Structured illumination microscopy(SIM)achieves super-resolution(SR)by modulating the high-frequency information of the sample into the passband of the optical system and subsequent image reconstruction.The traditiona...Structured illumination microscopy(SIM)achieves super-resolution(SR)by modulating the high-frequency information of the sample into the passband of the optical system and subsequent image reconstruction.The traditional Wiener-filtering-based reconstruction algorithm operates in the Fourier domain,it requires prior knowledge of the sinusoidal illumination patterns which makes the time-consuming procedure of parameter estimation to raw datasets necessary,besides,the parameter estimation is sensitive to noise or aberration-induced pattern distortion which leads to reconstruction artifacts.Here,we propose a spatial-domain image reconstruction method that does not require parameter estimation but calculates patterns from raw datasets,and a reconstructed image can be obtained just by calculating the spatial covariance of differential calculated patterns and differential filtered datasets(the notch filtering operation is performed to the raw datasets for attenuating and compensating the optical transfer function(OTF)).Experiments on reconstructing raw datasets including nonbiological,biological,and simulated samples demonstrate that our method has SR capability,high reconstruction speed,and high robustness to aberration and noise.展开更多
Photoacoustic imaging(PAI)is a noninvasive emerging imaging method based on the photoacoustic effect,which provides necessary assistance for medical diagnosis.It has the characteristics of large imaging depth and high...Photoacoustic imaging(PAI)is a noninvasive emerging imaging method based on the photoacoustic effect,which provides necessary assistance for medical diagnosis.It has the characteristics of large imaging depth and high contrast.However,limited by the equipment cost and reconstruction time requirements,the existing PAI systems distributed with annular array transducers are difficult to take into account both the image quality and the imaging speed.In this paper,a triple-path feature transform network(TFT-Net)for ring-array photoacoustic tomography is proposed to enhance the imaging quality from limited-view and sparse measurement data.Specifically,the network combines the raw photoacoustic pressure signals and conventional linear reconstruction images as input data,and takes the photoacoustic physical model as a prior information to guide the reconstruction process.In addition,to enhance the ability of extracting signal features,the residual block and squeeze and excitation block are introduced into the TFT-Net.For further efficient reconstruction,the final output of photoacoustic signals uses‘filter-then-upsample’operation with a pixel-shuffle multiplexer and a max out module.Experiment results on simulated and in-vivo data demonstrate that the constructed TFT-Net can restore the target boundary clearly,reduce background noise,and realize fast and high-quality photoacoustic image reconstruction of limited view with sparse sampling.展开更多
Deep learning is capable of greatly promoting the progress of super-resolution imaging technology in terms of imaging and reconstruction speed,imaging resolution,and imagingflux.This paper proposes a deep neural netwo...Deep learning is capable of greatly promoting the progress of super-resolution imaging technology in terms of imaging and reconstruction speed,imaging resolution,and imagingflux.This paper proposes a deep neural network based on a generative adversarial network(GAN).The generator employs a U-Net-based network,which integrates Dense Net for the downsampling component.The proposed method has excellent properties,for example,the network model is trained with several different datasets of biological structures;the trained model can improve the imaging resolution of different microscopy imaging modalities such as confocal imaging and wide-field imaging;and the model demonstrates a generalized ability to improve the resolution of different biological structures even out of the datasets.In addition,experimental results showed that the method improved the resolution of caveolin-coated pits(CCPs)structures from 264 nm to 138 nm,a 1.91-fold increase,and nearly doubled the resolution of DNA molecules imaged while being transported through microfluidic channels.展开更多
Electrical capacitance tomography(ECT)has been applied to two-phase flow measurement in recent years.Image reconstruction algorithms play an important role in the successful applications of ECT.To solve the ill-posed ...Electrical capacitance tomography(ECT)has been applied to two-phase flow measurement in recent years.Image reconstruction algorithms play an important role in the successful applications of ECT.To solve the ill-posed and nonlinear inverse problem of ECT image reconstruction,a new ECT image reconstruction method based on fast linearized alternating direction method of multipliers(FLADMM)is proposed in this paper.On the basis of theoretical analysis of compressed sensing(CS),the data acquisition of ECT is regarded as a linear measurement process of permittivity distribution signal of pipe section.A new measurement matrix is designed and L1 regularization method is used to convert ECT inverse problem to a convex relaxation problem which contains prior knowledge.A new fast alternating direction method of multipliers which contained linearized idea is employed to minimize the objective function.Simulation data and experimental results indicate that compared with other methods,the quality and speed of reconstructed images are markedly improved.Also,the dynamic experimental results indicate that the proposed algorithm can ful fill the real-time requirement of ECT systems in the application.展开更多
The Computer Tomography(CT)method is used for remote sensing the Earth’s plasmasphere.One challenge for image reconstruction is insufficient projection data,mainly caused by limited projection angles.In this study,we...The Computer Tomography(CT)method is used for remote sensing the Earth’s plasmasphere.One challenge for image reconstruction is insufficient projection data,mainly caused by limited projection angles.In this study,we apply the Algebraic Reconstruction Technique(ART)and the minimization of the image Total Variation(TV)method,with a combination of priori knowledge of north–south symmetry,to reconstruct plasmaspheric He+density from simulated EUV images.The results demonstrate that incorporating priori assumption can be particularly useful when the projection data is insufficient.This method has good performance even with a projection angle of less than 150 degrees.The method of our study is expected to have applications in the Soft X-ray Imager(SXI)reconstruction for the Solar wind–Magnetosphere–Ionosphere Link Explorer(SMILE)mission.展开更多
