期刊文献+
共找到67篇文章
< 1 2 4 >
每页显示 20 50 100
In vivo imaging reveals a synchronized correlation among neurotransmitter dynamics during propofol and sevoflurane anesthesia 被引量:1
1
作者 Gao-Lin Qiu Li-Jun Peng +6 位作者 Peng Wang Zhi-Lai Yang Ji-Qian Zhang Hu Liu Xiao-Na Zhu Jin Rao Xue-Sheng Liu 《Zoological Research》 SCIE CSCD 2024年第3期679-690,共12页
General anesthesia is widely applied in clinical practice.However,the precise mechanism of loss of consciousness induced by general anesthetics remains unknown.Here,we measured the dynamics of five neurotransmitters,i... General anesthesia is widely applied in clinical practice.However,the precise mechanism of loss of consciousness induced by general anesthetics remains unknown.Here,we measured the dynamics of five neurotransmitters,includingγ-aminobutyric acid,glutamate,norepinephrine,acetylcholine,and dopamine,in the medial prefrontal cortex and primary visual cortex of C57BL/6 mice through in vivo fiber photometry and genetically encoded neurotransmitter sensors under anesthesia to reveal the mechanism of general anesthesia from a neurotransmitter perspective.Results revealed that the concentrations of γ-aminobutyric acid,glutamate,norepinephrine,and acetylcholine increased in the cortex during propofol-induced loss of consciousness.Dopamine levels did not change following the hypnotic dose of propofol but increased significantly following surgical doses of propofol anesthesia.Notably,the concentrations of the five neurotransmitters generally decreased during sevoflurane-induced loss of consciousness.Furthermore,the neurotransmitter dynamic networks were not synchronized in the non-anesthesia groups but were highly synchronized in the anesthetic groups.These findings suggest that neurotransmitter dynamic network synchronization may cause anesthetic-induced loss of consciousness. 展开更多
关键词 General anesthesia Loss of consciousness in vivo neurotransmitter imaging Medial prefrontal cortex Primary visual cortex
下载PDF
In vivo imaging of the neuronal response to spinal cord injury:a narrative review
2
作者 Junhao Deng Chang Sun +5 位作者 Ying Zheng Jianpeng Gao Xiang Cui Yu Wang Licheng Zhang Peifu Tang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期811-817,共7页
Deciphering the neuronal response to injury in the spinal cord is essential for exploring treatment strategies for spinal cord injury(SCI).However,this subject has been neglected in part because appropriate tools are ... Deciphering the neuronal response to injury in the spinal cord is essential for exploring treatment strategies for spinal cord injury(SCI).However,this subject has been neglected in part because appropriate tools are lacking.Emerging in vivo imaging and labeling methods offer great potential for observing dynamic neural processes in the central nervous system in conditions of health and disease.This review first discusses in vivo imaging of the mouse spinal cord with a focus on the latest imaging techniques,and then analyzes the dynamic biological response of spinal cord sensory and motor neurons to SCI.We then summarize and compare the techniques behind these studies and clarify the advantages of in vivo imaging compared with traditional neuroscience examinations.Finally,we identify the challenges and possible solutions for spinal cord neuron imaging. 展开更多
关键词 anterior horn neurons calcium imaging central nervous system dorsal horn neurons dorsal root ganglion in vivo imaging neuronal response spinal cord injury spinal cord two-photon microscopy
下载PDF
Bimorph deformable mirror based adaptive optics scanning laser ophthalmoscope for retina imaging in vivo 被引量:4
3
作者 王媛媛 何益 +4 位作者 魏凌 李喜琪 杨金生 周虹 张雨东 《Chinese Optics Letters》 SCIE EI CAS CSCD 2017年第12期43-47,共5页
A bimorph deformable mirror (DM) with a large stroke of more than 30 μm using 35 actuators is presented and characterized for an adaptive optics (AO) confocal scanning laser ophthalmoscope application. Facilitate... A bimorph deformable mirror (DM) with a large stroke of more than 30 μm using 35 actuators is presented and characterized for an adaptive optics (AO) confocal scanning laser ophthalmoscope application. Facilitated with a Shack-Hartmann wavefront sensor, the bimorph DM-based AO operates closed-loop AO corrections for hu- man eyes and reduces wavefront aberrations in most eyes to below 0.1 μm rms. Results from living eyes, including one exhibiting ~5D of myopia and ~2D of astigmatism along with notable high-order aberrations, reveal a prac- tical efficient aberration correction and demonstrate a great benefit for retina imaging, including improving resolution, increasing brightness, and enhancing the contrast of images. 展开更多
关键词 Bimorph deformable mirror based adaptive optics scanning laser ophthalmoscope for retina imaging in vivo DM AO
