期刊文献+
共找到13,189篇文章
< 1 2 250 >
每页显示 20 50 100
Using restored two-dimensional X-ray images to reconstruct the three-dimensional magnetopause 被引量:1
1
作者 RongCong Wang JiaQi Wang +3 位作者 DaLin Li TianRan Sun XiaoDong Peng YiHong Guo 《Earth and Planetary Physics》 EI CSCD 2024年第1期133-154,共22页
Astronomical imaging technologies are basic tools for the exploration of the universe,providing basic data for the research of astronomy and space physics.The Soft X-ray Imager(SXI)carried by the Solar wind Magnetosph... Astronomical imaging technologies are basic tools for the exploration of the universe,providing basic data for the research of astronomy and space physics.The Soft X-ray Imager(SXI)carried by the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)aims to capture two-dimensional(2-D)images of the Earth’s magnetosheath by using soft X-ray imaging.However,the observed 2-D images are affected by many noise factors,destroying the contained information,which is not conducive to the subsequent reconstruction of the three-dimensional(3-D)structure of the magnetopause.The analysis of SXI-simulated observation images shows that such damage cannot be evaluated with traditional restoration models.This makes it difficult to establish the mapping relationship between SXIsimulated observation images and target images by using mathematical models.We propose an image restoration algorithm for SXIsimulated observation images that can recover large-scale structure information on the magnetosphere.The idea is to train a patch estimator by selecting noise–clean patch pairs with the same distribution through the Classification–Expectation Maximization algorithm to achieve the restoration estimation of the SXI-simulated observation image,whose mapping relationship with the target image is established by the patch estimator.The Classification–Expectation Maximization algorithm is used to select multiple patch clusters with the same distribution and then train different patch estimators so as to improve the accuracy of the estimator.Experimental results showed that our image restoration algorithm is superior to other classical image restoration algorithms in the SXI-simulated observation image restoration task,according to the peak signal-to-noise ratio and structural similarity.The restoration results of SXI-simulated observation images are used in the tangent fitting approach and the computed tomography approach toward magnetospheric reconstruction techniques,significantly improving the reconstruction results.Hence,the proposed technology may be feasible for processing SXI-simulated observation images. 展开更多
关键词 Solar wind Magnetosphere Ionosphere Link Explorer(SMILE) soft X-ray imager MAGNETOPAUSE image restoration
下载PDF
Improving the Transmission Security of Vein Images Using a Bezier Curve and Long Short-Term Memory
2
作者 Ahmed H.Alhadethi Ikram Smaoui +1 位作者 Ahmed Fakhfakh Saad M.Darwish 《Computers, Materials & Continua》 SCIE EI 2024年第6期4825-4844,共20页
The act of transmitting photos via the Internet has become a routine and significant activity.Enhancing the security measures to safeguard these images from counterfeiting and modifications is a critical domain that c... The act of transmitting photos via the Internet has become a routine and significant activity.Enhancing the security measures to safeguard these images from counterfeiting and modifications is a critical domain that can still be further enhanced.This study presents a system that employs a range of approaches and algorithms to ensure the security of transmitted venous images.The main goal of this work is to create a very effective system for compressing individual biometrics in order to improve the overall accuracy and security of digital photographs by means of image compression.This paper introduces a content-based image authentication mechanism that is suitable for usage across an untrusted network and resistant to data loss during transmission.By employing scale attributes and a key-dependent parametric Long Short-Term Memory(LSTM),it is feasible to improve the resilience of digital signatures against image deterioration and strengthen their security against malicious actions.Furthermore,the successful implementation of transmitting biometric data in a compressed format over a wireless network has been accomplished.For applications involving the transmission and sharing of images across a network.The suggested technique utilizes the scalability of a structural digital signature to attain a satisfactory equilibrium between security and picture transfer.An effective adaptive compression strategy was created to lengthen the overall lifetime of the network by sharing the processing of responsibilities.This scheme ensures a large reduction in computational and energy requirements while minimizing image quality loss.This approach employs multi-scale characteristics to improve the resistance of signatures against image deterioration.The proposed system attained a Gaussian noise value of 98%and a rotation accuracy surpassing 99%. 展开更多
关键词 Image transmission image compression text hiding Bezier curve Histogram of Oriented Gradients(HOG) LSTM image enhancement Gaussian noise ROTATIon
下载PDF
Fuzzy Difference Equations in Diagnoses of Glaucoma from Retinal Images Using Deep Learning
3
作者 D.Dorathy Prema Kavitha L.Francis Raj +3 位作者 Sandeep Kautish Abdulaziz S.Almazyad Karam M.Sallam Ali Wagdy Mohamed 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期801-816,共16页
