Video salient object detection(VSOD)aims at locating the most attractive objects in a video by exploring the spatial and temporal features.VSOD poses a challenging task in computer vision,as it involves processing com...Video salient object detection(VSOD)aims at locating the most attractive objects in a video by exploring the spatial and temporal features.VSOD poses a challenging task in computer vision,as it involves processing complex spatial data that is also influenced by temporal dynamics.Despite the progress made in existing VSOD models,they still struggle in scenes of great background diversity within and between frames.Additionally,they encounter difficulties related to accumulated noise and high time consumption during the extraction of temporal features over a long-term duration.We propose a multi-stream temporal enhanced network(MSTENet)to address these problems.It investigates saliency cues collaboration in the spatial domain with a multi-stream structure to deal with the great background diversity challenge.A straightforward,yet efficient approach for temporal feature extraction is developed to avoid the accumulative noises and reduce time consumption.The distinction between MSTENet and other VSOD methods stems from its incorporation of both foreground supervision and background supervision,facilitating enhanced extraction of collaborative saliency cues.Another notable differentiation is the innovative integration of spatial and temporal features,wherein the temporal module is integrated into the multi-stream structure,enabling comprehensive spatial-temporal interactions within an end-to-end framework.Extensive experimental results demonstrate that the proposed method achieves state-of-the-art performance on five benchmark datasets while maintaining a real-time speed of 27 fps(Titan XP).Our code and models are available at https://github.com/RuJiaLe/MSTENet.展开更多
Recently,weak supervision has received growing attention in the field of salient object detection due to the convenience of labelling.However,there is a large performance gap between weakly supervised and fully superv...Recently,weak supervision has received growing attention in the field of salient object detection due to the convenience of labelling.However,there is a large performance gap between weakly supervised and fully supervised salient object detectors because the scribble annotation can only provide very limited foreground/background information.Therefore,an intuitive idea is to infer annotations that cover more complete object and background regions for training.To this end,a label inference strategy is proposed based on the assumption that pixels with similar colours and close positions should have consistent labels.Specifically,k-means clustering algorithm was first performed on both colours and coordinates of original annotations,and then assigned the same labels to points having similar colours with colour cluster centres and near coordinate cluster centres.Next,the same annotations for pixels with similar colours within each kernel neighbourhood was set further.Extensive experiments on six benchmarks demonstrate that our method can significantly improve the performance and achieve the state-of-the-art results.展开更多
The integrity and fineness characterization of non-connected regions and contours is a major challenge for existing salient object detection.The key to address is how to make full use of the subjective and objective s...The integrity and fineness characterization of non-connected regions and contours is a major challenge for existing salient object detection.The key to address is how to make full use of the subjective and objective structural information obtained in different steps.Therefore,by simulating the human visual mechanism,this paper proposes a novel multi-decoder matching correction network and subjective structural loss.Specifically,the loss pays different attentions to the foreground,boundary,and background of ground truth map in a top-down structure.And the perceived saliency is mapped to the corresponding objective structure of the prediction map,which is extracted in a bottom-up manner.Thus,multi-level salient features can be effectively detected with the loss as constraint.And then,through the mapping of improved binary cross entropy loss,the differences between salient regions and objects are checked to pay attention to the error prone region to achieve excellent error sensitivity.Finally,through tracking the identifying feature horizontally and vertically,the subjective and objective interaction is maximized.Extensive experiments on five benchmark datasets demonstrate that compared with 12 state-of-the-art methods,the algorithm has higher recall and precision,less error and strong robustness and generalization ability,and can predict complete and refined saliency maps.展开更多
alient object detection aims at identifying the visually interesting object regions that are consistent with human perception. Multispectral remote sensing images provide rich radiometric information in revealing the ...alient object detection aims at identifying the visually interesting object regions that are consistent with human perception. Multispectral remote sensing images provide rich radiometric information in revealing the physical properties of the observed objects, which leads to great potential to perform salient object detection for remote sensing images. Conventional salient object detection methods often employ handcrafted features to predict saliency by evaluating the pixel-wise or superpixel-wise contrast. With the recent use of deep learning framework, in particular, fully convolutional neural networks, there has been profound progress in visual saliency detection. However, this success has not been extended to multispectral remote sensing images, and existing multispectral salient object detection methods are still mainly based on handcrafted features, essentially due to the difficulties in image acquisition and labeling. In this paper, we propose a novel deep residual network based on a top-down model, which is trained in an end-to-end manner to tackle the above issues in multispectral salient object detection. Our model effectively exploits the saliency cues at different levels of the deep residual network. To overcome the limited availability of remote sensing images in training of our deep residual network, we also introduce a new spectral image reconstruction model that can generate multispectral images from RGB images. Our extensive experimental results using both multispectral and RGB salient object detection datasets demonstrate a significant performance improvement of more than 10% improvement compared with the state-of-the-art methods.展开更多
