Introduction: Medical imaging is a medical specialty that involves producing images of the human body and interpreting them for diagnostic, therapeutic purposes, and for monitoring the progress of pathologies. We aime...Introduction: Medical imaging is a medical specialty that involves producing images of the human body and interpreting them for diagnostic, therapeutic purposes, and for monitoring the progress of pathologies. We aimed to assess the theoretical knowledge of doctors and interns in medical imaging in the northern region of Burkina Faso. Methodology: This was a descriptive cross-sectional survey based on a self-administered questionnaire. Prescribers knowledge was estimated based on scores derived from questionnaire responses. Results: We collected 106 questionnaires out of 163, i.e. a participation rate of 65.03%. The average knowledge score was 81.71% for the contribution of medical imaging to patient management. It was 60.02% for the indications/counter-indications of radiological examinations and 72.56% for the risks associated with exposure to radiation during these examinations. The score was 59.83% for the methods used to select the appropriate radiological examination. As regards the completeness of the clinical and biological information on the forms requesting imaging examinations, the score was 96.65%. Specialist doctors had the highest overall level of knowledge (74.68%). Conclusion: Improved technical facilities, good initial and in-service training, and interdisciplinary collaboration will help to ensure that imaging tests are properly prescribed, leading to better patient care.展开更多
Image segmentation is crucial for various research areas. Manycomputer vision applications depend on segmenting images to understandthe scene, such as autonomous driving, surveillance systems, robotics, andmedical ima...Image segmentation is crucial for various research areas. Manycomputer vision applications depend on segmenting images to understandthe scene, such as autonomous driving, surveillance systems, robotics, andmedical imaging. With the recent advances in deep learning (DL) and itsconfounding results in image segmentation, more attention has been drawnto its use in medical image segmentation. This article introduces a surveyof the state-of-the-art deep convolution neural network (CNN) models andmechanisms utilized in image segmentation. First, segmentation models arecategorized based on their model architecture and primary working principle.Then, CNN categories are described, and various models are discussed withineach category. Compared with other existing surveys, several applicationswith multiple architectural adaptations are discussed within each category.A comparative summary is included to give the reader insights into utilizedarchitectures in different applications and datasets. This study focuses onmedical image segmentation applications, where the most widely used architecturesare illustrated, and other promising models are suggested that haveproven their success in different domains. Finally, the present work discussescurrent limitations and solutions along with future trends in the field.展开更多
Gland cancer is a high-incidence disease that endangers human health,and its early detection and treatment require efficient,accurate,and objective intelligent diagnosis methods.In recent years,the advent of machine l...Gland cancer is a high-incidence disease that endangers human health,and its early detection and treatment require efficient,accurate,and objective intelligent diagnosis methods.In recent years,the advent of machine learning techniques has yielded satisfactory results in intelligent gland cancer diagnosis based on clinical images,significantly improving the accuracy and efficiency of medical image interpretation while reducing the workload of doctors.The focus of this study is to review,classify,and analyze intelligent diagnosis methods for imaging gland cancer based on machine learning and deep learning.This paper briefly introduces some basic imaging principles of multimodal medical images,such as the commonly used computed tomography(CT),magnetic resonance imaging(MRI),ultrasound(US),positron emission tomography(PET),and pathology.In addition,the intelligent diagnosis methods for imaging gland cancer were further classified into supervised learning and weakly supervised learning.Supervised learning consists of traditional machine learning methods,such as K-nearest neighbor algorithm(KNN),support vector machine(SVM),and multilayer perceptron,and deep learning methods evolving from convolutional neural network(CNN).By contrast,weakly supervised learning can be further categorized into active learning,semisupervised learning,and transfer learning.State-of-the-art methods are illustrated with implementation details,including image segmentation,feature extraction,and optimization of classifiers.Their performances are evaluated through indicators,such as accuracy,precision,and sensitivity.In conclusion,the challenges and development trends of intelligent diagnosis methods for imaging gland cancer were addressed and discussed.展开更多
Over recent years,the importance of the patent literature has become increasingly more recognized in the aca-demic setting.In the context of artificial intelligence,deep learning,and data sciences,patents are relevant...Over recent years,the importance of the patent literature has become increasingly more recognized in the aca-demic setting.In the context of artificial intelligence,deep learning,and data sciences,patents are relevant to not only industry but also academe and other communities.In this article,we focus on deep tomographic imaging and perform a preliminary landscape analysis of the related patent literature.Our search tool is PatSeer.Our patent biblio-metric data is summarized in various figures and tables.In particular,we qualitatively analyze key deep tomographic patent literature.展开更多