The existing terrain models that describe the local lunar surface have limited resolution and accuracy, which can hardly meet the needs of rover navigation,positioning and geological analysis. China launched the lunar...The existing terrain models that describe the local lunar surface have limited resolution and accuracy, which can hardly meet the needs of rover navigation,positioning and geological analysis. China launched the lunar probe Chang'e-3 in December, 2013. Chang'e-3 encompassed a lander and a lunar rover called "Yutu"(Jade Rabbit). A set of panoramic cameras were installed on the rover mast. After acquiring panoramic images of four sites that were explored, the terrain models of the local lunar surface with resolution of 0.02 m were reconstructed. Compared with other data sources, the models derived from Chang'e-3 data were clear and accurate enough that they could be used to plan the route of Yutu.展开更多
A statistical algorithm for the reconstruction from time sequence echocardiographic images is proposed in this paper. The ability to jointly restore the images and reconstruct the 3D images without blurring the bounda...A statistical algorithm for the reconstruction from time sequence echocardiographic images is proposed in this paper. The ability to jointly restore the images and reconstruct the 3D images without blurring the boundary is the main innovation of this algorithm. First, a Bayesian model based on MAP-MRF is used to reconstruct 3D volume, and extended to deal with the images acquired by rotation scanning method. Then, the spatiotemporal nature of ultrasound images is taken into account for the pa-rameter of energy function, which makes this statistical model anisotropic. Hence not only can this method reconstruct 3D ul-trasound images, but also remove the speckle noise anisotropically. Finally, we illustrate the experiments of our method on the synthetic and medical images and compare it with the isotropic reconstruction method.展开更多
Single image super resolution(SISR)techniques produce images of high resolution(HR)as output from input images of low resolution(LR).Motivated by the effectiveness of deep learning methods,we provide a framework based...Single image super resolution(SISR)techniques produce images of high resolution(HR)as output from input images of low resolution(LR).Motivated by the effectiveness of deep learning methods,we provide a framework based on deep learning to achieve super resolution(SR)by utilizing deep singular-residual neural network(DSRNN)in training phase.Residuals are obtained from the difference between HR and LR images to generate LR-residual example pairs.Singular value decomposition(SVD)is applied to each LR-residual image pair to decompose into subbands of low and high frequency components.Later,DSRNN is trained on these subbands through input and output channels by optimizing the weights and biases of the network.With fewer layers in DSRNN,the influence of exploding gradients is reduced.This speeds up the learning process and also improves accuracy by using skip connections.The trained DSRNN parameters yield residuals to recover the HR subbands in the testing phase.Experimental analysis shows that the proposed method results in superior performance to existingmethods in terms of subjective quality.Extensive testing results on popular benchmark datasets such as set5,set14,and urban100 for a scaling factor of 4 show the effectiveness of the proposed method across different qualitative evaluation metrics.展开更多
Computed tomography has made significant advances since its intro-duction in the early 1970s,where researchers have mainly focused on the quality of image reconstruction in the early stage.However,radiation exposure p...Computed tomography has made significant advances since its intro-duction in the early 1970s,where researchers have mainly focused on the quality of image reconstruction in the early stage.However,radiation exposure poses a health risk,prompting the demand of the lowest possible dose when carrying out CT examinations.To acquire high-quality reconstruction images with low dose radiation,CT reconstruction techniques have evolved from conventional reconstruction such as analytical and iterative reconstruction,to reconstruction methods based on artificial intelligence(AI).All these efforts are devoted to con-structing high-quality images using only low doses with fast reconstruction speed.In particular,conventional reconstruction methods usually optimize one aspect,while AI-based reconstruction has finally managed to attain all goals in one shot.However,there are limitations such as the requirements on large datasets,unstable performance,and weak generalizability in AI-based reconstruction methods.This work presents the review and discussion on the classification,the commercial use,the advantages,and the limitations of AI-based image reconstruction methods in CT.展开更多
Super-resolution reconstruction in medical imaging has become more demanding due to the necessity of obtaining high-quality images with minimal radiation dose,such as in low-field magnetic resonance imaging(MRI).Howev...Super-resolution reconstruction in medical imaging has become more demanding due to the necessity of obtaining high-quality images with minimal radiation dose,such as in low-field magnetic resonance imaging(MRI).However,image super-resolution reconstruction remains a difficult task because of the complexity and high textual requirements for diagnosis purpose.In this paper,we offer a deep learning based strategy for reconstructing medical images from low resolutions utilizing Transformer and generative adversarial networks(T-GANs).The integrated system can extract more precise texture information and focus more on important locations through global image matching after successfully inserting Transformer into the generative adversarial network for picture reconstruction.Furthermore,we weighted the combination of content loss,adversarial loss,and adversarial feature loss as the final multi-task loss function during the training of our proposed model T-GAN.In comparison to established measures like peak signal-to-noise ratio(PSNR)and structural similarity index measure(SSIM),our suggested T-GAN achieves optimal performance and recovers more texture features in super-resolution reconstruction of MRI scanned images of the knees and belly.展开更多