The intuitive fuzzy set has found important application in decision-making and machine learning.To enrich and utilize the intuitive fuzzy set,this study designed and developed a deep neural network-based glaucoma eye ... The intuitive fuzzy set has found important application in decision-making and machine learning.To enrich and utilize the intuitive fuzzy set,this study designed and developed a deep neural network-based glaucoma eye detection using fuzzy difference equations in the domain where the retinal images converge.Retinal image detections are categorized as normal eye recognition,suspected glaucomatous eye recognition,and glaucomatous eye recognition.Fuzzy degrees associated with weighted values are calculated to determine the level of concentration between the fuzzy partition and the retinal images.The proposed model was used to diagnose glaucoma using retinal images and involved utilizing the Convolutional Neural Network(CNN)and deep learning to identify the fuzzy weighted regularization between images.This methodology was used to clarify the input images and make them adequate for the process of glaucoma detection.The objective of this study was to propose a novel approach to the early diagnosis of glaucoma using the Fuzzy Expert System(FES)and Fuzzy differential equation(FDE).The intensities of the different regions in the images and their respective peak levels were determined.Once the peak regions were identified,the recurrence relationships among those peaks were then measured.Image partitioning was done due to varying degrees of similar and dissimilar concentrations in the image.Similar and dissimilar concentration levels and spatial frequency generated a threshold image from the combined fuzzy matrix and FDE.This distinguished between a normal and abnormal eye condition,thus detecting patients with glaucomatous eyes. 展开更多
关键词 Convolutional Neural Network(CNN) glaucomatous eyes fuzzy difference equation intuitive fuzzy sets image segmentation retinal images
下载PDF
CrossLinkNet: An Explainable and Trustworthy AI Framework for Whole-Slide Images Segmentation
4
作者 Peng Xiao Qi Zhong +3 位作者 Jingxue Chen Dongyuan Wu Zhen Qin Erqiang Zhou 《Computers, Materials & Continua》 SCIE EI 2024年第6期4703-4724,共22页
In the intelligent medical diagnosis area,Artificial Intelligence(AI)’s trustworthiness,reliability,and interpretability are critical,especially in cancer diagnosis.Traditional neural networks,while excellent at proc... In the intelligent medical diagnosis area,Artificial Intelligence(AI)’s trustworthiness,reliability,and interpretability are critical,especially in cancer diagnosis.Traditional neural networks,while excellent at processing natural images,often lack interpretability and adaptability when processing high-resolution digital pathological images.This limitation is particularly evident in pathological diagnosis,which is the gold standard of cancer diagnosis and relies on a pathologist’s careful examination and analysis of digital pathological slides to identify the features and progression of the disease.Therefore,the integration of interpretable AI into smart medical diagnosis is not only an inevitable technological trend but also a key to improving diagnostic accuracy and reliability.In this paper,we introduce an innovative Multi-Scale Multi-Branch Feature Encoder(MSBE)and present the design of the CrossLinkNet Framework.The MSBE enhances the network’s capability for feature extraction by allowing the adjustment of hyperparameters to configure the number of branches and modules.The CrossLinkNet Framework,serving as a versatile image segmentation network architecture,employs cross-layer encoder-decoder connections for multi-level feature fusion,thereby enhancing feature integration and segmentation accuracy.Comprehensive quantitative and qualitative experiments on two datasets demonstrate that CrossLinkNet,equipped with the MSBE encoder,not only achieves accurate segmentation results but is also adaptable to various tumor segmentation tasks and scenarios by replacing different feature encoders.Crucially,CrossLinkNet emphasizes the interpretability of the AI model,a crucial aspect for medical professionals,providing an in-depth understanding of the model’s decisions and thereby enhancing trust and reliability in AI-assisted diagnostics. 展开更多
关键词 Explainable AI security TRUSTWORTHY CrossLinkNet whole slide images
下载PDF
Mapping soil organic matter in cultivated land based on multi-year composite images on monthly time scales
5
作者 Jie Song Dongsheng Yu +4 位作者 Siwei Wang Yanhe Zhao Xin Wang Lixia Ma Jiangang Li 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第4期1393-1408,共16页
Rapid and accurate acquisition of soil organic matter(SOM)information in cultivated land is important for sustainable agricultural development and carbon balance management.This study proposed a novel approach to pred... Rapid and accurate acquisition of soil organic matter(SOM)information in cultivated land is important for sustainable agricultural development and carbon balance management.This study proposed a novel approach to predict SOM with high accuracy using multiyear synthetic remote sensing variables on a monthly scale.We obtained 12 monthly synthetic Sentinel-2 images covering the study area from 2016 to 2021 through the Google Earth Engine(GEE)platform,and reflectance bands and vegetation indices were extracted from these composite images.Then the random forest(RF),support vector machine(SVM)and gradient boosting regression tree(GBRT)models were tested to investigate the difference in SOM prediction accuracy under different combinations of monthly synthetic variables.Results showed that firstly,all monthly synthetic spectral bands of Sentinel-2 showed a significant correlation with SOM(P<0.05)for the months of January,March,April,October,and November.Secondly,in terms of single-monthly composite variables,the prediction accuracy was relatively poor,with the highest R^(2)value of 0.36 being observed in January.When monthly synthetic environmental variables were grouped in accordance with the four quarters of the year,the first quarter and the fourth quarter showed good performance,and any combination of three quarters was similar in estimation accuracy.The overall best performance was observed when all monthly synthetic variables were incorporated into the models.Thirdly,among the three models compared,the RF model was consistently more accurate than the SVM and GBRT models,achieving an R^(2)value of 0.56.Except for band 12 in December,the importance of the remaining bands did not exhibit significant differences.This research offers a new attempt to map SOM with high accuracy and fine spatial resolution based on monthly synthetic Sentinel-2 images. 