期刊文献+
共找到212篇文章
< 1 2 11 >
每页显示 20 50 100
Multi-Stream Temporally Enhanced Network for Video Salient Object Detection
1
作者 Dan Xu Jiale Ru Jinlong Shi 《Computers, Materials & Continua》 SCIE EI 2024年第1期85-104,共20页
Video salient object detection(VSOD)aims at locating the most attractive objects in a video by exploring the spatial and temporal features.VSOD poses a challenging task in computer vision,as it involves processing com... Video salient object detection(VSOD)aims at locating the most attractive objects in a video by exploring the spatial and temporal features.VSOD poses a challenging task in computer vision,as it involves processing complex spatial data that is also influenced by temporal dynamics.Despite the progress made in existing VSOD models,they still struggle in scenes of great background diversity within and between frames.Additionally,they encounter difficulties related to accumulated noise and high time consumption during the extraction of temporal features over a long-term duration.We propose a multi-stream temporal enhanced network(MSTENet)to address these problems.It investigates saliency cues collaboration in the spatial domain with a multi-stream structure to deal with the great background diversity challenge.A straightforward,yet efficient approach for temporal feature extraction is developed to avoid the accumulative noises and reduce time consumption.The distinction between MSTENet and other VSOD methods stems from its incorporation of both foreground supervision and background supervision,facilitating enhanced extraction of collaborative saliency cues.Another notable differentiation is the innovative integration of spatial and temporal features,wherein the temporal module is integrated into the multi-stream structure,enabling comprehensive spatial-temporal interactions within an end-to-end framework.Extensive experimental results demonstrate that the proposed method achieves state-of-the-art performance on five benchmark datasets while maintaining a real-time speed of 27 fps(Titan XP).Our code and models are available at https://github.com/RuJiaLe/MSTENet. 展开更多
关键词 Video salient object detection deep learning temporally enhanced foreground-background collaboration
下载PDF
Local saliency consistency-based label inference for weakly supervised salient object detection using scribble annotations
2
作者 Shuo Zhao Peng Cui +1 位作者 Jing Shen Haibo Liu 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第1期239-249,共11页
Recently,weak supervision has received growing attention in the field of salient object detection due to the convenience of labelling.However,there is a large performance gap between weakly supervised and fully superv... Recently,weak supervision has received growing attention in the field of salient object detection due to the convenience of labelling.However,there is a large performance gap between weakly supervised and fully supervised salient object detectors because the scribble annotation can only provide very limited foreground/background information.Therefore,an intuitive idea is to infer annotations that cover more complete object and background regions for training.To this end,a label inference strategy is proposed based on the assumption that pixels with similar colours and close positions should have consistent labels.Specifically,k-means clustering algorithm was first performed on both colours and coordinates of original annotations,and then assigned the same labels to points having similar colours with colour cluster centres and near coordinate cluster centres.Next,the same annotations for pixels with similar colours within each kernel neighbourhood was set further.Extensive experiments on six benchmarks demonstrate that our method can significantly improve the performance and achieve the state-of-the-art results. 展开更多
关键词 label inference salient object detection weak supervision
下载PDF
Salient Object Detection Based on a Novel Combination Framework Using the Perceptual Matching and Subjective-Objective Mapping Technologies
3
作者 Jian Han Jialu Li +3 位作者 Meng Liu Zhe Ren Zhimin Cao Xingbin Liu 《Journal of Beijing Institute of Technology》 EI CAS 2023年第1期95-106,共12页
The integrity and fineness characterization of non-connected regions and contours is a major challenge for existing salient object detection.The key to address is how to make full use of the subjective and objective s... The integrity and fineness characterization of non-connected regions and contours is a major challenge for existing salient object detection.The key to address is how to make full use of the subjective and objective structural information obtained in different steps.Therefore,by simulating the human visual mechanism,this paper proposes a novel multi-decoder matching correction network and subjective structural loss.Specifically,the loss pays different attentions to the foreground,boundary,and background of ground truth map in a top-down structure.And the perceived saliency is mapped to the corresponding objective structure of the prediction map,which is extracted in a bottom-up manner.Thus,multi-level salient features can be effectively detected with the loss as constraint.And then,through the mapping of improved binary cross entropy loss,the differences between salient regions and objects are checked to pay attention to the error prone region to achieve excellent error sensitivity.Finally,through tracking the identifying feature horizontally and vertically,the subjective and objective interaction is maximized.Extensive experiments on five benchmark datasets demonstrate that compared with 12 state-of-the-art methods,the algorithm has higher recall and precision,less error and strong robustness and generalization ability,and can predict complete and refined saliency maps. 展开更多