A new method to accelerate the convergent rate of the space-alternatinggeneralized expectation-maximization (SAGE) algorithm is proposed. The new rescaled block-iterativeSAGE (RBI-SAGE) algorithm combines the RBI algo...A new method to accelerate the convergent rate of the space-alternatinggeneralized expectation-maximization (SAGE) algorithm is proposed. The new rescaled block-iterativeSAGE (RBI-SAGE) algorithm combines the RBI algorithm with the SAGE algorithm for PET imagereconstruction. In the new approach, the projection data is partitioned into disjoint blocks; eachiteration step involves only one of these blocks. SAGE updates the parameters sequentially in eachblock. In experiments, the RBI-SAGE algorithm and classical SAGE algorithm are compared in theapplication on positron emission tomography (PET) image reconstruction. Simulation results show thatRBI-SAGE has better performance than SAGE in both convergence and image quality.展开更多
In high-resolution cone-beam computed tomography (CBCT) using the flat-panel detector, imperfect or defect detector elements cause ring artifacts due to the none-uniformity of their X-ray response. They often distur...In high-resolution cone-beam computed tomography (CBCT) using the flat-panel detector, imperfect or defect detector elements cause ring artifacts due to the none-uniformity of their X-ray response. They often disturb the image quality. A dedicated fitting correction method for high-resolution micro-CT is presented. The method converts each elementary X-ray response curve to an average one, and eliminates response inconsistency among pixels. Other factors of the method are discussed, such as the correction factor variability by different sampling frames and nonlinear factors over the whole spectrum. Results show that the noise and artifacts are both reduced in reconstructed images展开更多
Underwater images are often with biased colours and reduced contrast because of the absorption and scattering effects when light propagates in water.Such images with degradation cannot meet the needs of underwater ope...Underwater images are often with biased colours and reduced contrast because of the absorption and scattering effects when light propagates in water.Such images with degradation cannot meet the needs of underwater operations.The main problem in classic underwater image restoration or enhancement methods is that they consume long calcu-lation time,and often,the colour or contrast of the result images is still unsatisfied.Instead of using the complicated physical model of underwater imaging degradation,we propose a new method to deal with underwater images by imitating the colour constancy mechanism of human vision using double-opponency.Firstly,the original image is converted to the LMS space.Then the signals are linearly combined,and Gaussian convolutions are per-formed to imitate the function of receptive fields(RFs).Next,two RFs with different sizes work together to constitute the double-opponency response.Finally,the underwater light is estimated to correct the colours in the image.Further contrast stretching on the luminance is optional.Experiments show that the proposed method can obtain clarified underwater images with higher quality than before,and it spends significantly less time cost compared to other previously published typical methods.展开更多
Person image generation aims to generate images that maintain the original human appearance in different target poses.Recent works have revealed that the critical element in achieving this task is the alignment of app...Person image generation aims to generate images that maintain the original human appearance in different target poses.Recent works have revealed that the critical element in achieving this task is the alignment of appearance domain and pose domain.Previous alignment methods,such as appearance flow warping,correspondence learning and cross attention,often encounter challenges when it comes to producing fine texture details.These approaches suffer from limitations in accurately estimating appearance flows due to the lack of global receptive field.Alternatively,they can only perform cross-domain alignment on high-level feature maps with small spatial dimensions since the computational complexity increases quadratically with larger feature sizes.In this article,the significance of multi-scale alignment,in both low-level and high-level domains,for ensuring reliable cross-domain alignment of appearance and pose is demonstrated.To this end,a novel and effective method,named Multi-scale Crossdomain Alignment(MCA)is proposed.Firstly,MCA adopts global context aggregation transformer to model multi-scale interaction between pose and appearance inputs,which employs pair-wise window-based cross attention.Furthermore,leveraging the integrated global source information for each target position,MCA applies flexible flow prediction head and point correlation to effectively conduct warping and fusing for final transformed person image generation.Our proposed MCA achieves superior performance on two popular datasets than other methods,which verifies the effectiveness of our approach.展开更多
To improve spectral X-ray CT reconstructed image quality, the energy-weighted reconstructed image xbins^W and the separable paraboloidal surrogates(SPS) algorithm are proposed for the prior image constrained compres...To improve spectral X-ray CT reconstructed image quality, the energy-weighted reconstructed image xbins^W and the separable paraboloidal surrogates(SPS) algorithm are proposed for the prior image constrained compressed sensing(PICCS)-based spectral X-ray CT image reconstruction. The PICCS-based image reconstruction takes advantage of the compressed sensing theory, a prior image and an optimization algorithm to improve the image quality of CT reconstructions.To evaluate the performance of the proposed method, three optimization algorithms and three prior images are employed and compared in terms of reconstruction accuracy and noise characteristics of the reconstructed images in each energy bin.The experimental simulation results show that the image xbins^W is the best as the prior image in general with respect to the three optimization algorithms; and the SPS algorithm offers the best performance for the simulated phantom with respect to the three prior images. Compared with filtered back-projection(FBP), the PICCS via the SPS algorithm and xbins^W as the prior image can offer the noise reduction in the reconstructed images up to 80. 46%, 82. 51%, 88. 08% in each energy bin,respectively. M eanwhile, the root-mean-squared error in each energy bin is decreased by 15. 02%, 18. 15%, 34. 11% and the correlation coefficient is increased by 9. 98%, 11. 38%,15. 94%, respectively.展开更多
