为改善传统图像融合方法对细节信息的丢失,提出了一种基于遗传粒子群算法(genetic algorithm of particleswarm optimization,GAPSO)的图像融合方法,该算法应用于像素级的图像融合,使图像融合问题归结为最优化问题.该算法结合遗传算法...为改善传统图像融合方法对细节信息的丢失,提出了一种基于遗传粒子群算法(genetic algorithm of particleswarm optimization,GAPSO)的图像融合方法,该算法应用于像素级的图像融合,使图像融合问题归结为最优化问题.该算法结合遗传算法和粒子群算法的优点,对标准粒子群算法进行了改进,将交叉与变异算子引入到标准粒子群算法,提高了该算法的收敛性能和全局求解能力.实验结果表明,该算法获得的评价指标都优于遗传算法和PSO算法,且融合图像较好地从源图像中提取了有用信息,提高了融合质量.展开更多
文摘为改善传统图像融合方法对细节信息的丢失,提出了一种基于遗传粒子群算法(genetic algorithm of particleswarm optimization,GAPSO)的图像融合方法,该算法应用于像素级的图像融合,使图像融合问题归结为最优化问题.该算法结合遗传算法和粒子群算法的优点,对标准粒子群算法进行了改进,将交叉与变异算子引入到标准粒子群算法,提高了该算法的收敛性能和全局求解能力.实验结果表明,该算法获得的评价指标都优于遗传算法和PSO算法,且融合图像较好地从源图像中提取了有用信息,提高了融合质量.