关键词 salient object detection subjective-objective mapping perceptional separation and matching error sensitivity non-connected region detection
下载PDF
Salient Object Detection from Multi-spectral Remote Sensing Images with Deep Residual Network 被引量:16
4
作者 Yuchao DAI Jing ZHANG +2 位作者 Mingyi HE Fatih PORIKLI Bowen LIU 《Journal of Geodesy and Geoinformation Science》 2019年第2期101-110,共10页
alient object detection aims at identifying the visually interesting object regions that are consistent with human perception. Multispectral remote sensing images provide rich radiometric information in revealing the ... alient object detection aims at identifying the visually interesting object regions that are consistent with human perception. Multispectral remote sensing images provide rich radiometric information in revealing the physical properties of the observed objects, which leads to great potential to perform salient object detection for remote sensing images. Conventional salient object detection methods often employ handcrafted features to predict saliency by evaluating the pixel-wise or superpixel-wise contrast. With the recent use of deep learning framework, in particular, fully convolutional neural networks, there has been profound progress in visual saliency detection. However, this success has not been extended to multispectral remote sensing images, and existing multispectral salient object detection methods are still mainly based on handcrafted features, essentially due to the difficulties in image acquisition and labeling. In this paper, we propose a novel deep residual network based on a top-down model, which is trained in an end-to-end manner to tackle the above issues in multispectral salient object detection. Our model effectively exploits the saliency cues at different levels of the deep residual network. To overcome the limited availability of remote sensing images in training of our deep residual network, we also introduce a new spectral image reconstruction model that can generate multispectral images from RGB images. Our extensive experimental results using both multispectral and RGB salient object detection datasets demonstrate a significant performance improvement of more than 10% improvement compared with the state-of-the-art methods. 展开更多
关键词 DEEP RESIDUAL network salient object detection TOP-DOWN model REMOTE sensing image processing
下载PDF
A Novel Divide and Conquer Solution for Long-term Video Salient Object Detection
5
作者 Yun-Xiao Li Cheng-Li-Zhao Chen +2 位作者 Shuai Li Ai-Min Hao Hong Qin 《Machine Intelligence Research》 EI CSCD 2024年第4期684-703,共20页
Recently,a new research trend in our video salient object detection(VSOD)research community has focused on enhancing the detection results via model self-fine-tuning using sparsely mined high-quality keyframes from th... Recently,a new research trend in our video salient object detection(VSOD)research community has focused on enhancing the detection results via model self-fine-tuning using sparsely mined high-quality keyframes from the given sequence.Although such a learning scheme is generally effective,it has a critical limitation,i.e.,the model learned on sparse frames only possesses weak generalization ability.This situation could become worse on“long”videos since they tend to have intensive scene variations.Moreover,in such videos,the keyframe information from a longer time span is less relevant to the previous,which could also cause learning conflict and deteriorate the model performance.Thus,the learning scheme is usually incapable of handling complex pattern modeling.To solve this problem,we propose a divide-and-conquer framework,which can convert a complex problem domain into multiple simple ones.First,we devise a novel background consistency analysis(BCA)which effectively divides the mined frames into disjoint groups.Then for each group,we assign an individual deep model on it to capture its key attribute during the fine-tuning phase.During the testing phase,we design a model-matching strategy,which could dynamically select the best-matched model from those fine-tuned ones to handle the given testing frame.Comprehensive experiments show that our method can adapt severe background appearance variation coupling with object movement and obtain robust saliency detection compared with the previous scheme and the state-of-the-art methods. 展开更多
关键词 Video salient object detection background consistency analysis weakly supervised learning long-term information background shift.