The paper presents the implementation of a parallel version of FDK (Felkamp, David e Kress) algorithm using graphics processing units. Discussion was briefly some elements the computed tomographic scan and FDK algor...The paper presents the implementation of a parallel version of FDK (Felkamp, David e Kress) algorithm using graphics processing units. Discussion was briefly some elements the computed tomographic scan and FDK algorithm; and some ideas about GPUs (Graphics Processing Units) and its use in general purpose computing were presented. The paper shows a computational implementation of FDK algorithm and the process of parallelization of this implementation. Compare the parallel version of the algorithm with the sequential version, used speedup as a performance metric. To evaluate the performance of parallel version, two GPUs, GeForce 9400GT (16 cores) a low capacity GPU and Quadro 2000 (192 cores) a medium capacity GPU was reached speedup of 3.37.展开更多
Linear scan computed tomography (LCT) is of great benefit to online industrial scanning and security inspection due to its characteristics of straight-line source trajectory and high scanning speed. However, in prac...Linear scan computed tomography (LCT) is of great benefit to online industrial scanning and security inspection due to its characteristics of straight-line source trajectory and high scanning speed. However, in practical applications of LCT, there are challenges to image reconstruction due to limited-angle and insufficient data. In this paper, a new reconstruction algorithm based on total-variation (TV) minimization is developed to reconstruct images from limited-angle and insufficient data in LCT. The main idea of our approach is to reformulate a TV problem as a linear equality constrained problem where the objective function is separable, and then minimize its augmented Lagrangian function by using alternating direction method (ADM) to solve subproblems. The proposed method is robust and efficient in the task of reconstruction by showing the convergence of ADM. The numerical simulations and real data reconstructions show that the proposed reconstruction method brings reasonable performance and outperforms some previous ones when applied to an LCT imaging problem.展开更多
With the development of the compressive sensing theory, the image reconstruction from the projections viewed in limited angles is one of the hot problems in the research of computed tomography technology. This paper d...With the development of the compressive sensing theory, the image reconstruction from the projections viewed in limited angles is one of the hot problems in the research of computed tomography technology. This paper develops an iterative algorithm for image reconstruction, which can fit the most cases. This method gives an image reconstruction flow with the difference image vector, which is based on the concept that the difference image vector between the reconstructed and the reference image is sparse enough. Then the l1-norm minimization method is used to reconstruct the difference vector to recover the image for flat subjects in limited angles. The algorithm has been tested with a thin planar phantom and a real object in limited-view projection data. Moreover, all the studies showed the satisfactory results in accuracy at a rather high reconstruction speed.展开更多
A super-resolution reconstruction approach of (SVD) technique was presented, and its performance was radar image using an adaptive-threshold singular value decomposition analyzed, compared and assessed detailedly. F...A super-resolution reconstruction approach of (SVD) technique was presented, and its performance was radar image using an adaptive-threshold singular value decomposition analyzed, compared and assessed detailedly. First, radar imaging model and super-resolution reconstruction mechanism were outlined. Then, the adaptive-threshold SVD super-resolution algorithm, and its two key aspects, namely the determination method of point spread function (PSF) matrix T and the selection scheme of singular value threshold, were presented. Finally, the super-resolution algorithm was demonstrated successfully using the measured synthetic-aperture radar (SAR) images, and a Monte Carlo assessment was carried out to evaluate the performance of the algorithm by using the input/output signal-to-noise ratio (SNR). Five versions of SVD algorithms, namely 1 ) using all singular values, 2) using the top 80% singular values, 3) using the top 50% singular values, 4) using the top 20% singular values and 5) using singular values s such that S2≥/max(s2)/rinsNR were tested. The experimental results indicate that when the singular value threshold is set as Smax/(rinSNR)1/2, the super-resolution algorithm provides a good compromise between too much noise and too much bias and has good reconstruction results.展开更多
The evaluation approach to the accuracy of the image feature descriptors plays an important role in image feature extraction. We point out that the image shape feature can be described by the Zernike moments set while...The evaluation approach to the accuracy of the image feature descriptors plays an important role in image feature extraction. We point out that the image shape feature can be described by the Zernike moments set while briefly introducing the basic concept of the Zernike moment. After talking about the image reconstruction technique based on the inverse transformation of Zernike moment, the evaluation approach to the accuracy of the Zernike moments shape feature via the dissimilarity degree and the reconstruction ratio between the original image and the reconstructed image is proposed. The experiment results demonstrate the feasibility of this evaluation approach to image Zernike moments shape feature.展开更多
基金funded by the National Natural Science Foundation of China(62125504,61827825,and 31901059)Zhejiang Provincial Ten Thousand Plan for Young Top Talents(2020R52001)Open Project Program of Wuhan National Laboratory for Optoelectronics(2021WNLOKF007).