展开更多
关键词 soil organic matter Sentinel-2 monthly synthetic images machine learning model spatial prediction
下载PDF
Double quantum images encryption scheme based on chaotic system
6
作者 蒋社想 李杨 +1 位作者 石锦 张茹 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期305-320,共16页
This paper explores a double quantum images representation(DNEQR)model that allows for simultaneous storage of two digital images in a quantum superposition state.Additionally,a new type of two-dimensional hyperchaoti... This paper explores a double quantum images representation(DNEQR)model that allows for simultaneous storage of two digital images in a quantum superposition state.Additionally,a new type of two-dimensional hyperchaotic system based on sine and logistic maps is investigated,offering a wider parameter space and better chaotic behavior compared to the sine and logistic maps.Based on the DNEQR model and the hyperchaotic system,a double quantum images encryption algorithm is proposed.Firstly,two classical plaintext images are transformed into quantum states using the DNEQR model.Then,the proposed hyperchaotic system is employed to iteratively generate pseudo-random sequences.These chaotic sequences are utilized to perform pixel value and position operations on the quantum image,resulting in changes to both pixel values and positions.Finally,the ciphertext image can be obtained by qubit-level diffusion using two XOR operations between the position-permutated image and the pseudo-random sequences.The corresponding quantum circuits are also given.Experimental results demonstrate that the proposed scheme ensures the security of the images during transmission,improves the encryption efficiency,and enhances anti-interference and anti-attack capabilities. 展开更多
关键词 double quantum images encryption chaotic system pixel scrambling XOR operation
下载PDF
Design of a novel hybrid quantum deep neural network in INEQR images classification
7
作者 王爽 王柯涵 +3 位作者 程涛 赵润盛 马鸿洋 郭帅 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期230-238,共9页
We redesign the parameterized quantum circuit in the quantum deep neural network, construct a three-layer structure as the hidden layer, and then use classical optimization algorithms to train the parameterized quantu... We redesign the parameterized quantum circuit in the quantum deep neural network, construct a three-layer structure as the hidden layer, and then use classical optimization algorithms to train the parameterized quantum circuit, thereby propose a novel hybrid quantum deep neural network(HQDNN) used for image classification. After bilinear interpolation reduces the original image to a suitable size, an improved novel enhanced quantum representation(INEQR) is used to encode it into quantum states as the input of the HQDNN. Multi-layer parameterized quantum circuits are used as the main structure to implement feature extraction and classification. The output results of parameterized quantum circuits are converted into classical data through quantum measurements and then optimized on a classical computer. To verify the performance of the HQDNN, we conduct binary classification and three classification experiments on the MNIST(Modified National Institute of Standards and Technology) data set. In the first binary classification, the accuracy of 0 and 4 exceeds98%. Then we compare the performance of three classification with other algorithms, the results on two datasets show that the classification accuracy is higher than that of quantum deep neural network and general quantum convolutional neural network. 展开更多
关键词 quantum computing image classification quantum–classical hybrid neural network quantum image representation INTERPOLATIon
下载PDF
U-Net Inspired Deep Neural Network-Based Smoke Plume Detection in Satellite Images
8
作者 Ananthakrishnan Balasundaram Ayesha Shaik +1 位作者 Japmann Kaur Banga Aman Kumar Singh 《Computers, Materials & Continua》 SCIE EI 2024年第4期779-799,共21页
Industrial activities, through the human-induced release of Green House Gas (GHG) emissions, have beenidentified as the primary cause of global warming. Accurate and quantitative monitoring of these emissions isessent... Industrial activities, through the human-induced release of Green House Gas (GHG) emissions, have beenidentified as the primary cause of global warming. Accurate and quantitative monitoring of these emissions isessential for a comprehensive understanding of their impact on the Earth’s climate and for effectively enforcingemission regulations at a large scale. This work examines the feasibility of detecting and quantifying industrialsmoke plumes using freely accessible geo-satellite imagery. The existing systemhas so many lagging factors such aslimitations in accuracy, robustness, and efficiency and these factors hinder the effectiveness in supporting timelyresponse to industrial