Recently,a new research trend in our video salient object detection(VSOD)research community has focused on enhancing the detection results via model self-fine-tuning using sparsely mined high-quality keyframes from th...Recently,a new research trend in our video salient object detection(VSOD)research community has focused on enhancing the detection results via model self-fine-tuning using sparsely mined high-quality keyframes from the given sequence.Although such a learning scheme is generally effective,it has a critical limitation,i.e.,the model learned on sparse frames only possesses weak generalization ability.This situation could become worse on“long”videos since they tend to have intensive scene variations.Moreover,in such videos,the keyframe information from a longer time span is less relevant to the previous,which could also cause learning conflict and deteriorate the model performance.Thus,the learning scheme is usually incapable of handling complex pattern modeling.To solve this problem,we propose a divide-and-conquer framework,which can convert a complex problem domain into multiple simple ones.First,we devise a novel background consistency analysis(BCA)which effectively divides the mined frames into disjoint groups.Then for each group,we assign an individual deep model on it to capture its key attribute during the fine-tuning phase.During the testing phase,we design a model-matching strategy,which could dynamically select the best-matched model from those fine-tuned ones to handle the given testing frame.Comprehensive experiments show that our method can adapt severe background appearance variation coupling with object movement and obtain robust saliency detection compared with the previous scheme and the state-of-the-art methods.展开更多
Segment Anything Model(SAM)is a cutting-edge model that has shown impressive performance in general object segmentation.The birth of the segment anything is a groundbreaking step towards creating a universal intellige...Segment Anything Model(SAM)is a cutting-edge model that has shown impressive performance in general object segmentation.The birth of the segment anything is a groundbreaking step towards creating a universal intelligent model.Due to its superior performance in general object segmentation,it quickly gained attention and interest.This makes SAM particularly attractive in industrial surface defect segmentation,especially for complex industrial scenes with limited training data.However,its segmentation ability for specific industrial scenes remains unknown.Therefore,in this work,we select three representative and complex industrial surface defect detection scenarios,namely strip steel surface defects,tile surface defects,and rail surface defects,to evaluate the segmentation performance of SAM.Our results show that although SAM has great potential in general object segmentation,it cannot achieve satisfactory performance in complex industrial scenes.Our test results are available at:https://github.com/VDT-2048/SAM-IS.展开更多
基金funded by the Natural Science Foundation China(NSFC)under Grant No.62203192.
文摘Video salient object detection(VSOD)aims at locating the most attractive objects in a video by exploring the spatial and temporal features.VSOD poses a challenging task in computer vision,as it involves processing complex spatial data that is also influenced by temporal dynamics.Despite the progress made in existing VSOD models,they still struggle in scenes of great background diversity within and between frames.Additionally,they encounter difficulties related to accumulated noise and high time consumption during the extraction of temporal features over a long-term duration.We propose a multi-stream temporal enhanced network(MSTENet)to address these problems.It investigates saliency cues collaboration in the spatial domain with a multi-stream structure to deal with the great background diversity challenge.A straightforward,yet efficient approach for temporal feature extraction is developed to avoid the accumulative noises and reduce time consumption.The distinction between MSTENet and other VSOD methods stems from its incorporation of both foreground supervision and background supervision,facilitating enhanced extraction of collaborative saliency cues.Another notable differentiation is the innovative integration of spatial and temporal features,wherein the temporal module is integrated into the multi-stream structure,enabling comprehensive spatial-temporal interactions within an end-to-end framework.Extensive experimental results demonstrate that the proposed method achieves state-of-the-art performance on five benchmark datasets while maintaining a real-time speed of 27 fps(Titan XP).Our code and models are available at https://github.com/RuJiaLe/MSTENet.
文摘Recently,weak supervision has received growing attention in the field of salient object detection due to the convenience of labelling.However,there is a large performance gap between weakly supervised and fully supervised salient object detectors because the scribble annotation can only provide very limited foreground/background information.Therefore,an intuitive idea is to infer annotations that cover more complete object and background regions for training.To this end,a label inference strategy is proposed based on the assumption that pixels with similar colours and close positions should have consistent labels.Specifically,k-means clustering algorithm was first performed on both colours and coordinates of original annotations,and then assigned the same labels to points having similar colours with colour cluster centres and near coordinate cluster centres.Next,the same annotations for pixels with similar colours within each kernel neighbourhood was set further.Extensive experiments on six benchmarks demonstrate that our method can significantly improve the performance and achieve the state-of-the-art results.
基金supported by the National Natural Science Foundation of China(No.52174021)Key Research and Develop-ment Project of Hainan Province(No.ZDYF2022GXJS 003).