原文传递
边缘信息增强的显著性目标检测网络 被引量:2
6
作者 赵卫东 王辉 柳先辉 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第2期293-302,共10页
针对显著性目标检测任务中识别结果边缘模糊的问题,提出了一种能够充分利用边缘信息增强边缘像素置信度的新模型。该网络主要有两个创新点:设计三重注意力模块,利用预测图的特点直接生成前景、背景和边缘注意力,并且生成注意力权重的过... 针对显著性目标检测任务中识别结果边缘模糊的问题,提出了一种能够充分利用边缘信息增强边缘像素置信度的新模型。该网络主要有两个创新点:设计三重注意力模块,利用预测图的特点直接生成前景、背景和边缘注意力,并且生成注意力权重的过程不增加任何参数;设计边缘预测模块,在分辨率较高的网络浅层进行有监督的边缘预测,并与网络深层的显著图预测融合,细化了边缘。在6种常用公开数据集上用定性和定量的方法评估了该模型,并且与其他模型进行充分对比,证明设计的新模型能够取得最优的效果。此外,该模型参数量为30.28 M,可以在GTX 1080 Ti显卡上达到31帧·s^(-1)的预测速度。 展开更多
关键词 显著性目标检测 注意力机制 边缘检测 深度卷积神经网络
下载PDF
基于特征注意力提纯的显著性目标检测模型
7
作者 白雪飞 申悟呈 王文剑 《计算机科学》 CSCD 北大核心 2024年第5期125-133,共9页
近年来,显著性目标检测技术取得了巨大进展,其中如何选择并有效集成多尺度特征扮演了重要角色。针对现有特征集成方法可能导致的信息冗余问题,提出了一种基于特征注意力提纯的显著性检测模型。首先,在解码器中采用一个全局特征注意力引... 近年来,显著性目标检测技术取得了巨大进展,其中如何选择并有效集成多尺度特征扮演了重要角色。针对现有特征集成方法可能导致的信息冗余问题,提出了一种基于特征注意力提纯的显著性检测模型。首先,在解码器中采用一个全局特征注意力引导模块(GAGM)对带有语义信息的深层特征进行注意力机制处理,得到全局上下文信息;然后,通过全局引导流将其送入解码器各层进行监督训练;最后,利用多尺度特征融合模块(FAM)对编码器提取出的多尺度特征与全局上下文信息进行有效集成,并在网格状特征提纯模块(MFPM)中进行进一步细化,以生成清晰、完整的显著图。在5个公开数据集上进行实验,结果表明,所提模型优于现有的其他显著性检测方法,并且处理速度快,当处理320×320尺寸的图像时,能以30帧以上的速度运行。 展开更多
关键词 显著性目标检测 注意力机制 多尺度特征融合 特征选择 网格状特征提纯
下载PDF
基于先验特征聚类的目标检测优化方法
8
作者 杜淑颖 何望 《软件》 2024年第1期1-6,共6页
针对显著目标检测问题在没有任何先验信息的情况下,通过特征聚类和紧致性先验方案实现目标检测优化。优化后的方法包括四个步骤:首先采用超像素预处理将图像分割成超像素,以抑制噪声并降低计算复杂度;其次应用改进的虾群聚类算法对颜色... 针对显著目标检测问题在没有任何先验信息的情况下,通过特征聚类和紧致性先验方案实现目标检测优化。优化后的方法包括四个步骤:首先采用超像素预处理将图像分割成超像素,以抑制噪声并降低计算复杂度;其次应用改进的虾群聚类算法对颜色特征进行分类;接着利用二维熵来衡量每个簇的紧密度,并构建背景模型;最后以背景区域与其他区域之间的对比度作为显著特征,并通过设计高斯滤波器增强其显著性。为了更好地评价显著目标检测的精度,本文通过多维评价指标进行优劣性实验分析,实验结果表明,文中算法具有较好的实时性与鲁棒性。 展开更多
关键词 显著目标检测 虾群聚类 特征先验 超像素预处理
下载PDF
基于多尺度视觉感知特征融合的显著目标检测方法 被引量:1
9
作者 吴小琴 周文俊 +2 位作者 左承林 王一帆 彭博 《计算机科学》 CSCD 北大核心 2024年第5期143-150,共8页
显著性物体检测具有重要的理论研究意义和实际应用价值,已在许多计算机视觉应用中发挥了重要作用,如视觉追踪、图像分割、物体识别等。然而,自然环境下显著目标的类别未知、尺度多变依然是物体检测面临的一大挑战,影响着显著目标的检测... 显著性物体检测具有重要的理论研究意义和实际应用价值,已在许多计算机视觉应用中发挥了重要作用,如视觉追踪、图像分割、物体识别等。然而,自然环境下显著目标的类别未知、尺度多变依然是物体检测面临的一大挑战,影响着显著目标的检测效果。因此,提出了一种基于多尺度视觉感知特征融合的显著目标检测方法。首先,基于视觉感知显著目标的特性,设计并提取多个图像感知特征。其次,图像感知特征采用多尺度自适应方式,获取特征显著图。然后,将各个显著特征图融合,获得最终的显著目标。该方法基于不同图像感知特征的特点,自适应提取显著目标,能够适应多变的检测目标与复杂的检测环境。实验结果表明,在受自然环境中背景干扰的情况下,该方法能有效检测出未知类别和不同尺度的显著目标。 展开更多