原文传递
In vivo bioluminescence imaging of hyperglycemia exacerbating stem cells on choroidal neovascularization in mice 被引量:2
4
作者 Xiang Gao Yu Wang +6 位作者 Hui-Yuan Hou Yang Lyu Hai-Yan Wang Li-Bo Yao Jian Zhang Feng Cao Yu-Sheng Wang 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2016年第4期519-527,共9页
AIM: To investigate the influence of hyperglycemia on the severity of choroidal neovascularization(CNV),especially the involvement of bone marrow-derived cells(BMCs) and underlying mechanisms.·METHODS: BMCs... AIM: To investigate the influence of hyperglycemia on the severity of choroidal neovascularization(CNV),especially the involvement of bone marrow-derived cells(BMCs) and underlying mechanisms.·METHODS: BMCs from firefly luciferase(Fluc)/green fluorescent protein(GFP) double transgenic mice were transplanted into C57BL/6J wide-type mice. The recipient mice were injected intraperitoneally with streptozotocin(STZ) daily for 5 consecutive days to induce diabetes mellitus(DM), followed by CNV laser photocoagulation.The BMCs recruitment in CNV exposed to hyperglycemia was firstly examined in Fluc/GFP chimeric mice by in vivo optical bioluminescence imaging(BLI) and in vitro Fluc assays. The CNV severity was evaluated by H&E staining and choroidal flatmount. The expression of vascular endothelial growth factor(VEGF) and stromal cell derived factor-1(SDF-1) was detected by Western blot.·RESULTS: BLI showed that the BMCs exerted dynamic effects in CNV model in Fluc/GFP chimeric mice exposed to hyperglycemia. The signal intensity of transplanted Fluc+GFP+BMCs in the DM chimeric mice was significantly higher than that in the control chimeric mice with CNV induction at days 5, 7, 14 and 21(121861.67 ±9948.81 vs 144998.33 ±13787.13 photons/second/cm2/sr for control and DM mice, P5d〈0.05; 178791.67±30350.8 vs240166.67 ±22605.3, P7d〈0.05; 124176.67 ±16253.52 vs196376.67 ±18556.79, P14d〈0.05; 97951.60 ±10343.09 vs119510.00 ±14383.76, P21d〈0.05), which was consistent with in vitro Fluc assay at day 7 [relative light units of Fluc(RLU1)], 215.00±52.05 vs 707.33±88.65, P 〈0.05; RLU1/relative light units of renilla luciferase(RLU2), 0.90 ±0.17 vs 1.83 ±0.17, P 〈0.05]. The CNVs in the DM mice were wider than those in the control group at days 5, 7, 14 and21(147.83±17.36 vs 220.33±20.17 μm, P5d〈0.05; 212.17 ±24.63 vs 326.83 ±19.49, P7d〈0.05; 163.17 ±18.24 vs265.17 ±20.55, P14d〈0.05; 132.00 ±10.88 vs 205.33 ±12.98,P21d〈0.05). The average area of CNV in the DM group was larger at 7d(20688.67±3644.96 vs 32218.00±4132.69 μm2,P 〈0.05). The expression of VEGF and SDF-1 was enhanced in the DM mice.·CONCLUSION: Hyperglycemia promots the vasculo-genesis of CNV, especially the contribution of BMCs,which might be triggered by VEGF and SDF-1 production. 展开更多
关键词 hyperglycemia choroidal neovascularization bone marrow-derived cells molecular imaging in vivo optical bioluminescence imaging
下载PDF
A DR-WFOI fusion system for the real-time molecular imaging in vivo
5
作者 毕昆 徐小春 +2 位作者 奚磊 曾绍群 骆清铭 《Chinese Optics Letters》 SCIE EI CAS CSCD 2008年第12期893-895,共3页
Digital radiography (DR) and whole-body fluorescent optical imaging (WFOI) have been widely applied in the field of molecular imaging, with the advantages in tissues and functional imaging. The integration of them... Digital radiography (DR) and whole-body fluorescent optical imaging (WFOI) have been widely applied in the field of molecular imaging, with the advantages in tissues and functional imaging. The integration of them contributes to the development and discovery of medicine. We introduce an equipment, performance of which is better than that of another molecular imaging system manufactured by Kodak Corp. It can take real-time small animal imaging in vivo, with lower cost and shorter development cycle on the LabVIEW platform. At last, a paradigm experiment on a nude mouse with green fluorescent protein (GFP) transgenic tumor is given to present a real-time DR-WFOI fusion simultaneous image. 展开更多
关键词 time REAL A DR-WFOI fusion system for the real-time molecular imaging in vivo DR
原文传递
In vivo subsurface morphological and functional cellular and subcellular imaging of the gastrointestinal tract with confocal mini-microscopy 被引量:6
6
作者 Martin Goetz Beena Memadathil +5 位作者 Stefan Biesterfeld Constantin Schneider Sebastian Gregor Peter R Galle Markus F Neurath Ralf Kiesslich 《World Journal of Gastroenterology》 SCIE CAS CSCD 2007年第15期2160-2165,共6页
