs,even in difficult network conditions.In this research,we also explore a variety of steganography approaches for vehicular ad-hoc network transportation systems like vector embedding,statistics,spatial domain(SD),transform domain(TD),distortion,masking,and filtering.This study possibly shall help researchers to improve vehicle networks’ability to communicate securely and lay the door for innovative steganography methods.
基金Supported by The 2024 Hospital Research Funding,No.KYQ2024008.
文摘Hypoparathyroidism is one of the main complications after total thyroidectomy,severely affecting patients’quality of life.How to effectively protect parathyroid function after surgery and reduce the incidence of hypoparathyroidism has always been a key research area in thyroid surgery.Therefore,precise localization of parathyroid glands during surgery,effective imaging,and accurate surgical resection have become hot topics of concern for thyroid surgeons.In response to this clinical phenomenon,this study compared several different imaging methods for parathyroid surgery,including nanocarbon,indocyanine green,near-infrared imaging techniques,and technetium-99m methoxyisobutylisonitrile combined with gamma probe imaging technology.The advantages and disadvantages of each method were analyzed,providing scientific recommendations for future parathyroid imaging.In recent years,some related basic and clinical research has also been conducted in thyroid surgery.This article reviewed relevant literature and provided an overview of the practical application progress of various imaging techniques in parathyroid surgery.
文摘The rapid evolution of wireless communication technologies has underscored the critical role of antennas in ensuring seamless connectivity.Antenna defects,ranging from manufacturing imperfections to environmental wear,pose significant challenges to the reliability and performance of communication systems.This review paper navigates the landscape of antenna defect detection,emphasizing the need for a nuanced understanding of various defect types and the associated challenges in visual detection.This review paper serves as a valuable resource for researchers,engineers,and practitioners engaged in the design and maintenance of communication systems.The insights presented here pave the way for enhanced reliability in antenna systems through targeted defect detection measures.In this study,a comprehensive literature analysis on computer vision algorithms that are employed in end-of-line visual inspection of antenna parts is presented.The PRISMA principles will be followed throughout the review,and its goals are to provide a summary of recent research,identify relevant computer vision techniques,and evaluate how effective these techniques are in discovering defects during inspections.It contains articles from scholarly journals as well as papers presented at conferences up until June 2023.This research utilized search phrases that were relevant,and papers were chosen based on whether or not they met certain inclusion and exclusion criteria.In this study,several different computer vision approaches,such as feature extraction and defect classification,are broken down and analyzed.Additionally,their applicability and performance are discussed.The review highlights the significance of utilizing a wide variety of datasets and measurement criteria.The findings of this study add to the existing body of knowledge and point researchers in the direction of promising new areas of investigation,such as real-time inspection systems and multispectral imaging.This review,on its whole,offers a complete study of computer vision approaches for quality control in antenna parts.It does so by providing helpful insights and drawing attention to areas that require additional exploration.
基金supported by the National Natural Science Foundation of China(No.12373073,U2031104,No.12173015)Guangdong Basic and Applied Basic Research Foundation(No.2023A1515011340)。
文摘Obtaining high precision is an important consideration for astrometric studies using images from the Narrow Angle Camera(NAC)of the Cassini Imaging Science Subsystem(ISS).Selecting the best centering algorithm is key to enhancing astrometric accuracy.In this study,we compared the accuracy of five centering algorithms:Gaussian fitting,the modified moments method,and three point-spread function(PSF)fitting methods(effective PSF(ePSF),PSFEx,and extended PSF(x PSF)from the Cassini Imaging Central Laboratory for Operations(CICLOPS)).We assessed these algorithms using 70 ISS NAC star field images taken with CL1 and CL2 filters across different stellar magnitudes.The ePSF method consistently demonstrated the highest accuracy,achieving precision below 0.03 pixels for stars of magnitude 8-9.Compared to the previously considered best,the modified moments method,the e PSF method improved overall accuracy by about 10%and 21%in the sample and line directions,respectively.Surprisingly,the xPSF model provided by CICLOPS had lower precision than the ePSF.Conversely,the ePSF exhibits an improvement in measurement precision of 23%and 17%in the sample and line directions,respectively,over the xPSF.This discrepancy might be attributed to the xPSF focusing on photometry rather than astrometry.These findings highlight the necessity of constructing PSF models specifically tailored for astrometric purposes in NAC images and provide guidance for enhancing astrometric measurements using these ISS NAC images.