关键词 视觉感知特征 显著目标检测 多特征融合 图像分割 多尺度采样
下载PDF
集成多种上下文与混合交互的显著性目标检测
10
作者 夏晨星 陈欣雨 +4 位作者 孙延光 葛斌 方贤进 高修菊 张艳 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第7期2918-2931,共14页
显著性目标检测目的是识别和分割图像中的视觉显著性目标,它是计算机视觉任务及其相关领域的重要研究内容之一。当下基于全卷积网络(FCNs)的显著性目标检测方法已经取得了不错的性能,然而现实场景中的显著性目标类型多变且尺寸不固定,... 显著性目标检测目的是识别和分割图像中的视觉显著性目标,它是计算机视觉任务及其相关领域的重要研究内容之一。当下基于全卷积网络(FCNs)的显著性目标检测方法已经取得了不错的性能,然而现实场景中的显著性目标类型多变且尺寸不固定,这使得准确检测并完整分割出显著性目标仍然是一个巨大的挑战。为此,该文提出集成多种上下文和混合交互的显著性目标检测方法,通过利用密集上下文信息探索模块和多源特征混合交互模块来高效预测显著性目标。密集上下文信息探索模块采用空洞卷积、不对称卷积和密集引导连接渐进地捕获具有强关联性的多尺度和多感受野上下文信息,通过集成这些信息来增强每个初始多层级特征的表达能力。多源特征混合交互模块包含多种特征聚合操作,可以自适应交互来自多层级特征中的互补性信息,以生成用于准确预测显著性图的高质量特征表示。此方法在5个公共数据集上进行了性能测试,实验结果表明,该文方法在不同的评估指标下与19种基于深度学习的显著性目标检测方法相比取得优越的预测性能。 展开更多
关键词 计算机视觉 显著性目标检测 全卷积网络 上下文信息
下载PDF
基于多任务学习的视频和图像显著目标检测方法
11
作者 刘泽宇 刘建伟 《计算机科学》 CSCD 北大核心 2024年第4期217-228,共12页
显著目标检测(Salient Object Detection,SOD)能够模拟人类的注意力机制,在复杂的场景中快速发现高价值的显著目标,为进一步的视觉理解任务奠定了基础。当前主流的图像显著目标检测方法通常基于DUTS-TR数据集进行训练,而视频显著目标检... 显著目标检测(Salient Object Detection,SOD)能够模拟人类的注意力机制,在复杂的场景中快速发现高价值的显著目标,为进一步的视觉理解任务奠定了基础。当前主流的图像显著目标检测方法通常基于DUTS-TR数据集进行训练,而视频显著目标检测方法(Video Salient Object Detection,VSOD)基于DAVIS,DAVSOD以及DUTS-TR数据集进行训练。图像和视频显著目标检测任务既有共性又有特性,因此需要部署独立的模型进行单独训练,这大大增加了运算资源和训练时间的开销。当前研究大多针对单个任务提出独立的解决方案,而缺少统一的图像和视频显著目标检测方法。针对上述问题,提出了一种基于多任务学习的图像和视频显著目标检测方法,旨在构建一种通用的模型框架,通过一次训练同时适配两种任务,并进一步弥合图像和视频显著目标检测方法之间的性能差异。12个数据集上的定性和定量实验结果表明,所提方法不仅能够同时适配两种任务,而且取得了比单任务模型更好的检测结果。 展开更多
关键词 视频显著目标检测 图像显著目标检测 多任务学习 性能差异
下载PDF
基于伪标签的弱监督显著特征增强目标检测方法 被引量:1
12
作者 史殿习 刘洋洋 +3 位作者 宋林娜 谭杰夫 周晨磊 张轶 《计算机科学》 CSCD 北大核心 2024年第1期233-242,共10页
显著性目标检测旨在检测图像中最明显的区域。传统的基于单一标签的算法不可避免地受到所采用的细化算法的影响,表现出偏见特征,从而进一步影响了显著性网络的检测性能。针对这一问题,基于多指令滤波器结构,提出了一种基于伪标签的弱监... 显著性目标检测旨在检测图像中最明显的区域。传统的基于单一标签的算法不可避免地受到所采用的细化算法的影响,表现出偏见特征,从而进一步影响了显著性网络的检测性能。针对这一问题,基于多指令滤波器结构,提出了一种基于伪标签的弱监督显著特征增强目标检测方法FeaEM,通过从多个标签中集成更全面和准确的显著性线索,从而有效提升目标检测的性能。FeaEM方法的核心是引入一个新的多指令滤波器结构,利用多个伪标签来避免单一标签带来的负面影响;通过在指令滤波器中引入特征选择机制,从噪声伪标签中提取和过滤更准确的显著性线索,从而学习更多有效的具有代表性的特征;同时,针对现有的弱监督目标检测方法对输入图像的尺度十分敏感,同一图像的不同尺寸输入的预测结构存在较大偏差问题,通过引入尺度特征融合机制,以确保在输入不同尺寸的同一图像时,能输出一致的显著图,进而有效提高模型的尺度泛化能力。在多个数据集上进行的大量实验表明,所提出的FeaEM方法优于最具代表性的方法。 展开更多