AIM: To evaluate a newly developed hand-held confocal probe for in vivo microscopic imaging of the complete gastrointestinal tract in rodents. METHODS: A novel rigid confocal probe (diameter 7 mm) was designed wit... AIM: To evaluate a newly developed hand-held confocal probe for in vivo microscopic imaging of the complete gastrointestinal tract in rodents. METHODS: A novel rigid confocal probe (diameter 7 mm) was designed with optical features similar to the flexible endomicroscopy system for use in humans using a 488 nm single line laser for fluorophore excitation, Light emission was detected at 505 to 750 nm. The field of view was 475 μm × 475 μm. Optical slice thickness was 7 μm with a lateral resolution of 0.7 μm. Subsurface serial images at different depths (surface to 250 μm) were generated in real time at 1024 × 1024 pixels (0.8 frames/s) by placing the probe onto the tissue in gentle, stable contact. Tissue specimens were sampled for histopathological correlation.RESULTS: The esophagus, stomach, small and large intestine and meso, liver, pancreas and gall bladder were visualised in vivo at high resolution in n = 48 mice. Real time microscopic imaging with the confocal minimicroscopy probe was easy to achieve. The different staining protocols (fluorescein, acriflavine, FITC-labelled dextran and L. esculentum lectin) each highlighted specific aspects of the tissue, and in vivo imaging correlated excellently with conventional histology. In vivo blood flow monitoring added a functional quality to morphologic imaging.CONCLUSION: Confocal microscopy is feasible in vivo allowing the visualisation of the complete GI tract at high resolution even of subsurface tissue structures. The new confocal probe design evaluated in this study is compatible with laparoscopy and significantly expands the field of possible applications to intra-abdominal organs. It allows immediate testing of new in vivo staining and application options and therefore permits rapid transfer from animal studies to clinical use in patients. 展开更多
关键词 Confocal microscopy in vivo imaging ENDOMICROSCOPY Fluorescence
下载PDF
Noninvasive in vivo cell tracking using molecular imaging:A useful tool for developing mesenchymal stem cell-based cancer treatment 被引量:2
7
作者 Ramya Lakshmi Rajendran Manasi Pandurang Jogalekar +1 位作者 Prakash Gangadaran Byeong-Cheol Ahn 《World Journal of Stem Cells》 SCIE 2020年第12期1492-1510,共19页
Mounting evidence has emphasized the potential of cell therapies in treating various diseases by restoring damaged tissues or replacing defective cells in the body.Cell therapies have become a strong therapeutic modal... Mounting evidence has emphasized the potential of cell therapies in treating various diseases by restoring damaged tissues or replacing defective cells in the body.Cell therapies have become a strong therapeutic modality by applying noninvasive in vivo molecular imaging for examining complex cellular processes,understanding pathophysiological mechanisms of diseases,and evaluating the kinetics/dynamics of cell therapies.In particular,mesenchymal stem cells(MSCs)have shown promise in recent years as drug carriers for cancer treatment.They can also be labeled with different probes and tracked in vivo to assess the in vivo effect of administered cells,and to optimize therapy.The exact role of MSCs in oncologic diseases is not clear as MSCs have been shown to be involved in tumor progression and inhibition,and the exact interactions between MSCs and specific cancer microenvironments are not clear.In this review,a multitude of labeling approaches,imaging modalities,and the merits/demerits of each strategy are outlined.In addition,specific examples of the use of MSCs and in vivo imaging in cancer therapy are provided.Finally,present limitations and future outlooks in terms of the translation of different imaging approaches in clinics are discussed. 展开更多
关键词 Cell therapy Mesenchymal stem cells in vivo molecular imaging Drug delivery Superparamagnetic iron oxide
下载PDF
High-speed high-resolution laser diode-based photoacoustic microscopy for in vivo microvasculature imaging
8
作者 Xiufeng Li Victor T C Tsang +2 位作者 Lei Kang Yan Zhang Terence T W Wong 《Visual Computing for Industry,Biomedicine,and Art》 EI 2021年第1期1-6,共6页
Laser diodes(LDs)have been considered as cost-effective and compact excitation sources to overcome the requirement of costly and bulky pulsed laser sources that are commonly used in photoacoustic microscopy(PAM).Howev... Laser diodes(LDs)have been considered as cost-effective and compact excitation sources to overcome the requirement of costly and bulky pulsed laser sources that are commonly used in photoacoustic microscopy(PAM).However,the spatial resolution and/or imaging speed of previously reported LD-based PAM systems have not been optimized simultaneously.In this paper,we developed a high-speed and high-resolution LD-based PAM system using a continuous wave LD,operating at a pulsed mode,with a repetition rate of 30 kHz,as an excitation source.A hybrid scanning mechanism that synchronizes a one-dimensional galvanometer mirror and a two-dimensional motorized stage is applied to achieve a fast imaging capability without signal averaging due to the high signal-to-noise ratio.By optimizing the optical system,a high lateral resolution of 4.8μm has been achieved.In vivo microvasculature imaging of a mouse ear has been demonstrated to show the high performance of our LD-based PAM system. 展开更多