文摘Structured illumination microscopy(SIM)achieves super-resolution(SR)by modulating the high-frequency information of the sample into the passband of the optical system and subsequent image reconstruction.The traditional Wiener-filtering-based reconstruction algorithm operates in the Fourier domain,it requires prior knowledge of the sinusoidal illumination patterns which makes the time-consuming procedure of parameter estimation to raw datasets necessary,besides,the parameter estimation is sensitive to noise or aberration-induced pattern distortion which leads to reconstruction artifacts.Here,we propose a spatial-domain image reconstruction method that does not require parameter estimation but calculates patterns from raw datasets,and a reconstructed image can be obtained just by calculating the spatial covariance of differential calculated patterns and differential filtered datasets(the notch filtering operation is performed to the raw datasets for attenuating and compensating the optical transfer function(OTF)).Experiments on reconstructing raw datasets including nonbiological,biological,and simulated samples demonstrate that our method has SR capability,high reconstruction speed,and high robustness to aberration and noise.
基金supported by National Key R&D Program of China[2022YFC2402400]the National Natural Science Foundation of China[Grant No.62275062]Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology[Grant No.2020B121201010-4].
文摘Photoacoustic imaging(PAI)is a noninvasive emerging imaging method based on the photoacoustic effect,which provides necessary assistance for medical diagnosis.It has the characteristics of large imaging depth and high contrast.However,limited by the equipment cost and reconstruction time requirements,the existing PAI systems distributed with annular array transducers are difficult to take into account both the image quality and the imaging speed.In this paper,a triple-path feature transform network(TFT-Net)for ring-array photoacoustic tomography is proposed to enhance the imaging quality from limited-view and sparse measurement data.Specifically,the network combines the raw photoacoustic pressure signals and conventional linear reconstruction images as input data,and takes the photoacoustic physical model as a prior information to guide the reconstruction process.In addition,to enhance the ability of extracting signal features,the residual block and squeeze and excitation block are introduced into the TFT-Net.For further efficient reconstruction,the final output of photoacoustic signals uses‘filter-then-upsample’operation with a pixel-shuffle multiplexer and a max out module.Experiment results on simulated and in-vivo data demonstrate that the constructed TFT-Net can restore the target boundary clearly,reduce background noise,and realize fast and high-quality photoacoustic image reconstruction of limited view with sparse sampling.
基金Subjects funded by the National Natural Science Foundation of China(Nos.62275216 and 61775181)the Natural Science Basic Research Programme of Shaanxi Province-Major Basic Research Special Project(Nos.S2018-ZC-TD-0061 and TZ0393)the Special Project for the Development of National Key Scientific Instruments and Equipment No.(51927804).
文摘Deep learning is capable of greatly promoting the progress of super-resolution imaging technology in terms of imaging and reconstruction speed,imaging resolution,and imagingflux.This paper proposes a deep neural network based on a generative adversarial network(GAN).The generator employs a U-Net-based network,which integrates Dense Net for the downsampling component.The proposed method has excellent properties,for example,the network model is trained with several different datasets of biological structures;the trained model can improve the imaging resolution of different microscopy imaging modalities such as confocal imaging and wide-field imaging;and the model demonstrates a generalized ability to improve the resolution of different biological structures even out of the datasets.In addition,experimental results showed that the method improved the resolution of caveolin-coated pits(CCPs)structures from 264 nm to 138 nm,a 1.91-fold increase,and nearly doubled the resolution of DNA molecules imaged while being transported through microfluidic channels.
基金Supported by the National Natural Science Foundation of China(61203021)the Key Science and Technology Program of Liaoning Province(2011216011)+1 种基金the Natural Science Foundation of Liaoning Province(2013020024)the Program for Liaoning Excellent Talents in Universities(LJQ2015061)
文摘Electrical capacitance tomography(ECT)has been applied to two-phase flow measurement in recent years.Image reconstruction algorithms play an important role in the successful applications of ECT.To solve the ill-posed and nonlinear inverse problem of ECT image reconstruction,a new ECT image reconstruction method based on fast linearized alternating direction method of multipliers(FLADMM)is proposed in this paper.On the basis of theoretical analysis of compressed sensing(CS),the data acquisition of ECT is regarded as a linear measurement process of permittivity distribution signal of pipe section.A new measurement matrix is designed and L1 regularization method is used to convert ECT inverse problem to a convex relaxation problem which contains prior knowledge.A new fast alternating direction method of multipliers which contained linearized idea is employed to minimize the objective function.Simulation data and experimental results indicate that compared with other methods,the quality and speed of reconstructed images are markedly improved.Also,the dynamic experimental results indicate that the proposed algorithm can ful fill the real-time requirement of ECT systems in the application.