关键词 深度学习 目标检测 显著性 伪标签 注意力机制
下载PDF
跨模态交互融合与全局感知的RGB-D显著性目标检测 被引量:1
13
作者 孙福明 胡锡航 +2 位作者 武景宇 孙静 王法胜 《软件学报》 EI CSCD 北大核心 2024年第4期1899-1913,共15页
近年来,RGB-D显著性检测方法凭借深度图中丰富的几何结构和空间位置信息,取得了比RGB显著性检测模型更好的性能,受到学术界的高度关注.然而,现有的RGB-D检测模型仍面临着持续提升检测性能的需求.最近兴起的Transformer擅长建模全局信息... 近年来,RGB-D显著性检测方法凭借深度图中丰富的几何结构和空间位置信息,取得了比RGB显著性检测模型更好的性能,受到学术界的高度关注.然而,现有的RGB-D检测模型仍面临着持续提升检测性能的需求.最近兴起的Transformer擅长建模全局信息,而卷积神经网络(CNN)擅长提取局部细节.因此,如何有效结合CNN和Transformer两者的优势,挖掘全局和局部信息,将有助于提升显著性目标检测的精度.为此,提出一种基于跨模态交互融合与全局感知的RGB-D显著性目标检测方法,通过将Transformer网络嵌入U-Net中,从而将全局注意力机制与局部卷积结合在一起,能够更好地对特征进行提取.首先借助U-Net编码-解码结构,高效地提取多层次互补特征并逐级解码生成显著特征图.然后,使用Transformer模块学习高级特征间的全局依赖关系增强特征表示,并针对输入采用渐进上采样融合策略以减少噪声信息的引入.其次,为了减轻低质量深度图带来的负面影响,设计一个跨模态交互融合模块以实现跨模态特征融合.最后,5个基准数据集上的实验结果表明,所提算法与其他最新的算法相比具有显著优势. 展开更多
关键词 显著性目标检测 跨模态 全局注意力机制 RGB-D检测模型
下载PDF
基于特征重聚焦和精细化的遥感显著性目标检测
14
作者 朱海鹏 张宝华 +2 位作者 李永翔 徐利权 温海英 《传感器与微系统》 CSCD 北大核心 2024年第7期157-160,共4页
为了提升网络对特征的表征,提出一种基于特征重聚焦和精细化的光学遥感显著目标检测算法。利用相邻层特征交互捕获上下文语义互补信息,并通过膨胀卷积调节感受野提取信息的范围,完成初次特征聚焦。再将注意机制作用于深层特征,组成位置... 为了提升网络对特征的表征,提出一种基于特征重聚焦和精细化的光学遥感显著目标检测算法。利用相邻层特征交互捕获上下文语义互补信息,并通过膨胀卷积调节感受野提取信息的范围,完成初次特征聚焦。再将注意机制作用于深层特征,组成位置引导模块,增强对显著性特征的关注,完成特征重聚焦。最后,通过浅层特征获得显著特征注意图和反注意图,引导网络进一步挖掘高置信度显著区域和低置信度背景区域的信息,精细化优化后的特征。采用EORSSD和ORSSD 2个公开数据集进行实验与评估,以证明算法的有效性。 展开更多
关键词 光学遥感图像 显著性目标检测 相邻上下文协调 特征精细化 注意力机制
下载PDF
弱监督显著性目标检测研究进展
15
作者 于俊伟 郭园森 +1 位作者 张自豪 母亚双 《计算机工程与应用》 CSCD 北大核心 2024年第10期1-15,共15页
显著性目标检测旨在准确检测和定位图像或视频中最引人注目的目标或区域,为更好地进行目标识别和场景分析提供帮助。尽管全监督显著性检测方法取得一定成效,但获取大规模像素级标注数据集十分困难且昂贵。弱监督检测方法利用相对容易获... 显著性目标检测旨在准确检测和定位图像或视频中最引人注目的目标或区域,为更好地进行目标识别和场景分析提供帮助。尽管全监督显著性检测方法取得一定成效,但获取大规模像素级标注数据集十分困难且昂贵。弱监督检测方法利用相对容易获取的图像级标签或带噪声的弱标签训练模型,在实际应用中表现出良好效果。全面对比了全监督和弱监督显著性检测的主流方法和应用场景,重点分析了常用的弱标签数据标注方法及其对显著目标检测的影响。综述了弱监督条件下显著目标检测方法的最新研究进展,并在常用数据集上对不同弱监督方法的性能进行了比较。最后探讨了弱监督显著性检测在农业、医学和军事等特殊领域的应用前景,指出了该研究领域存在的问题及未来发展趋势。 展开更多