关键词 Photoacoustic microscopy Laser diode in vivo imaging Microvasculature imaging
下载PDF
Quantitative Analysis of Cell Tracing by in vivo Imaging System
9
作者 郑俊猛 徐利军 +2 位作者 周鸿敏 张维娜 陈忠华 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2010年第4期541-545,共5页
In vivo imaging system (IVIS) is a new and rapidly expanding technology, which has a wide range of applications in life science such as cell tracing. By counting the number of photons emitted from a specimen, IVIS can... In vivo imaging system (IVIS) is a new and rapidly expanding technology, which has a wide range of applications in life science such as cell tracing. By counting the number of photons emitted from a specimen, IVIS can quantify biological events such as tumor growth. We used B16F10-luc-G5 tumor cells and 20 Babl/C mice injected subcutaneously with B16F10-luc-G5 tumor cells (1×106 in 100 μL) to develop a method to quantitatively analyze cells traced by IVIS in vitro and in vivo, respectively. The results showed a strong correlation between the number of tumor cells and the intensity of bioluminescence signal (R2=0.99) under different exposure conditions in in vitro assay. The results derived from the in vivo experiments showed that tumor luminescence was observed in all mice by IVIS at all days, and there was significant difference (P<0.01) between every two days from day 3 to day 14. Moreover, tumor dynamic morphology could be monitored by IVIS when it was in- visible. There was a strong correlation between tumor volume and bioluminescence signal (R2=0.97) by IVIS. In summary, we demonstrated a way to accurately carry out the quantitative analysis of cells using IVIS both in vitro and in vivo. The data indicate that IVIS can be used as an effective and quantitative method for cell tracing both in vitro and in vivo. 展开更多
关键词 in vivo imaging system cell tracing quantitative analysis
下载PDF
Contrast Agents and Cell Labeling Strategies for in Vivo Imaging
10
作者 Marta Legacz Katharina Roepke +1 位作者 Michael Giersig Ulrich Pison 《Advances in Nanoparticles》 2014年第2期41-53,共13页
Regenerative medicine has become a new therapeutic approach in which stem cells or genetically reprogrammed cells are delivered to diseased areas in the body with the intention that such multipotent cells will differe... Regenerative medicine has become a new therapeutic approach in which stem cells or genetically reprogrammed cells are delivered to diseased areas in the body with the intention that such multipotent cells will differentiate into healthy tissue and exchange damaged tissue. The success of such cell-based therapeutic approaches depends on precise dosing and delivery of the cells to the desired site in the human body. To determine the accuracy and efficacy of the therapy, tracking of the engrafted cells in an intact living organism is crucial. There is a great need for sensitive, noninvasive imaging methods, which would allow clinicians to monitor viability, migration dynamics, differentiation towards specific cell type, regeneration potential and integration of transplanted cells with host tissues for an optimal time period. Various in vivo tracking methods are currently used including: MRI (Magnetic Resonance Imaging), PET (Positron Emission Tomography), SPECT (Single Photon Emission Computer Tomography), optical imaging (OI), photoacoustic imaging (PAI) and ultrasound (US). In order to carry out the detection with each of the aforementioned techniques, the cells must be labeled either exogenously (ex vivo) or endogenously (in vivo). For tracking the administrated cells, scientists usually manipulate cells outside the living organism by incorporating imaging contrast agents (CAs) or reporter genes. Strategies for stem cell labeling using CAs will be reviewed in the light of various imaging techniques. 展开更多
关键词 in vivo imaging MRI PET SPECT SPIO Cell Labeling
下载PDF
In vivo neuronal and astrocytic activation in somatosensory cortex by acupuncture stimuli 被引量:6
11
作者 Xiao-Yue Chang Kai Chen +4 位作者 Tong Cheng Pui To Lai Li Zhang Kwok-Fai So Edward S.Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第11期2526-2529,共4页