基金funded by the National Natural Science Foundation of China(NSFC,Nos.12373086 and 12303082)CAS“Light of West China”Program+2 种基金Yunnan Revitalization Talent Support Program in Yunnan ProvinceNational Key R&D Program of ChinaGravitational Wave Detection Project No.2022YFC2203800。
文摘Attitude is one of the crucial parameters for space objects and plays a vital role in collision prediction and debris removal.Analyzing light curves to determine attitude is the most commonly used method.In photometric observations,outliers may exist in the obtained light curves due to various reasons.Therefore,preprocessing is required to remove these outliers to obtain high quality light curves.Through statistical analysis,the reasons leading to outliers can be categorized into two main types:first,the brightness of the object significantly increases due to the passage of a star nearby,referred to as“stellar contamination,”and second,the brightness markedly decreases due to cloudy cover,referred to as“cloudy contamination.”The traditional approach of manually inspecting images for contamination is time-consuming and labor-intensive.However,we propose the utilization of machine learning methods as a substitute.Convolutional Neural Networks and SVMs are employed to identify cases of stellar contamination and cloudy contamination,achieving F1 scores of 1.00 and 0.98 on a test set,respectively.We also explore other machine learning methods such as ResNet-18 and Light Gradient Boosting Machine,then conduct comparative analyses of the results.
基金supported by the National Key R&D Program of China(grant No.2022YFF0503800)by the National Natural Science Foundation of China(NSFC)(grant No.11427901)+1 种基金by the Strategic Priority Research Program of the Chinese Academy of Sciences(CAS-SPP)(grant No.XDA15320102)by the Youth Innovation Promotion Association(CAS No.2022057)。
文摘The Solar Polar-orbit Observatory(SPO),proposed by Chinese scientists,is designed to observe the solar polar regions in an unprecedented way with a spacecraft traveling in a large solar inclination angle and a small ellipticity.However,one of the most significant challenges lies in ultra-long-distance data transmission,particularly for the Magnetic and Helioseismic Imager(MHI),which is the most important payload and generates the largest volume of data in SPO.In this paper,we propose a tailored lossless data compression method based on the measurement mode and characteristics of MHI data.The background out of the solar disk is removed to decrease the pixel number of an image under compression.Multiple predictive coding methods are combined to eliminate the redundancy utilizing the correlation(space,spectrum,and polarization)in data set,improving the compression ratio.Experimental results demonstrate that our method achieves an average compression ratio of 3.67.The compression time is also less than the general observation period.The method exhibits strong feasibility and can be easily adapted to MHI.
基金supported by the GHfund A(202302017475)supported by the Foundation for Distinguished Young Scholars of Jiangsu Province(No.BK20140050)+5 种基金the National Natural Science Foundation of China(Nos.11973070,11333008,11273061,11825303,and 11673065)the China Manned Space Project with No.CMS-CSST-2021-A01,CMSCSST-2021-A03,CMS-CSST-2021-B01the Joint Funds of the National Natural Science Foundation of China(No.U1931210)the support from Key Research Program of Frontier Sciences,CAS,grant No.ZDBS-LY-7013Program of Shanghai Academic/Technology Research Leaderthe support from the science research grants from the China Manned Space Project with CMS-CSST-2021-A04,CMS-CSST-2021-A07。
文摘We have developed a novel method for co-adding multiple under-sampled images that combines the iteratively reweighted least squares and divide-and-conquer algorithms.Our approach not only allows for the anti-aliasing of the images but also enables Point-Spread Function(PSF)deconvolution,resulting in enhanced restoration of extended sources,the highest peak signal-to-noise ratio,and reduced ringing artefacts.To test our method,we conducted numerical simulations that replicated observation runs of the China Space Station Telescope/the VLT Survey Telescope(VST)and compared our results to those obtained using previous algorithms.The simulation showed that our method outperforms previous approaches in several ways,such as restoring the profile of extended sources and minimizing ringing artefacts.Additionally,because our method relies on the inherent advantages of least squares fitting,it is more versatile and does not depend on the local uniformity hypothesis for the PSF.However,the new method consumes much more computation than the other approaches.