fires. In this work, the utilization of grayscale images is done instead of traditional colorimages for smoke plume detection. The dataset was trained through a ResNet-50 model for classification and aU-Net model for segmentation. The dataset consists of images gathered by European Space Agency’s Sentinel-2 satellite constellation from a selection of industrial sites. The acquired images predominantly capture scenesof industrial locations, some of which exhibit active smoke plume emissions. The performance of the abovementionedtechniques and models is represented by their accuracy and IOU (Intersection-over-Union) metric.The images are first trained on the basic RGB images where their respective classification using the ResNet-50model results in an accuracy of 94.4% and segmentation using the U-Net Model with an IOU metric of 0.5 andaccuracy of 94% which leads to the detection of exact patches where the smoke plume has occurred. This work hastrained the classification model on grayscale images achieving a good increase in accuracy of 96.4%. 展开更多
关键词 Smoke plume ResNet-50 U-Net geo satellite images early warning global monitoring
下载PDF
Marine Predators Algorithm with Deep Learning-Based Leukemia Cancer Classification on Medical Images
9
作者 Sonali Das Saroja Kumar Rout +5 位作者 Sujit Kumar Panda Pradyumna Kumar Mohapatra Abdulaziz S.Almazyad Muhammed Basheer Jasser Guojiang Xiong Ali Wagdy Mohamed 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期893-916,共24页
In blood or bone marrow,leukemia is a form of cancer.A person with leukemia has an expansion of white blood cells(WBCs).It primarily affects children and rarely affects adults.Treatment depends on the type of leukemia... In blood or bone marrow,leukemia is a form of cancer.A person with leukemia has an expansion of white blood cells(WBCs).It primarily affects children and rarely affects adults.Treatment depends on the type of leukemia and the extent to which cancer has established throughout the body.Identifying leukemia in the initial stage is vital to providing timely patient care.Medical image-analysis-related approaches grant safer,quicker,and less costly solutions while ignoring the difficulties of these invasive processes.It can be simple to generalize Computer vision(CV)-based and image-processing techniques and eradicate human error.Many researchers have implemented computer-aided diagnosticmethods andmachine learning(ML)for laboratory image analysis,hopefully overcoming the limitations of late leukemia detection and determining its subgroups.This study establishes a Marine Predators Algorithm with Deep Learning Leukemia Cancer Classification(MPADL-LCC)algorithm onMedical Images.The projectedMPADL-LCC system uses a bilateral filtering(BF)technique to pre-process medical images.The MPADL-LCC system uses Faster SqueezeNet withMarine Predators Algorithm(MPA)as a hyperparameter optimizer for feature extraction.Lastly,the denoising autoencoder(DAE)methodology can be executed to accurately detect and classify leukemia cancer.The hyperparameter tuning process using MPA helps enhance leukemia cancer classification performance.Simulation results are compared with other recent approaches concerning various measurements and the MPADL-LCC algorithm exhibits the best results over other recent approaches. 展开更多
关键词 Leukemia cancer medical imaging image classification deep learning marine predators algorithm
下载PDF
CMMCAN:Lightweight Feature Extraction and Matching Network for Endoscopic Images Based on Adaptive Attention
10
作者 Nannan Chong Fan Yang 《Computers, Materials & Continua》 SCIE EI 2024年第8期2761-2783,共23页
In minimally invasive surgery,endoscopes or laparoscopes equipped with miniature cameras and tools are used to enter the human body for therapeutic purposes through small incisions or natural cavities.However,in clini... In minimally invasive surgery,endoscopes or laparoscopes equipped with miniature cameras and tools are used to enter the human body for therapeutic purposes through small incisions or natural cavities.However,in clinical operating environments,endoscopic images often suffer from challenges such as low texture,uneven illumination,and non-rigid structures,which affect feature observation and extraction.This can severely impact surgical navigation or clinical diagnosis due to missing feature points in endoscopic images,leading to treatment and postoperative recovery issues for patients.To address these challenges,this paper introduces,for the first time,a Cross-Channel Multi-Modal Adaptive Spatial Feature Fusion(ASFF)module based on the lightweight architecture of EfficientViT.Additionally,a novel lightweight feature extraction and matching network based on attention mechanism is proposed.This network dynamically adjusts attention weights for cross-modal information from grayscale images and optical flow images through a dual-branch Siamese network.It extracts static and dynamic information features ranging from low-level to high-level,and from local to global,ensuring robust feature extraction across different widths,noise levels,and blur scenarios.Global and local matching are performed through a multi-level cascaded attention mechanism,with cross-channel attention introduced to simultaneously extract low-level and high-level features.Extensive ablation experiments and comparative studies are conducted on the HyperKvasir,EAD,M2caiSeg,CVC-ClinicDB,and UCL synthetic datasets.Experimental results demonstrate that the proposed network improves upon the baseline EfficientViT-B3 model by 75.4%in accuracy(Acc),while also enhancing runtime performance and storage efficiency.When compared with the complex DenseDescriptor feature extraction network,the difference in Acc is less than 7.22%,and IoU calculation results on specific datasets outperform complex dense models.Furthermore,this method increases the F1 score by 33.2%and accelerates runtime by 70.2%.It is noteworthy that the speed of CMMCAN surpasses that of comparative lightweight models,with feature extraction and matching performance comparable to existing complex models but with faster speed and higher cost-effectiveness. 展开更多