Acupuncture is a medical treatment that has been widely pra cticed in China for over 3000 years,yet the neural mechanisms of acupuncture are not fully understood.We hypothesized that neurons and astrocytes act indepen... Acupuncture is a medical treatment that has been widely pra cticed in China for over 3000 years,yet the neural mechanisms of acupuncture are not fully understood.We hypothesized that neurons and astrocytes act independently and synergistically under acupuncture stimulation.To investigate this,we used two-photon in vivo calcium reco rding to observe the effects of acupuncture stimulation at ST36(Zusanli)in mice.Acupuncture stimulation in peripheral acupoints potentiated calcium signals of pyramidal neurons and astrocytes in the somatosensory cortex and resulted in late-onset calcium transients in astrocytes.Chemogenetic inhibition of neurons augmented the astrocytic activity.These findings suggest that acupuncture activates neuronal and astrocytic activity in the somatosensory co rtex and provide evidence for the involvement of both neurons and astrocytes in acupuncture treatment. 展开更多
关键词 ACUPUNCTURE ASTROCYTE chemogenetic NEURON N-methyl-D-aspartate receptor somatosensory cortex transient receptor potential A1 two-photon in vivo imaging
下载PDF
Association of colorectal cancer with pathogenic Escherichia coli: Focus on mechanisms using optical imaging 被引量:10
12
作者 Julie Veziant Johan Gagnière +6 位作者 Elodie Jouberton Virginie Bonnin Pierre Sauvanet Denis Pezet Nicolas Barnich Elisabeth Miot-Noirault Mathilde Bonnet 《World Journal of Clinical Oncology》 CAS 2016年第3期293-301,共9页
AIM: To investigate the molecular or cellular mechanisms related to the infection of epithelial colonic mucosa by pks-positive Escherichia coli(E. coli) using optical imaging.METHODS: We choose to evaluate the tumor m... AIM: To investigate the molecular or cellular mechanisms related to the infection of epithelial colonic mucosa by pks-positive Escherichia coli(E. coli) using optical imaging.METHODS: We choose to evaluate the tumor metabolic activity using a fluorodeoxyglucose analogue as 2-deoxyglucosone fluorescent probes and to correlate it with tumoral volume(mm^3). Inflammation measuring myeloperoxidase(MPO) activity and reactive oxygen species production was monitored by a bioluminescent(BLI) inflammation probe and related to histological examination and MPO levels by enzyme-linked immunosorbent assay(ELISA) on tumor specimens. The detection and quantitation of these two signals were validated on a xenograft model of human colon adenocarcinoma epithelial cells(HCT116) in nude mice infected with a pks-positive E. coli. The inflammatory BLI signal was validated intra-digestively in the colitisCEABAC10 DSS models, which mimicked Crohn's disease. RESULTS: Using a 2-deoxyglucosone fluorescent probe, we observed a high and specific HCT116 tumor uptake in correlation with tumoral volume(P = 0.0036). Using the inflammation probe targeting MPO, we detected a rapid systemic elimination and a significant increase of the BLI signal in the pks-positive E. coli-infected HCT116 xenograft group(P < 0.005). ELISA confirmed that MPO levels were significantly higher(1556 ± 313.6 vs 234.6 ± 121.6 ng/m L P = 0.001) in xenografts infected with the pathogenic E. coli strain. Moreover, histological examination of tumor samples confirmed massive infiltration of pks-positive E. coli-infected HCT116 tumors by inflammatory cells compared to the uninfected group. These data showed that infection with the pathogenic E. coli strain enhanced inflammation and ROS production in tumors before tumor growth. Moreover, we demonstrated that the intra-digestive monitoring of inflammation is feasible in a reference colitis murine model(CEABAC10/DSS).CONCLUSION: Using BLI and fluorescence optical imaging, we provided tools to better understand hostpathogen interactions at the early stage of disease, such as inflammatory bowel disease and colorectal cancer. 展开更多
关键词 Colorectal carcinoma Escherichia coli Colibactin MYELOPEROXIDASE in vivo optical imaging
下载PDF
Multimodal imaging of experimental choroidal neovascularization 被引量:1
13
作者 Ioanna Tsioti Xuan Liu +2 位作者 Petra Schwarzer Martin S.Zinkernagel Despina Kokona 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2022年第6期886-893,共8页
AIM:To compare choroidal neovascularization(CNV)lesion measurements obtained by in vivo imaging modalities,with whole mount histological preparations stained with isolectin GS-IB4,using a murine laser-induced CNV mode... AIM:To compare choroidal neovascularization(CNV)lesion measurements obtained by in vivo imaging modalities,with whole mount histological preparations stained with isolectin GS-IB4,using a murine laser-induced CNV model.METHODS:B6 N.Cg-Tg(Csf1 r-EGFP)1 Hume/J heterozygous adult mice were subjected to laser-induced CNV and were monitored by fluorescein angiography(FA),multicolor(MC)fundus imaging and optical coherence tomography angiography(OCTA)at day 14 after CNV induction.Choroidalretinal pigment epithelium(RPE)whole mounts