文摘The integrity and fineness characterization of non-connected regions and contours is a major challenge for existing salient object detection.The key to address is how to make full use of the subjective and objective structural information obtained in different steps.Therefore,by simulating the human visual mechanism,this paper proposes a novel multi-decoder matching correction network and subjective structural loss.Specifically,the loss pays different attentions to the foreground,boundary,and background of ground truth map in a top-down structure.And the perceived saliency is mapped to the corresponding objective structure of the prediction map,which is extracted in a bottom-up manner.Thus,multi-level salient features can be effectively detected with the loss as constraint.And then,through the mapping of improved binary cross entropy loss,the differences between salient regions and objects are checked to pay attention to the error prone region to achieve excellent error sensitivity.Finally,through tracking the identifying feature horizontally and vertically,the subjective and objective interaction is maximized.Extensive experiments on five benchmark datasets demonstrate that compared with 12 state-of-the-art methods,the algorithm has higher recall and precision,less error and strong robustness and generalization ability,and can predict complete and refined saliency maps.
基金National 1000 Young Talents Plan of ChinaNational Natural Science Foundation of China(61420106007,61671387,61871325)DECRA of Australica Resenrch Council (DE140100180).
文摘alient object detection aims at identifying the visually interesting object regions that are consistent with human perception. Multispectral remote sensing images provide rich radiometric information in revealing the physical properties of the observed objects, which leads to great potential to perform salient object detection for remote sensing images. Conventional salient object detection methods often employ handcrafted features to predict saliency by evaluating the pixel-wise or superpixel-wise contrast. With the recent use of deep learning framework, in particular, fully convolutional neural networks, there has been profound progress in visual saliency detection. However, this success has not been extended to multispectral remote sensing images, and existing multispectral salient object detection methods are still mainly based on handcrafted features, essentially due to the difficulties in image acquisition and labeling. In this paper, we propose a novel deep residual network based on a top-down model, which is trained in an end-to-end manner to tackle the above issues in multispectral salient object detection. Our model effectively exploits the saliency cues at different levels of the deep residual network. To overcome the limited availability of remote sensing images in training of our deep residual network, we also introduce a new spectral image reconstruction model that can generate multispectral images from RGB images. Our extensive experimental results using both multispectral and RGB salient object detection datasets demonstrate a significant performance improvement of more than 10% improvement compared with the state-of-the-art methods.
基金supported in part by the CAMS Innovation Fund for Medical Sciences,China(No.2019-I2M5-016)National Natural Science Foundation of China(No.62172246)+1 种基金the Youth Innovation and Technology Support Plan of Colleges and Universities in Shandong Province,China(No.2021KJ062)National Science Foundation of USA(Nos.IIS-1715985 and IIS1812606).
文摘Recently,a new research trend in our video salient object detection(VSOD)research community has focused on enhancing the detection results via model self-fine-tuning using sparsely mined high-quality keyframes from the given sequence.Although such a learning scheme is generally effective,it has a critical limitation,i.e.,the model learned on sparse frames only possesses weak generalization ability.This situation could become worse on“long”videos since they tend to have intensive scene variations.Moreover,in such videos,the keyframe information from a longer time span is less relevant to the previous,which could also cause learning conflict and deteriorate the model performance.Thus,the learning scheme is usually incapable of handling complex pattern modeling.To solve this problem,we propose a divide-and-conquer framework,which can convert a complex problem domain into multiple simple ones.First,we devise a novel background consistency analysis(BCA)which effectively divides the mined frames into disjoint groups.Then for each group,we assign an individual deep model on it to capture its key attribute during the fine-tuning phase.During the testing phase,we design a model-matching strategy,which could dynamically select the best-matched model from those fine-tuned ones to handle the given testing frame.Comprehensive experiments show that our method can adapt severe background appearance variation coupling with object movement and obtain robust saliency detection compared with the previous scheme and the state-of-the-art methods.
基金supported by the National Natural Science Foundation of China(51805078)Project of National Key Laboratory of Advanced Casting Technologies(CAT2023-002)the 111 Project(B16009).
文摘Segment Anything Model(SAM)is a cutting-edge model that has shown impressive performance in general object segmentation.The birth of the segment anything is a groundbreaking step towards creating a universal intelligent model.Due to its superior performance in general object segmentation,it quickly gained attention and interest.This makes SAM particularly attractive in industrial surface defect segmentation,especially for complex industrial scenes with limited training data.However,its segmentation ability for specific industrial scenes remains unknown.Therefore,in this work,we select three representative and complex industrial surface defect detection scenarios,namely strip steel surface defects,tile surface defects,and rail surface defects,to evaluate the segmentation performance of SAM.Our results show that although SAM has great potential in general object segmentation,it cannot achieve satisfactory performance in complex industrial scenes.Our test results are available at:https://github.com/VDT-2048/SAM-IS.