基金supported by the National Natural Science Foundation of China(Grant Nos.41904148,41731070,41874175)in part by the Strategic Priority Program on Space Science,Chinese Academy of Sciences(Grant Nos.XDA15017000,XDA15350201,XDA15052500).
文摘The Computer Tomography(CT)method is used for remote sensing the Earth’s plasmasphere.One challenge for image reconstruction is insufficient projection data,mainly caused by limited projection angles.In this study,we apply the Algebraic Reconstruction Technique(ART)and the minimization of the image Total Variation(TV)method,with a combination of priori knowledge of north–south symmetry,to reconstruct plasmaspheric He+density from simulated EUV images.The results demonstrate that incorporating priori assumption can be particularly useful when the projection data is insufficient.This method has good performance even with a projection angle of less than 150 degrees.The method of our study is expected to have applications in the Soft X-ray Imager(SXI)reconstruction for the Solar wind–Magnetosphere–Ionosphere Link Explorer(SMILE)mission.
基金Supported by the National Natural Science Foundation of China
文摘The existing terrain models that describe the local lunar surface have limited resolution and accuracy, which can hardly meet the needs of rover navigation,positioning and geological analysis. China launched the lunar probe Chang'e-3 in December, 2013. Chang'e-3 encompassed a lander and a lunar rover called "Yutu"(Jade Rabbit). A set of panoramic cameras were installed on the rover mast. After acquiring panoramic images of four sites that were explored, the terrain models of the local lunar surface with resolution of 0.02 m were reconstructed. Compared with other data sources, the models derived from Chang'e-3 data were clear and accurate enough that they could be used to plan the route of Yutu.
基金Project supported by the National Basic Research Program (973) of0China (No. 2003CB716104), and Shanghai Science and TechnologyResearch Foundation (No. 034119820), China
文摘A statistical algorithm for the reconstruction from time sequence echocardiographic images is proposed in this paper. The ability to jointly restore the images and reconstruct the 3D images without blurring the boundary is the main innovation of this algorithm. First, a Bayesian model based on MAP-MRF is used to reconstruct 3D volume, and extended to deal with the images acquired by rotation scanning method. Then, the spatiotemporal nature of ultrasound images is taken into account for the pa-rameter of energy function, which makes this statistical model anisotropic. Hence not only can this method reconstruct 3D ul-trasound images, but also remove the speckle noise anisotropically. Finally, we illustrate the experiments of our method on the synthetic and medical images and compare it with the isotropic reconstruction method.
文摘Single image super resolution(SISR)techniques produce images of high resolution(HR)as output from input images of low resolution(LR).Motivated by the effectiveness of deep learning methods,we provide a framework based on deep learning to achieve super resolution(SR)by utilizing deep singular-residual neural network(DSRNN)in training phase.Residuals are obtained from the difference between HR and LR images to generate LR-residual example pairs.Singular value decomposition(SVD)is applied to each LR-residual image pair to decompose into subbands of low and high frequency components.Later,DSRNN is trained on these subbands through input and output channels by optimizing the weights and biases of the network.With fewer layers in DSRNN,the influence of exploding gradients is reduced.This speeds up the learning process and also improves accuracy by using skip connections.The trained DSRNN parameters yield residuals to recover the HR subbands in the testing phase.Experimental analysis shows that the proposed method results in superior performance to existingmethods in terms of subjective quality.Extensive testing results on popular benchmark datasets such as set5,set14,and urban100 for a scaling factor of 4 show the effectiveness of the proposed method across different qualitative evaluation metrics.
基金This work is supported by the National Key Research and Development Program of China(2020YFC2003400)Qiang Ni’s work was funded by the UK EPSRC project under grant number EP/K011693/1.
文摘Computed tomography has made significant advances since its intro-duction in the early 1970s,where researchers have mainly focused on the quality of image reconstruction in the early stage.However,radiation exposure poses a health risk,prompting the demand of the lowest possible dose when carrying out CT examinations.To acquire high-quality reconstruction images with low dose radiation,CT reconstruction techniques have evolved from conventional reconstruction such as analytical and iterative reconstruction,to reconstruction methods based on artificial intelligence(AI).All these efforts are devoted to con-structing high-quality images using only low doses with fast reconstruction speed.In particular,conventional reconstruction methods usually optimize one aspect,while AI-based reconstruction has finally managed to attain all goals in one shot.However,there are limitations such as the requirements on large datasets,unstable performance,and weak generalizability in AI-based reconstruction methods.This work presents the review and discussion on the classification,the commercial use,the advantages,and the limitations of AI-based image reconstruction methods in CT.