were prepared at the end of the experiment and were stained with isolectin GS-IB4.CNV areas were measured in all different imaging modalities at day 14 after CNV from three independent raters and were compared to choroidal-RPE whole mounts.Intraclass correlation coefficient(ICC)type 2(2-way random model)and its 95%confidence intervals(CI)were calculated to measure the correlation between different raters’measurements.Spearman’s rank correlation coefficient(Spearman’s r)was calculated for the comparison between FA,MC and OCTA data and histology data.RESULTS:FA(early and late)and MC correlates well with the CNV measurements ex vivo with FA having slightly better correlation than MC(FA early Spearman’s r=0.7642,FA late Spearman’s r=0.7097,and MC Spearman’s r=0.7418),while the interobser ver reliability was good for both techniques(FA early ICC=0.976,FA late ICC=0.964,and MC ICC=0.846).In contrast,OCTA showed a poor correlation with ex vivo measurements(Spearman’s r=0.05716)and high variability between different raters(ICC=0.603).CONCLUSION:This study suggests that FA and MC imaging could be used for the evaluation of CNV areas in vivo while caution must be taken and comparison studies should be performed when OCTA is employed as a CNV monitoring tool in small rodents. 展开更多
关键词 choroidal neovascularization in vivo imaging fluorescein angiography multicolor fundus imaging optical coherence tomography angiography
下载PDF
In vivo biodistribution of topical low molecular weight heparin-taurocholate in a neovascularized mouse cornea
14
作者 Chan Hee Moon Ji Yun Lee +4 位作者 Eun Soon Kim Jin Hyoung Park Sang-Yeob Kim Jae Yong Kim Hungwon Tchah 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2018年第9期1435-1439,共5页
AIM: To investigate the ocular biodistribution and clearance of topically administered 7-taurocholic acid conjugated low-molecular weight heparin(LHT7) in a neovascularized mouse cornea using an in vivo optical ima... AIM: To investigate the ocular biodistribution and clearance of topically administered 7-taurocholic acid conjugated low-molecular weight heparin(LHT7) in a neovascularized mouse cornea using an in vivo optical imaging system. METHODS: A total of 10 eyes of 6 to 8-week-old BALB/c mice were analyzed. Corneal neovascularization(CoNV) was induced in the inferior cornea(IC) of each animal by penetrating the stroma with two interrupted sutures. The development of CoNV was verified after one week and the area of each neovascularized region was measured. A near-infrared fluorescent probe of 20 μmol/L Cy5.5 labeled LHT7(LHT7-Cy5.5) in 0.02 mL solution was topically instilled onto the cornea in the experimental group(n=5). Free-Cy5.5 of 20 μmol/L in 0.02 mL was instilled in the control group(n=5). In vivo optical images were obtained before instillation and 5 min, 2, 4, and 6 h after instillation. The intensities were separately measured at the superior cornea(SC) and the IC. RESULTS: The mean CoNV areas were 1.97±0.17 mm^2 and 1.92±0.96 mm^2 in the experimental and control groups, respectively(P=0.832). The SC remained normal in all 10 subject animals. The IC intensity of the LHT7-Cy5.5 was greater than the SC intensity at 5 min(P=0.038), 2 h(P=0.041), and 4 h(P=0.041) after application. The IC intensity fell to less than half of its initial value(42.9%±8.6%) at 6 h in the experimental group. In the control mice, here were no significant differences in the free-Cy5.5 intensity between the IC and SC. CONCLUSION: Topically administered LHT7 shows a high biodistribution in CoNV areas for 4 h and should be reapplied accordingly to maintain its effects. In vivo optical imaging can be a useful tool for evaluating the ocular biodistribution of a drug in an animal model. 展开更多
关键词 comeal neovascularization in vivo optical imaging low-molecular weight heparin ocular biodistribution
下载PDF
An acidic medium-compatible deep-near-infrared dye for in vivo imaging
15
作者 Yan Dong Ye Zou +5 位作者 Xiaotong Jia Lei Yin Weiwei He Xiao Luo Xuhong Qian Youjun Yang 《Smart Molecules》 2023年第1期97-103,共7页
In vivo imaging in the deep near-infrared(NIR)spectral region,that is,beyond 800 nm,has become popular due to its penetration depth.While imaging of the neutral medium/tissue has been repeatedly showcased,imaging of t... In vivo imaging in the deep near-infrared(NIR)spectral region,that is,beyond 800 nm,has become popular due to its penetration depth.While imaging of the neutral medium/tissue has been repeatedly showcased,imaging of the high-acidic medium remains challenging partly because of the high-lying HOMO orbital and hence a high pKa of the electron-donating group of the NIR fluorophores.We devised a novel electron-donating group(D6)with which we further synthesized ECJ.ECJ exhibits an absorption wavelength beyond 900 nm and is fluorescent.Its pKa was found to be lower than zero,rendering it suitable for bioimaging of a highly-acidic medium.Its potential for practical applications was showcased in proof-of-concept in vivo imaging with a mouse model. 展开更多