文摘Benign gallbladder diseases usually present with intraluminal lesions and localized or diffuse wall thickening.Intraluminal lesions of the gallbladder include gallstones,cholesterol polyps,adenomas,or sludge and polypoid type of gallbladder cancer must subsequently be excluded.Polyp size,stalk width,and enhancement intensity on contrast-enhanced ultrasound and degree of diffusion restriction may help differentiate cholesterol polyps and adenomas from gallbladder cancer.Localized gallbladder wall thickening is largely due to segmental or focal gallbladder adenomyomatosis,although infiltrative cancer may present similarly.Identification of Rokitansky-Aschoff sinuses is pivotal in diagnosing adenomyomatosis.The layered pattern,degree of enhancement,and integrity of the wall are imaging clues that help discriminate innocuous thickening from gallbladder cancer.High-resolution ultrasound is especially useful for analyzing the layering of gallbladder wall.A diffusely thickened wall is frequently seen in inflammatory processes of the gallbladder.Nevertheless,it is important to check for coexistent cancer in instances of acute cholecystitis.Ultrasound used alone is limited in evaluating complicated cholecystitis and often requires complementary computed tomography.In chronic cholecystitis,preservation of a two-layered wall and weak wall enhancement are diagnostic clues for excluding malignancy.Magnetic resonance imaging in conjunction with diffusion-weighted imaging helps to differentiate xathogranulomatous cholecystitis from gallbladder cancer by identifying the presence of fat and degree of diffusion restriction.Such distinctions require a familiarity with typical imaging features of various gallbladder diseases and an understanding of the roles that assorted imaging modalities play in gallbladder evaluations.
文摘The investigation of small bowel morphology is often mandatory in many patients with Crohn's disease. Traditional radiological techniques (small bowel enteroclysis and small bowel follow-through) have long been the only suitable methods for this purpose. In recent years, several alternative imaging techniques have been proposed. To review the most recent advances in imaging studies of the small bowel, with particular reference to their possible application in Crohn's disease, we conducted a complete review of the most important studies in which traditional and newer imaging methods were performed and compared in patients with Crohn's disease. Several radiological and endoscopic techniques are now available for the study of the small bowel; each of them is characterized by a distinct profile of favourable and unfavourable features. In some cases, they may also be used as complementary rather than alternative techniques. In everyday practice, the choice of the technique to be used stands upon its availability and a careful evaluation of diagnostic accuracy, clinical usefulness, safety and cost. The recent development ofinnovative imaging techniques has opened a new and exciting area in the exploration of the small bowel in Crohn's disease patients.
基金supported by the Strategic Priority Research Program on Space Science, Chinese Academy of Sciences (Grant No. XDA15320104)the National Natural Science Foundation of China (Grant Nos. 11427803, 11622327, 11703079, 11803093 and 11820101002)
文摘Hard X-ray Imager(HXI)is one of the three scientific instruments onboard the Advanced Spacebased Solar Observatory(ASO-S)mission,which is proposed for the 25th solar maximum by the Chinese solar community.HXI is designed to investigate the non-thermal high-energy electrons accelerated in solar flares by providing images of solar flaring regions in the energy range from 30 keV to 200 keV.The imaging principle of HXI is based on spatially modulated Fourier synthesis and utilizes about 91 sets of bi-grid sub-collimators and corresponding LaBr3 detectors to obtain Fourier components with a spatial resolution of about 3 arcsec and a time resolution better than 0.5 s.An engineering prototype has been developed and tested to verify the feasibility of design.In this paper,we present background,instrument design and the development and test status of the prototype.