文摘Super-resolution reconstruction in medical imaging has become more demanding due to the necessity of obtaining high-quality images with minimal radiation dose,such as in low-field magnetic resonance imaging(MRI).However,image super-resolution reconstruction remains a difficult task because of the complexity and high textual requirements for diagnosis purpose.In this paper,we offer a deep learning based strategy for reconstructing medical images from low resolutions utilizing Transformer and generative adversarial networks(T-GANs).The integrated system can extract more precise texture information and focus more on important locations through global image matching after successfully inserting Transformer into the generative adversarial network for picture reconstruction.Furthermore,we weighted the combination of content loss,adversarial loss,and adversarial feature loss as the final multi-task loss function during the training of our proposed model T-GAN.In comparison to established measures like peak signal-to-noise ratio(PSNR)and structural similarity index measure(SSIM),our suggested T-GAN achieves optimal performance and recovers more texture features in super-resolution reconstruction of MRI scanned images of the knees and belly.
文摘A new method to accelerate the convergent rate of the space-alternatinggeneralized expectation-maximization (SAGE) algorithm is proposed. The new rescaled block-iterativeSAGE (RBI-SAGE) algorithm combines the RBI algorithm with the SAGE algorithm for PET imagereconstruction. In the new approach, the projection data is partitioned into disjoint blocks; eachiteration step involves only one of these blocks. SAGE updates the parameters sequentially in eachblock. In experiments, the RBI-SAGE algorithm and classical SAGE algorithm are compared in theapplication on positron emission tomography (PET) image reconstruction. Simulation results show thatRBI-SAGE has better performance than SAGE in both convergence and image quality.
基金Supported by the National Basic Research Program of China ("973"Program)(2006CB601201)~~
文摘In high-resolution cone-beam computed tomography (CBCT) using the flat-panel detector, imperfect or defect detector elements cause ring artifacts due to the none-uniformity of their X-ray response. They often disturb the image quality. A dedicated fitting correction method for high-resolution micro-CT is presented. The method converts each elementary X-ray response curve to an average one, and eliminates response inconsistency among pixels. Other factors of the method are discussed, such as the correction factor variability by different sampling frames and nonlinear factors over the whole spectrum. Results show that the noise and artifacts are both reduced in reconstructed images
文摘Underwater images are often with biased colours and reduced contrast because of the absorption and scattering effects when light propagates in water.Such images with degradation cannot meet the needs of underwater operations.The main problem in classic underwater image restoration or enhancement methods is that they consume long calcu-lation time,and often,the colour or contrast of the result images is still unsatisfied.Instead of using the complicated physical model of underwater imaging degradation,we propose a new method to deal with underwater images by imitating the colour constancy mechanism of human vision using double-opponency.Firstly,the original image is converted to the LMS space.Then the signals are linearly combined,and Gaussian convolutions are per-formed to imitate the function of receptive fields(RFs).Next,two RFs with different sizes work together to constitute the double-opponency response.Finally,the underwater light is estimated to correct the colours in the image.Further contrast stretching on the luminance is optional.Experiments show that the proposed method can obtain clarified underwater images with higher quality than before,and it spends significantly less time cost compared to other previously published typical methods.
基金National Natural Science Foundation of China,Grant/Award Number:62274142Hangzhou Major Technology Innovation Project of Artificial Intelligence,Grant/Award Number:2022AIZD0060。
文摘Person image generation aims to generate images that maintain the original human appearance in different target poses.Recent works have revealed that the critical element in achieving this task is the alignment of appearance domain and pose domain.Previous alignment methods,such as appearance flow warping,correspondence learning and cross attention,often encounter challenges when it comes to producing fine texture details.These approaches suffer from limitations in accurately estimating appearance flows due to the lack of global receptive field.Alternatively,they can only perform cross-domain alignment on high-level feature maps with small spatial dimensions since the computational complexity increases quadratically with larger feature sizes.In this article,the significance of multi-scale alignment,in both low-level and high-level domains,for ensuring reliable cross-domain alignment of appearance and pose is demonstrated.To this end,a novel and effective method,named Multi-scale Crossdomain Alignment(MCA)is proposed.Firstly,MCA adopts global context aggregation transformer to model multi-scale interaction between pose and appearance inputs,which employs pair-wise window-based cross attention.Furthermore,leveraging the integrated global source information for each target position,MCA applies flexible flow prediction head and point correlation to effectively conduct warping and fusing for final transformed person image generation.Our proposed MCA achieves superior performance on two popular datasets than other methods,which verifies the effectiveness of our approach.