关键词 Feature extraction and matching lightweighted network medical images ENDOSCOPIC ATTENTIon
下载PDF
Road Traffic Monitoring from Aerial Images Using Template Matching and Invariant Features
11
作者 Asifa Mehmood Qureshi Naif Al Mudawi +2 位作者 Mohammed Alonazi Samia Allaoua Chelloug Jeongmin Park 《Computers, Materials & Continua》 SCIE EI 2024年第3期3683-3701,共19页
Road traffic monitoring is an imperative topic widely discussed among researchers.Systems used to monitor traffic frequently rely on cameras mounted on bridges or roadsides.However,aerial images provide the flexibilit... Road traffic monitoring is an imperative topic widely discussed among researchers.Systems used to monitor traffic frequently rely on cameras mounted on bridges or roadsides.However,aerial images provide the flexibility to use mobile platforms to detect the location and motion of the vehicle over a larger area.To this end,different models have shown the ability to recognize and track vehicles.However,these methods are not mature enough to produce accurate results in complex road scenes.Therefore,this paper presents an algorithm that combines state-of-the-art techniques for identifying and tracking vehicles in conjunction with image bursts.The extracted frames were converted to grayscale,followed by the application of a georeferencing algorithm to embed coordinate information into the images.The masking technique eliminated irrelevant data and reduced the computational cost of the overall monitoring system.Next,Sobel edge detection combined with Canny edge detection and Hough line transform has been applied for noise reduction.After preprocessing,the blob detection algorithm helped detect the vehicles.Vehicles of varying sizes have been detected by implementing a dynamic thresholding scheme.Detection was done on the first image of every burst.Then,to track vehicles,the model of each vehicle was made to find its matches in the succeeding images using the template matching algorithm.To further improve the tracking accuracy by incorporating motion information,Scale Invariant Feature Transform(SIFT)features have been used to find the best possible match among multiple matches.An accuracy rate of 87%for detection and 80%accuracy for tracking in the A1 Motorway Netherland dataset has been achieved.For the Vehicle Aerial Imaging from Drone(VAID)dataset,an accuracy rate of 86%for detection and 78%accuracy for tracking has been achieved. 展开更多
关键词 Unmanned Aerial Vehicles(UAV) aerial images DATASET object detection object tracking data elimination template matching blob detection SIFT VAID
下载PDF
A Degradation Type Adaptive and Deep CNN-Based Image Classification Model for Degraded Images
12
作者 Huanhua Liu Wei Wang +3 位作者 Hanyu Liu Shuheng Yi Yonghao Yu Xunwen Yao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期459-472,共14页
Deep Convolutional Neural Networks(CNNs)have achieved high accuracy in image classification tasks,however,most existing models are trained on high-quality images that are not subject to image degradation.In practice,i... Deep Convolutional Neural Networks(CNNs)have achieved high accuracy in image classification tasks,however,most existing models are trained on high-quality images that are not subject to image degradation.In practice,images are often affected by various types of degradation which can significantly impact the performance of CNNs.In this work,we investigate the influence of image degradation on three typical image classification CNNs and propose a Degradation Type Adaptive Image Classification Model(DTA-ICM)to improve the existing CNNs’classification accuracy on degraded images.The proposed DTA-ICM comprises two key components:a Degradation Type Predictor(DTP)and a Degradation Type Specified Image Classifier(DTS-IC)set,which is trained on existing CNNs for specified types of degradation.The DTP predicts the degradation type of a test image,and the corresponding DTS-IC is then selected to classify the image.We evaluate the performance of both the proposed DTP and the DTA-ICMon the Caltech 101 database.The experimental results demonstrate that the proposed DTP achieves an average accuracy of 99.70%.Moreover,the proposed DTA-ICM,based on AlexNet,VGG19,and ResNet152,exhibits an average accuracy improvement of 20.63%,18.22%,and 12.9%,respectively,compared with the original CNNs in classifying degraded images.It suggests that the proposed DTA-ICM can effectively improve the classification performance of existing CNNs on degraded images,which has important practical implications. 展开更多
关键词 Image recognition image degradation machine learning deep convolutional neural network
下载PDF
Integrating Transformer and Bidirectional Long Short-Term Memory for Intelligent Breast Cancer Detection from Histopathology Biopsy Images
13
作者 Prasanalakshmi Balaji Omar Alqahtani +2 位作者 Sangita Babu Mousmi Ajay Chaurasia Shanmugapriya Prakasam 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期443-458,共16页