关键词 acidic medium gastrointestinal tract in vivo imaging near infrared fluorophore
下载PDF
X-ray excited Mn^(2+)-doped persistent luminescence materials with biological window emission for in vivo bioimaging 被引量:1
16
作者 Hanrun Zheng Lin Liu +6 位作者 Yi’ang Li Rui Rong Liang Song Junpeng Shi Jing Teng Xia Sun Yun Zhang 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第1期28-35,I0001,共9页
In recent years,persistent luminescence materials(PLMs)excited by X-rays and emitting in biological windows have received extensive attention in the field of high-sensitivity bioimaging.Transition metal Mn^(2+)is an i... In recent years,persistent luminescence materials(PLMs)excited by X-rays and emitting in biological windows have received extensive attention in the field of high-sensitivity bioimaging.Transition metal Mn^(2+)is an ideal emission center,but few studies focus on Mn^(2+)-doped PLMs with X-ray excitation and biological window emission.Here,we report a Mn^(2+)-doped PLM,LiYGeO_(4):Mn^(2+)(LYGM),with excellent biological window persistent luminescence emission.After excitation by UV,LYGM produces a durable biological window of persistent luminescence emission at 660 nm for up to 20 h.More importantly.LYGM can be repeatedly excited by X-rays,resulting in long-term biological window persistent luminescence emission.In addition,we obtain LYGM around 200 nm in diameter by ball milling and centrifugation and improve its biocompatibility by surface modification to apply it to in vivo imaging in mice.After LYGM are injected into mice through the tail vein,in situ excitation of X-rays can be achieved.After the persistent luminescence decays,LYGM can be re-excited for repeated imaging.Therefore,LYGM shows potential prospects for in vivo deep tissue and long-term bioimaging. 展开更多
关键词 Persistent luminescence X-RAY Biological window in vivo imaging Rare earths
原文传递
In vivo real-time monitoring delayed administration of M2 macrophages to enhance healing of tendon by NIR-II fluorescence imaging
17
作者 Yuzhou Chen Mo Chen +16 位作者 Chengxuan Yu Huizhu Li Liman Sai Nguyen T.K.Thanh Yueming Wang Yan Wo Jian Zhang Xing Yang Evgenii L.Guryev Andrei V.Zvyagin Hao De Min Tang Shiyi Chen Yunxia Li Yuefeng Hao Sijia Feng Jun Chen 《Nano Research》 SCIE EI CSCD 2024年第5期4379-4390,共12页
The administration time is a critical but long-neglected point in cell therapy based on macrophages because the incorrect time of macrophage administration could result in diverse outcomes regarding the same macrophag... The administration time is a critical but long-neglected point in cell therapy based on macrophages because the incorrect time of macrophage administration could result in diverse outcomes regarding the same macrophage therapy.In this work,the second near-infrared(NIR-II)fluorescence imaging in vivo tracking of M2 macrophages during a pro-healing therapy in the mice model of rotator cuff injury revealed that the behavior of administrated macrophages was influenced by the timing of their administration.The delayed cell therapy(DCT)group had a longer retention time of injected M2 macrophages in the repairing tissue than that in the immediate cell therapy(ICT)group.Both Keller-Segel model and histological analysis further demonstrated that DCT altered the chemotaxis of M2 macrophages and improved the healing outcome of the repaired structure in comparison with ICT.Our results offer a possible explanation of previous conflicting results on reparative cell therapy and provoke reconsideration of the timing of these therapies. 展开更多
关键词 MACROPHAGE cell therapy NIR-II in vivo imaging delayed therapy tendon healing
原文传递
Initial joint bleed volume in a delayed on-demand treatment setup correlates with subsequent synovial changes in hemophilic mice 被引量:1
18
作者 Kare Kryger Vols Mads Kjelgaard-Hansen +2 位作者 Carsten Dan Ley Axel Kornerup Hansen Maj Petersen 《Animal Models and Experimental Medicine》 CSCD 2020年第2期160-168,共9页