基金a grant from the Key Program of Science and Technology Foundation of Hubei Province (No. 2007A301B33).
文摘Objective: We studied the application of CT image fusion in the evaluation of radiation treatment planning for non-small cell lung cancer (NSCLC). Methods: Eleven patients with NSCLC, who were treated with three-dimensional con-formal radiation therapy, were studied. Each patient underwent twice sequential planning CT scan, i.e., at pre-treatment, and at mid-treatment for field reduction planning. Three treatment plans were established in each patient: treatment plan A was based on the pre-treatment planning CT scans for the first course of treatment, plan B on the mid-treatment planning CT scans for the second course of treatment, and treatment plan F on the fused images for the whole treatment. The irradiation doses received by organs at risk in the whole treatment with treatment A and B plans were estimated by the plus of the parameters in treatment plan A and B, assuming that the parameters involve the different tissues (i.e. V20=AV20+BV20), or the same tissues within an organ (i.e. Dmax=ADmax+BDmax). The assessment parameters in the treatment plan F were calculated on the basis of the DVH of the whole treatment. Then the above assessment results were compared. Results: There were marked differ-ences between the assessment results derived from the plus of assessment parameters in treatment plan A and B, and the ones derived from treatment plan F. Conclusion: When a treatment plan is altered during the course of radiation treatment, image fusion technique should be performed in the establishment of a new one. The estimation of the assessment parameters for the whole treatment with treatment plan A and B by simple plus, is inaccurate.
文摘In the world,nonalcoholic fatty liver disease(NAFLD)accounts for majority of diffuse hepatic diseases.Notably,substantial liver fat accumulation can trigger and accelerate hepatic fibrosis,thus contributing to disease progression.Moreover,the presence of NAFLD not only puts adverse influences for liver but is also associated with an increased risk of type 2 diabetes and cardiovascular diseases.Therefore,early detection and quantified measurement of hepatic fat content are of great importance.Liver biopsy is currently the most accurate method for the evaluation of hepatic steatosis.However,liver biopsy has several limitations,namely,its invasiveness,sampling error,high cost and moderate intraobserver and interobserver reproducibility.Recently,various quantitative imaging techniques have been developed for the diagnosis and quantified measurement of hepatic fat content,including ultrasound-or magnetic resonancebased methods.These quantitative imaging techniques can provide objective continuous metrics associated with liver fat content and be recorded for comparison when patients receive check-ups to evaluate changes in liver fat content,which is useful for longitudinal follow-up.In this review,we introduce several imaging techniques and describe their diagnostic performance for the diagnosis and quantified measurement of hepatic fat content.
基金supported by the National Natural Science Foundation of China(Grant Nos.11873026 and U1431227)the Natural Science Foundation of Guangdong Province,China(Grant No.2016A030313092)+1 种基金the National Key Research and Development Project of China(Grant No.2019YFC0120102)the Fundamental Research Funds for the Central Universities(Grant No.21619413)。
文摘Taking a large number of images,the Cassini Imaging Science Subsystem(ISS)has been routinely used in astrometry.In ISS images,disk-resolved objects often lead to false detection of stars that disturb the camera pointing correction.The aim of this study was to develop an automated processing method to remove the false image stars in disk-resolved objects in ISS images.The method included the following steps:extracting edges,segmenting boundary arcs,fitting circles and excluding false image stars.The proposed method was tested using 200 ISS images.Preliminary experimental results show that it can remove the false image stars in more than 95%of ISS images with disk-resolved objects in a fully automatic manner,i.e.,outperforming the traditional circle detection based on Circular Hough Transform(CHT)by 17%.In addition,its speed is more than twice as fast as that of the CHT method.It is also more robust(no manual parameter tuning is needed)when compared with CHT.The proposed method was also applied to a set of ISS images of Rhea to eliminate the mismatch in pointing correction in automatic procedure.Experiment results showed that the precision of final astrometry results can be improve by roughly 2 times that of automatic procedure without the method.It proved that the proposed method is helpful in the astrometry of ISS images in a fully automatic manner.