关键词 显著性目标检测 全监督学习 弱监督学习
下载PDF
基于边缘及多尺度特征融合的显著性目标检测方法
16
作者 占钟鸣 李庆武 +1 位作者 余大兵 赵乙新 《光学技术》 CAS CSCD 北大核心 2024年第5期606-612,共7页
为了提高显著性目标分割的准确性,提出了一种基于边缘及多尺度特征融合的显著性目标检测方法。该方法首先利用ResNet50网络提取特征,并结合改进的空间注意力模块以增强目标特征的表征能力。接着,提出一种全新的边缘及多尺度特征融合模块... 为了提高显著性目标分割的准确性,提出了一种基于边缘及多尺度特征融合的显著性目标检测方法。该方法首先利用ResNet50网络提取特征,并结合改进的空间注意力模块以增强目标特征的表征能力。接着,提出一种全新的边缘及多尺度特征融合模块,有机结合边缘信息与多尺度特征信息,并设计了一个综合考虑了显著性目标主体分割和边缘分割的损失函数,对特征融合模块进行有效监督,保证了模型在训练过程中会同时关注显著性目标主体和边缘的细节信息,以提高显著性目标的主体和边缘清晰度。最后,创新性地引入上下文增强模块,有效减少深度学习网络中多次上、下采样过程中信息的丢失,从而提高显著性目标主体和边缘的准确性。通过在3个公开数据集上与近几年的8个主流算法相比较,该方法在定量结果和定性结果上均优于其他算法,验证了该方法的有效性和优越性。 展开更多
关键词 显著性目标检测 边缘 多尺度特征 特征融合 卷积神经网络
下载PDF
基于多模态特征交互的RGB-D显著性目标检测 被引量:1
17
作者 高悦 戴蒙 张晴 《计算机工程与应用》 CSCD 北大核心 2024年第2期211-220,共10页
现有的大多数RGB-D显著性目标检测方法利用深度图来提高检测效果,而忽视了其质量的影响。低质量的深度图会对最终显著目标预测结果造成污染,影响显著性检测的性能。为了消除低质量深度图带来的干扰,并准确突出RGB图像中的显著目标,提出... 现有的大多数RGB-D显著性目标检测方法利用深度图来提高检测效果,而忽视了其质量的影响。低质量的深度图会对最终显著目标预测结果造成污染,影响显著性检测的性能。为了消除低质量深度图带来的干扰,并准确突出RGB图像中的显著目标,提出了一个用于多模态特征交互的RGB-D显著性目标检测模型。在编码阶段,设计了一个特征交互模块,其包含三个子模块:用于增强特征表述能力的全局特征采集子模块、用于过滤低质量深度信息的深度特征精炼子模块和用于实现特征融合的多模态特征交互子模块。在解码阶段,逐层融合经过特征交互后的多模态特征,实现多层次特征融合。通过在五个基准数据集上与十二种先进方法进行的综合实验表明,该模型在NLPR、SIP和NJU2K数据集上的指标上均优于其他对比方法,其中在NJU2K数据集上,该模型的性能比第二名在平均F值上提升了0.008,加权F值上提升了0.014,E-measure上提升了0.007,表现出了较好的检测效果。 展开更多
关键词 RGB-D显著性检测 多模态特征 特征交互 特征融合
下载PDF
基于互学习和促进分割的RGB-D显著性目标检测
18
作者 夏晨星 王晶晶 葛斌 《通化师范学院学报》 2024年第6期52-58,共7页
RGB-D显著性目标检测主要通过融合RGB图像和深度图(Depth)从给定场景中分割最显著的对象.由于受到原始深度图固有噪声的影响,会导致模型在检测过程中拟入错误的信息.为了改善检测效果,该文提出了一种基于互学习和促进分割的RGB-D显著性... RGB-D显著性目标检测主要通过融合RGB图像和深度图(Depth)从给定场景中分割最显著的对象.由于受到原始深度图固有噪声的影响,会导致模型在检测过程中拟入错误的信息.为了改善检测效果,该文提出了一种基于互学习和促进分割的RGB-D显著性目标检测模型,设计一个深度优化模块来获取深度图和预测深度图之间最优的深度信息;引入特征对齐模块和跨模态集成模块完成跨模态的融合;针对分割造成的精度损失问题,构建了一个基于多源特征集成机制的分离重构解码器.在5个公开数据集上进行了实验测试,实验结果表明:所提模型与其他模型相比,准确率更高,网络更加稳定. 展开更多
关键词 RGB-D显著性目标检测 互学习 特征对齐 跨模态集成
下载PDF
SAM Era:Can It Segment Any Industrial Surface Defects?
19
作者 Kechen Song Wenqi Cui +2 位作者 Han Yu Xingjie Li Yunhui Yan 《Computers, Materials & Continua》 SCIE EI 2024年第3期3953-3969,共17页