基金The National Natural Science Foundation of China(No.51575256)the Fundamental Research Funds for the Central Universities(No.NP2015101,XZA16003)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘To improve spectral X-ray CT reconstructed image quality, the energy-weighted reconstructed image xbins^W and the separable paraboloidal surrogates(SPS) algorithm are proposed for the prior image constrained compressed sensing(PICCS)-based spectral X-ray CT image reconstruction. The PICCS-based image reconstruction takes advantage of the compressed sensing theory, a prior image and an optimization algorithm to improve the image quality of CT reconstructions.To evaluate the performance of the proposed method, three optimization algorithms and three prior images are employed and compared in terms of reconstruction accuracy and noise characteristics of the reconstructed images in each energy bin.The experimental simulation results show that the image xbins^W is the best as the prior image in general with respect to the three optimization algorithms; and the SPS algorithm offers the best performance for the simulated phantom with respect to the three prior images. Compared with filtered back-projection(FBP), the PICCS via the SPS algorithm and xbins^W as the prior image can offer the noise reduction in the reconstructed images up to 80. 46%, 82. 51%, 88. 08% in each energy bin,respectively. M eanwhile, the root-mean-squared error in each energy bin is decreased by 15. 02%, 18. 15%, 34. 11% and the correlation coefficient is increased by 9. 98%, 11. 38%,15. 94%, respectively.
文摘The paper presents the implementation of a parallel version of FDK (Felkamp, David e Kress) algorithm using graphics processing units. Discussion was briefly some elements the computed tomographic scan and FDK algorithm; and some ideas about GPUs (Graphics Processing Units) and its use in general purpose computing were presented. The paper shows a computational implementation of FDK algorithm and the process of parallelization of this implementation. Compare the parallel version of the algorithm with the sequential version, used speedup as a performance metric. To evaluate the performance of parallel version, two GPUs, GeForce 9400GT (16 cores) a low capacity GPU and Quadro 2000 (192 cores) a medium capacity GPU was reached speedup of 3.37.
基金the National High Technology Research and Development Program of China(Grant No.2012AA011603)
文摘Linear scan computed tomography (LCT) is of great benefit to online industrial scanning and security inspection due to its characteristics of straight-line source trajectory and high scanning speed. However, in practical applications of LCT, there are challenges to image reconstruction due to limited-angle and insufficient data. In this paper, a new reconstruction algorithm based on total-variation (TV) minimization is developed to reconstruct images from limited-angle and insufficient data in LCT. The main idea of our approach is to reformulate a TV problem as a linear equality constrained problem where the objective function is separable, and then minimize its augmented Lagrangian function by using alternating direction method (ADM) to solve subproblems. The proposed method is robust and efficient in the task of reconstruction by showing the convergence of ADM. The numerical simulations and real data reconstructions show that the proposed reconstruction method brings reasonable performance and outperforms some previous ones when applied to an LCT imaging problem.
基金Project supported by the National Basic Research Program of China(Grant No.2006CB7057005)the National High Technology Research and Development Program of China(Grant No.2009AA012200)the National Natural Science Foundation of China (Grant No.60672104)
文摘With the development of the compressive sensing theory, the image reconstruction from the projections viewed in limited angles is one of the hot problems in the research of computed tomography technology. This paper develops an iterative algorithm for image reconstruction, which can fit the most cases. This method gives an image reconstruction flow with the difference image vector, which is based on the concept that the difference image vector between the reconstructed and the reference image is sparse enough. Then the l1-norm minimization method is used to reconstruct the difference vector to recover the image for flat subjects in limited angles. The algorithm has been tested with a thin planar phantom and a real object in limited-view projection data. Moreover, all the studies showed the satisfactory results in accuracy at a rather high reconstruction speed.
基金Project(2008041001) supported by the Academician Foundation of China Project(N0601-041) supported by the General Armament Department Science Foundation of China
文摘A super-resolution reconstruction approach of (SVD) technique was presented, and its performance was radar image using an adaptive-threshold singular value decomposition analyzed, compared and assessed detailedly. First, radar imaging model and super-resolution reconstruction mechanism were outlined. Then, the adaptive-threshold SVD super-resolution algorithm, and its two key aspects, namely the determination method of point spread function (PSF) matrix T and the selection scheme of singular value threshold, were presented. Finally, the super-resolution algorithm was demonstrated successfully using the measured synthetic-aperture radar (SAR) images, and a Monte Carlo assessment was carried out to evaluate the performance of the algorithm by using the input/output signal-to-noise ratio (SNR). Five versions of SVD algorithms, namely 1 ) using all singular values, 2) using the top 80% singular values, 3) using the top 50% singular values, 4) using the top 20% singular values and 5) using singular values s such that S2≥/max(s2)/rinsNR were tested. The experimental results indicate that when the singular value threshold is set as Smax/(rinSNR)1/2, the super-resolution algorithm provides a good compromise between too much noise and too much bias and has good reconstruction results.
文摘The evaluation approach to the accuracy of the image feature descriptors plays an important role in image feature extraction. We point out that the image shape feature can be described by the Zernike moments set while briefly introducing the basic concept of the Zernike moment. After talking about the image reconstruction technique based on the inverse transformation of Zernike moment, the evaluation approach to the accuracy of the Zernike moments shape feature via the dissimilarity degree and the reconstruction ratio between the original image and the reconstructed image is proposed. The experiment results demonstrate the feasibility of this evaluation approach to image Zernike moments shape feature.