Background: Hemophilic arthropathy is a debilitating morbidity of hemophilia caused by recurrent joint bleeds. We investigated if the joint bleed volume, before initiation of treatment, was linked to the subsequent de... Background: Hemophilic arthropathy is a debilitating morbidity of hemophilia caused by recurrent joint bleeds. We investigated if the joint bleed volume, before initiation of treatment, was linked to the subsequent degree of histopathological changes and the development of bone pathology in a mouse model of hemophilic arthropathy.Methods: FVIII knock-out(F8-KO) mice were dosed with a micro-CT blood pool agent prior to induction of hemarthrosis. Eight hours after induction, the bleed volume was quantified with micro computed tomography(micro-CT) and recombinant FVIII treatment initiated. On Day 8, inflammation in the knees was characterized by fluorescence molecular tomography. On Day 14, knee pathology was characterized by micro-CT and histopathology. In a second study, contrast agent was injected into the knee of wild-type(WT) mice, followed by histopathological evaluation on Day 14.Results: The average joint bleed volume before treatment was 3.9 mm3. The inflammation-related fluorescent intensities in the injured knees were significantly increased on Day 8. The injured knees had significantly increased synovitis scores, vessel counts, and areas of hemosiderin compared to un-injured knees. However, no cartilage-or bone pathology was observed. The bleed volume before initiation of treatment correlated with the degree of synovitis and was associated with high fluorescent intensity on Day 8. In F8-KO and WT mice, persistence of contrast agent in the joint elicited morphological changes.Conclusion: When applying a delayed on-demand treatment regimen to hemophilic mice subjected to an induced knee hemarthrosis, the degree of histopathological changes on Day 14 reflected the bleed volume prior to initiation of treatment. 展开更多
关键词 Animal models ARTHROPATHY hemarthrosis haemophilia A in vivo imaging MICRO-CT
下载PDF
MULTISPECTRAL UNMIXING OF FLUORESCENCE MOLECULAR TOMOGRAPHY DATA
19
作者 MARIA SIMANTIRAKI ROSY FAVICCHIO +2 位作者 STELIOS PSYCHARAKIS GIANNIS ZACHARAKIS JORGE RIPOLL 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2009年第4期353-364,共12页
Even though multispectral imaging is considered very significant in biological imaging,it is only commonly used in microscopy in a 2D approach.Here,we present a Fluorescence Molecular Tomography system capable of reco... Even though multispectral imaging is considered very significant in biological imaging,it is only commonly used in microscopy in a 2D approach.Here,we present a Fluorescence Molecular Tomography system capable of recording simultaneously tomographic data at several spectral windows,enabling multispectral tomography.3D reconstructed data from several spectral windows is used to construct a linear unmixing algorithm for multispectral deconvolution of overlapping fluorescence signals.The method is applied on tomographic 3D fluorescence concentration maps in tissue-mimicking phantoms,yielding absolute quantification of the concentration of each individual fluorophore.Results are compared to the case when unmixing is performed in the raw 2D data instead of the reconstructed 3D concentration map,showing greater accuracy when unmixing algorithms are applied in the reconstructed data.Both the reflection and transmission geometries are considered. 展开更多
关键词 Optical tomography multispectral imaging in vivo imaging fluorescence quantification.
下载PDF
Zn-doping enhances the photoluminescence and stability of PbS quantum dots for in vivo high-resolution imaging in the NIR-II window 被引量:6
20
作者 Xiulei Shi Song Chen +4 位作者 Meng-Yao Luo Biao Huang Guozhen Zhang Ran Cui Mingxi Zhang 《Nano Research》 SCIE EI CAS CSCD 2020年第8期2239-2245,共7页
Lead sulfide(PbS)quantum dots(QDs)are important near infrared(NIR)luminescent materials with tunable and strong emission covering a broad NIR region.However,their optical properties are quite sensitive to air,water,an... Lead sulfide(PbS)quantum dots(QDs)are important near infrared(NIR)luminescent materials with tunable and strong emission covering a broad NIR region.However,their optical properties are quite sensitive to air,water,and high temperature due to the surface oxidation,thus limiting their applications in optoelectronic devices and biological imaging.Herein,a cation-doping strategy is presented to make a series of high-quality Zn-doped PbS QDs with strong emission covering whole second near-infrared window(NIR-II,1,000-1,700 nm).First-principle calculations confirmed that Zn dopants formed dopant states and decreased the recombination energy gap of host PbS.Notably,the Zn dopants significantly improved the quantum yield,photoluminescence lifetime and thermal stability of PbS QDs.Moreover,the PEGylated Zn-doped PbS QDs emitting in the NIR-llb window(1,500-1,700 nm)realized the noninvasive imaging of cerebral vascular of mouse with high resolution,being able to distinguish blood capillary.This material not only provides a new tool for deep tissue fluorescence imaging,but is also promising for the development of other NIR related devices. 展开更多
关键词 quantum dots DOPinG second near-infrared window(NIR-II window) tunable emission in vivo imaging
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部