Segment Anything Model(SAM)is a cutting-edge model that has shown impressive performance in general object segmentation.The birth of the segment anything is a groundbreaking step towards creating a universal intellige... Segment Anything Model(SAM)is a cutting-edge model that has shown impressive performance in general object segmentation.The birth of the segment anything is a groundbreaking step towards creating a universal intelligent model.Due to its superior performance in general object segmentation,it quickly gained attention and interest.This makes SAM particularly attractive in industrial surface defect segmentation,especially for complex industrial scenes with limited training data.However,its segmentation ability for specific industrial scenes remains unknown.Therefore,in this work,we select three representative and complex industrial surface defect detection scenarios,namely strip steel surface defects,tile surface defects,and rail surface defects,to evaluate the segmentation performance of SAM.Our results show that although SAM has great potential in general object segmentation,it cannot achieve satisfactory performance in complex industrial scenes.Our test results are available at:https://github.com/VDT-2048/SAM-IS. 展开更多
关键词 Segment anything SAM surface defect detection salient object detection
下载PDF
采用特征优化和引导的显著目标检测研究
20
作者 吴文介 王丰 《计算机工程与应用》 CSCD 北大核心 2024年第18期256-265,共10页
针对目前深度图存在对比度不明显和预测图边界模糊等问题,提出了一种新型显著目标检测网络模型。该模型包括特征优化模块和特征引导模块。为了降低低质量深度图的负面影响,并精确地突出显著目标,在特征优化模块对深度图的各层特征进行... 针对目前深度图存在对比度不明显和预测图边界模糊等问题,提出了一种新型显著目标检测网络模型。该模型包括特征优化模块和特征引导模块。为了降低低质量深度图的负面影响,并精确地突出显著目标,在特征优化模块对深度图的各层特征进行混合注意力计算并进行双向融合。为解决边界模糊问题,在特征引导模块利用引导融合的方式引入低层特征来精细化目标边界。在解码阶段,引入不增加模型参数的权值计算方法,计算RGB特征和深度特征对最终预测的贡献比重。通过与近年来十二种先进方法进行的对比实验表明,所提算法模型在NJU2K、NLPR、DES、SIP、STERE和LFSD测试数据集上具有更优秀的检测性能,其中在SIP数据集上,提出的模型与第二名相比,最大F值提升了1.3%,平均F值提升了1%,E-measure提升了1.7%,S-measure提升了1.5%,消融实验证明了所提模块的有效性。 展开更多
关键词 深度图 显著目标检测 混合注意力 特征融合
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部