Breast cancer is a significant threat to the global population,affecting not only women but also a threat to the entire population.With recent advancements in digital pathology,Eosin and hematoxylin images provide enh... Breast cancer is a significant threat to the global population,affecting not only women but also a threat to the entire population.With recent advancements in digital pathology,Eosin and hematoxylin images provide enhanced clarity in examiningmicroscopic features of breast tissues based on their staining properties.Early cancer detection facilitates the quickening of the therapeutic process,thereby increasing survival rates.The analysis made by medical professionals,especially pathologists,is time-consuming and challenging,and there arises a need for automated breast cancer detection systems.The upcoming artificial intelligence platforms,especially deep learning models,play an important role in image diagnosis and prediction.Initially,the histopathology biopsy images are taken from standard data sources.Further,the gathered images are given as input to the Multi-Scale Dilated Vision Transformer,where the essential features are acquired.Subsequently,the features are subjected to the Bidirectional Long Short-Term Memory(Bi-LSTM)for classifying the breast cancer disorder.The efficacy of the model is evaluated using divergent metrics.When compared with other methods,the proposed work reveals that it offers impressive results for detection. 展开更多
关键词 Bidirectional long short-term memory breast cancer detection feature extraction histopathology biopsy images multi-scale dilated vision transformer
下载PDF
Meibomian glands segmentation in infrared images with limited annotation
14
作者 Jia-Wen Lin Ling-Jie Lin +5 位作者 Feng Lu Tai-Chen Lai Jing Zou Lin-Ling Guo Zhi-Ming Lin Li Li 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第3期401-407,共7页
●AIM:To investigate a pioneering framework for the segmentation of meibomian glands(MGs),using limited annotations to reduce the workload on ophthalmologists and enhance the efficiency of clinical diagnosis.●METHODS... ●AIM:To investigate a pioneering framework for the segmentation of meibomian glands(MGs),using limited annotations to reduce the workload on ophthalmologists and enhance the efficiency of clinical diagnosis.●METHODS:Totally 203 infrared meibomian images from 138 patients with dry eye disease,accompanied by corresponding annotations,were gathered for the study.A rectified scribble-supervised gland segmentation(RSSGS)model,incorporating temporal ensemble prediction,uncertainty estimation,and a transformation equivariance constraint,was introduced to address constraints imposed by limited supervision information inherent in scribble annotations.The viability and efficacy of the proposed model were assessed based on accuracy,intersection over union(IoU),and dice coefficient.●RESULTS:Using manual labels as the gold standard,RSSGS demonstrated outcomes with an accuracy of 93.54%,a dice coefficient of 78.02%,and an IoU of 64.18%.Notably,these performance metrics exceed the current weakly supervised state-of-the-art methods by 0.76%,2.06%,and 2.69%,respectively.Furthermore,despite achieving a substantial 80%reduction in annotation costs,it only lags behind fully annotated methods by 0.72%,1.51%,and 2.04%.●CONCLUSION:An innovative automatic segmentation model is developed for MGs in infrared eyelid images,using scribble annotation for training.This model maintains an exceptionally high level of segmentation accuracy while substantially reducing training costs.It holds substantial utility for calculating clinical parameters,thereby greatly enhancing the diagnostic efficiency of ophthalmologists in evaluating meibomian gland dysfunction. 展开更多
关键词 infrared meibomian glands images meibomian gland dysfunction meibomian glands segmentation weak supervision scribbled annotation
下载PDF
Enhancing Dense Small Object Detection in UAV Images Based on Hybrid Transformer
15
作者 Changfeng Feng Chunping Wang +2 位作者 Dongdong Zhang Renke Kou Qiang Fu 《Computers, Materials & Continua》 SCIE EI 2024年第3期3993-4013,共21页
Transformer-based models have facilitated significant advances in object detection.However,their extensive computational consumption and suboptimal detection of dense small objects curtail their applicability in unman... Transformer-based models have facilitated significant advances in object detection.However,their extensive computational consumption and suboptimal detection of dense small objects curtail their applicability in unmanned aerial vehicle(UAV)imagery.Addressing these limitations,we propose a hybrid transformer-based detector,H-DETR,and enhance it for dense small objects,leading to an accurate and efficient model.Firstly,we introduce a hybrid transformer encoder,which integrates a convolutional neural network-based cross-scale fusion module with the original encoder to handle multi-scale feature sequences more efficiently.Furthermore,we propose two novel strategies to enhance detection performance without incurring additional inference computation.Query filter is designed to cope with the dense clustering inherent in drone-captured images by counteracting similar queries with a training-aware non-maximum suppression.Adversarial denoising learning is a novel enhancement method inspired by adversarial learning,which improves the detection of numerous small targets by counteracting the effects of artificial spatial and semantic noise.Extensive experiments on the VisDrone and UAVDT datasets substantiate the effectiveness of our approach,achieving a significant improvement in accuracy with a reduction in computational complexity.Our method achieves 31.9%and 21.1%AP on the VisDrone and UAVDT datasets,respectively,and has a faster inference speed,making it a competitive model in UAV image object detection. 展开更多
关键词 UAV images TRANSFORMER dense small object detection
下载PDF
Restoration of the JPEG Maximum Lossy Compressed Face Images with Hourglass Block-GAN