基金Supported by the National Natural Science Foundation of China
文摘An accurate determination of the landing trajectory of Chang'e-3 (CE-3) is significant for verifying orbital control strategy, optimizing orbital planning, accu- rately determining the landing site of CE-3 and analyzing the geological background of the landing site. Due to complexities involved in the landing process, there are some differences between the planned trajectory and the actual trajectory of CE-3. The land- ing camera on CE-3 recorded a sequence of the landing process with a frequency of 10 frames per second. These images recorded by the landing camera and high-resolution images of the lunar surface are utilized to calculate the position of the probe, so as to reconstruct its precise trajectory. This paper proposes using the method of trajectory reconstruction by Single Image Space Resection to make a detailed study of the hov- ering stage at a height of 100 m above the lunar surface. Analysis of the data shows that the closer CE-3 came to the lunar surface, the higher the spatial resolution of im- ages that were acquired became, and the more accurately the horizontal and vertical position of CE-3 could be determined. The horizontal and vertical accuracies were 7.09 m and 4.27 m respectively during the hovering stage at a height of 100.02 m. The reconstructed trajectory can reflect the change in CE-3's position during the powered descent process. A slight movement in CE-3 during the hovering stage is also clearly demonstrated. These results will provide a basis for analysis of orbit control strategy, and it will be conducive to adjustment and optimization of orbit control strategy in follow-up missions.
基金supported by the National 863 Foundation under grant 863-2.5.1.25.
文摘The scientific satellite SST (Space Solar Telescope) is an important research project strongly supported by the Chinese Academy of Sciences. Every day, SST acquires 50 GB of data (after processing) but only 10GB can be transmitted to the ground because of limited time of satellite passage and limited channel volume. Therefore, the data must be compressed before transmission. Wavelets analysis is a new technique developed over the last 10 years, with great potential of application. We start with a brief introduction to the essential principles of wavelet analysis, and then describe the main idea of embedded zerotree wavelet coding, used for compressing the SST images. The results show that this coding is adequate for the job.
基金sponsored by the National Natural Science Foundation of China (NSFC) under Grant Nos.11873027, U2031140, 12073077, 11833010 and 11973088West Light Foundation of the Chinese Academy of Sciences (Y9XB01A and Y9XB019)。
文摘Suppressing the interference of atmospheric turbulence and obtaining observation data with a high spatial resolution are an issue to be solved urgently for ground observations. One way to solve this problem is to perform a statistical reconstruction of short-exposure speckle images. Combining the rapidity of Shift-Add and the accuracy of speckle masking, this paper proposes a novel reconstruction algorithm-NASIR(Non-rigid Alignment based Solar Image Reconstruction). NASIR reconstructs the phase of the object image at each frequency by building a computational model between geometric distortion and intensity distribution and reconstructs the modulus of the object image on the aligned speckle images by speckle interferometry. We analyzed the performance of NASIR by using the correlation coefficient, power spectrum, and coefficient of variation of intensity profile in processing data obtained by the NVST(1 m New Vacuum Solar Telescope). The reconstruction experiments and analysis results show that the quality of images reconstructed by NASIR is close to speckle masking when the seeing is good, while NASIR has excellent robustness when the seeing condition becomes worse. Furthermore, NASIR reconstructs the entire field of view in parallel in one go, without phase recursion and block-by-block reconstruction, so its computation time is less than half that of speckle masking. Therefore, we consider NASIR is a robust and highquality fast reconstruction method that can serve as an effective tool for data filtering and quick look.