16
作者 Jongwook Si Sungyoung Kim 《Computers, Materials & Continua》 SCIE EI 2024年第3期2893-2908,共16页
In the context of high compression rates applied to Joint Photographic Experts Group(JPEG)images through lossy compression techniques,image-blocking artifacts may manifest.This necessitates the restoration of the imag... In the context of high compression rates applied to Joint Photographic Experts Group(JPEG)images through lossy compression techniques,image-blocking artifacts may manifest.This necessitates the restoration of the image to its original quality.The challenge lies in regenerating significantly compressed images into a state in which these become identifiable.Therefore,this study focuses on the restoration of JPEG images subjected to substantial degradation caused by maximum lossy compression using Generative Adversarial Networks(GAN).The generator in this network is based on theU-Net architecture.It features a newhourglass structure that preserves the characteristics of the deep layers.In addition,the network incorporates two loss functions to generate natural and high-quality images:Low Frequency(LF)loss and High Frequency(HF)loss.HF loss uses a pretrained VGG-16 network and is configured using a specific layer that best represents features.This can enhance the performance in the high-frequency region.In contrast,LF loss is used to handle the low-frequency region.The two loss functions facilitate the generation of images by the generator,which can mislead the discriminator while accurately generating high-and low-frequency regions.Consequently,by removing the blocking effects frommaximum lossy compressed images,images inwhich identities could be recognized are generated.This study represents a significant improvement over previous research in terms of the image resolution performance. 展开更多
关键词 JPEG lossy compression RESTORATIon image generation GAN
下载PDF
An Implementation of Multiscale Line Detection and Mathematical Morphology for Efficient and Precise Blood Vessel Segmentation in Fundus Images
17
作者 Syed Ayaz Ali Shah Aamir Shahzad +4 位作者 Musaed Alhussein Chuan Meng Goh Khursheed Aurangzeb Tong Boon Tang Muhammad Awais 《Computers, Materials & Continua》 SCIE EI 2024年第5期2565-2583,共19页
Diagnosing various diseases such as glaucoma,age-related macular degeneration,cardiovascular conditions,and diabetic retinopathy involves segmenting retinal blood vessels.The task is particularly challenging when deal... Diagnosing various diseases such as glaucoma,age-related macular degeneration,cardiovascular conditions,and diabetic retinopathy involves segmenting retinal blood vessels.The task is particularly challenging when dealing with color fundus images due to issues like non-uniformillumination,low contrast,and variations in vessel appearance,especially in the presence of different pathologies.Furthermore,the speed of the retinal vessel segmentation system is of utmost importance.With the surge of now available big data,the speed of the algorithm becomes increasingly important,carrying almost equivalent weightage to the accuracy of the algorithm.To address these challenges,we present a novel approach for retinal vessel segmentation,leveraging efficient and robust techniques based on multiscale line detection and mathematical morphology.Our algorithm’s performance is evaluated on two publicly available datasets,namely the Digital Retinal Images for Vessel Extraction dataset(DRIVE)and the Structure Analysis of Retina(STARE)dataset.The experimental results demonstrate the effectiveness of our method,withmean accuracy values of 0.9467 forDRIVE and 0.9535 for STARE datasets,aswell as sensitivity values of 0.6952 forDRIVE and 0.6809 for STARE datasets.Notably,our algorithmexhibits competitive performance with state-of-the-art methods.Importantly,it operates at an average speed of 3.73 s per image for DRIVE and 3.75 s for STARE datasets.It is worth noting that these results were achieved using Matlab scripts containing multiple loops.This suggests that the processing time can be further reduced by replacing loops with vectorization.Thus the proposed algorithm can be deployed in real time applications.In summary,our proposed system strikes a fine balance between swift computation and accuracy that is on par with the best available methods in the field. 展开更多
关键词 Line detector vessel detection LOCALIZATIon mathematical morphology image processing
下载PDF
Deep learning-based inpainting of saturation artifacts in optical coherence tomography images
18
作者 Muyun Hu Zhuoqun Yuan +2 位作者 Di Yang Jingzhu Zhao Yanmei Liang 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第3期1-10,共10页
Limited by the dynamic range of the detector,saturation artifacts usually occur in optical coherence tomography(OCT)imaging for high scattering media.The available methods are difficult to remove saturation artifacts ... Limited by the dynamic range of the detector,saturation artifacts usually occur in optical coherence tomography(OCT)imaging for high scattering media.The available methods are difficult to remove saturation artifacts and restore texture completely in OCT images.We proposed a deep learning-based inpainting method of saturation artifacts in this paper.The generation mechanism of saturation artifacts was analyzed,and experimental and simulated datasets were built based on the mechanism.Enhanced super-resolution generative adversarial networks were trained by the clear–saturated phantom image pairs.The perfect reconstructed results of experimental zebrafish and thyroid OCT images proved its feasibility,strong generalization,and robustness. 展开更多
关键词 Optical coherence tomography saturation artifacts deep learning image inpainting.
下载PDF
Automatic area estimation of algal blooms in water bodies from UAV images using texture analysis
19
作者 Ajmeria Rahul Gundu Lokesh +2 位作者 Siddhartha Goswami R.N.Ponnalagu Radhika Sudha 《Water Science and Engineering》 EI CAS CSCD 2024年第1期62-71,共10页
Algal blooms,the spread of algae on the surface of water bodies,have adverse effects not only on aquatic ecosystems but also on human life.The adverse effects of harmful algal blooms(HABs)necessitate a convenient solu... Algal blooms,the spread of algae on the surface of water bodies,have adverse effects not only on aquatic ecosystems but also on human life.The adverse effects of harmful algal blooms(HABs)necessitate a convenient solution for detection and monitoring.Unmanned aerial vehicles(UAVs)have recently emerged as a tool for algal bloom detection,efficiently providing on-demand images at high spatiotemporal resolutions.This study developed an image processing method for algal bloom area estimation from the aerial images(obtained from the internet)captured using UAVs.As a remote sensing method of HAB detection,analysis,and monitoring,a combination of histogram and texture analyses was used to efficiently estimate the area of HABs.Statistical features like entropy(using the Kullback-Leibler method)were emphasized with the aid of a gray-level co-occurrence matrix.The results showed that the orthogonal images demonstrated fewer errors,and the morphological filter best detected algal blooms in real time,with a precision of 80%.This study provided efficient image processing approaches using on-board UAVs for HAB monitoring. 展开更多
关键词 Algal bloom Image processing Texture analysis Histogram analysis Unmanned aerial vehicles
下载PDF
I-DCGAN and TOPSIS-IFP:A simulation generation model for radiographic flaw detection images in light alloy castings and an algorithm for quality evaluation of generated images
20
作者 Ming-jun Hou Hao Dong +7 位作者 Xiao-yuan Ji Wen-bing Zou Xiang-sheng Xia Meng Li Ya-jun Yin Bao-hui Li Qiang Chen Jian-xin Zhou 《China Foundry》 SCIE EI CAS CSCD 2024年第3期239-247,共9页
The intelligent detection technology driven by X-ray images and deep learning represents the forefront of advanced techniques and development trends in flaw detection and automated evaluation of light alloy castings.H... The intelligent detection technology driven by X-ray images and deep learning represents the forefront of advanced techniques and development trends in flaw detection and automated evaluation of light alloy castings.However,the efficacy of deep learning models hinges upon a substantial abundance of flaw samples.The existing research on X-ray image augmentation for flaw detection suffers from shortcomings such as poor diversity of flaw samples and low reliability of quality evaluation.To this end,a novel approach was put forward,which involves the creation of the Interpolation-Deep Convolutional Generative Adversarial Network(I-DCGAN)for flaw detection image generation and a comprehensive evaluation algorithm named TOPSIS-IFP.I-DCGAN enables the generation of high-resolution,diverse simulated images with multiple appearances,achieving an improvement in sample diversity and quality while maintaining a relatively lower computational complexity.TOPSIS-IFP facilitates multi-dimensional quality evaluation,including aspects such as diversity,authenticity,image distribution difference,and image distortion degree.The results indicate that the X-ray radiographic images of magnesium and aluminum alloy castings achieve optimal performance when trained up to the 800th and 600th epochs,respectively.The TOPSIS-IFP value reaches 78.7%and 73.8%similarity to the ideal solution,respectively.Compared to single index evaluation,the TOPSIS-IFP algorithm achieves higher-quality simulated images at the optimal training epoch.This approach successfully mitigates the issue of unreliable quality associated with single index evaluation.The image generation and comprehensive quality evaluation method developed in this paper provides a novel approach for image augmentation in flaw recognition,holding significant importance for enhancing the robustness of subsequent flaw recognition networks. 展开更多
关键词 light alloy casting flaw detection image generator DISCRIMINATOR comprehensive evaluation index
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部