The earliest and most accurate detection of the pathological manifestations of hepatic diseases ensures effective treatments and thus positive prognostic outcomes.In clinical settings,screening and determining the ext...The earliest and most accurate detection of the pathological manifestations of hepatic diseases ensures effective treatments and thus positive prognostic outcomes.In clinical settings,screening and determining the extent of a pathology are prominent factors in preparing remedial agents and administering approp-riate therapeutic procedures.Moreover,in a patient undergoing liver resection,a realistic preoperative simulation of the subject-specific anatomy and physiology also plays a vital part in conducting initial assessments,making surgical decisions during the procedure,and anticipating postoperative results.Conventionally,various medical imaging modalities,e.g.,computed tomography,magnetic resonance imaging,and positron emission tomography,have been employed to assist in these tasks.In fact,several standardized procedures,such as lesion detection and liver segmentation,are also incorporated into prominent commercial software packages.Thus far,most integrated software as a medical device typically involves tedious interactions from the physician,such as manual delineation and empirical adjustments,as per a given patient.With the rapid progress in digital health approaches,especially medical image analysis,a wide range of computer algorithms have been proposed to facilitate those procedures.They include pattern recognition of a liver,its periphery,and lesion,as well as pre-and postoperative simulations.Prior to clinical adoption,however,software must conform to regulatory requirements set by the governing agency,for instance,valid clinical association and analytical and clinical validation.Therefore,this paper provides a detailed account and discussion of the state-of-the-art methods for liver image analyses,visualization,and simulation in the literature.Emphasis is placed upon their concepts,algorithmic classifications,merits,limitations,clinical considerations,and future research trends.展开更多
In the process of continuous maturity and development of medical imaging diagnosis,it is common to transmit images through public networks.How to ensure the security of transmission,cultivate talents who combine medic...In the process of continuous maturity and development of medical imaging diagnosis,it is common to transmit images through public networks.How to ensure the security of transmission,cultivate talents who combine medical imaging and information security,and explore and cultivate new discipline growth points are difficult problems and challenges for schools and educators.In order to cope with industrial changes,a new round of scientific and technological revolution,and the challenges of the further development of artificial intelligence in medicine,this article will analyze the existing problems in the training of postgraduates in medical imaging information security by combining the actual conditions and characteristics of universities,and put forward countermeasures and suggestions to promote the progress of technology in universities.展开更多
Objective:To explore the application effect of virtual simulation teaching platform in the practical teaching of medical imaging.Methods:A total of 97 students majoring in medical imaging technology of class 2022 were...Objective:To explore the application effect of virtual simulation teaching platform in the practical teaching of medical imaging.Methods:A total of 97 students majoring in medical imaging technology of class 2022 were selected and divided into two groups according to the random number method:control group(n=48)and observation group(n=49).The observation group was under the practical teaching mode based on the virtual simulation teaching platform,while the control group was under the traditional multimedia teaching mode.Questionnaire survey and teaching assessment were carried out after the teaching period,and the application effects of the two teaching modes were compared.Results:The reading and theoretical scores of the students in the observation group were significantly higher than those of the students in the control group(P<0.01);there were statistically significant differences in the results of the questionnaire survey(improved learning interest,improved language expression,improved ability to comprehensively analyze problems,and improved teamwork awareness)between the two groups of students(P<0.05);the students in the observation group were markedly more satisfied with the teaching content,teaching methods,and teaching quality than the students in the control group(P<0.05).Conclusion:The medical imaging practical teaching mode based on virtual simulation platform not only helps improve students’theoretical understanding and practical ability in medical imaging technology,but also improves students’learning interest,language expression ability,ability to comprehensively analyze problems,communication skills,teamwork awareness,and satisfaction with the teaching content,teaching methods,and teaching quality.Therefore,it has wide application value in medical specialty education.展开更多
Objective:To explore the application effect of virtual simulation experiment combined with picture archiving and communication system(PACS)in medical imaging practical teaching.Methods:97 students from the medical ima...Objective:To explore the application effect of virtual simulation experiment combined with picture archiving and communication system(PACS)in medical imaging practical teaching.Methods:97 students from the medical imaging class of 2022 were divided into two groups;the control group(n=48)was taught by the traditional teaching method,whereas the research group was taught by virtual simulation experiment combined with PACS(n=49).The teaching achievements and teaching effects of the two groups were compared to define the advantages of the two teaching modes.Results:Initially,there were no significant differences in the basic theory,image analysis,report writing,and differential diagnosis scores between the two groups of students(P>0.05);however,after 16 weeks of teaching,the scores of the research group were better than those of the control group(P<0.05);the pass rate of students in the study group(93.88%)was higher than that in the control group(81.25%);the scores of students in the research group in terms of clinical inquiry skills,X-ray/computed tomography/magnetic resonance imaging(X-ray/CT/MRI)operation skills,and doctor-patient communication skills were significantly higher than those in the control group(P<0.05).Conclusion:In medical imaging practical teaching,the application of virtual simulation experiment combined with PACS can effectively address several problems in the traditional teaching mode,including the single teaching method,the single teaching content,and the lack of innovation,and,at the same time,improve students’basic theoretical knowledge,X-ray/CT/MRI operation skills,consultation skills,and doctor-patient communication skills,thereby effectively improving the teaching quality and learning effect.展开更多
Diabetic retinopathy(DR),the main cause of irreversible blindness,is one of the most common complications of diabetes.At present,deep convolutional neural networks have achieved promising performance in automatic DR d...Diabetic retinopathy(DR),the main cause of irreversible blindness,is one of the most common complications of diabetes.At present,deep convolutional neural networks have achieved promising performance in automatic DR detection tasks.The convolution operation of methods is a local cross-correlation operation,whose receptive field de-termines the size of the local neighbourhood for processing.However,for retinal fundus photographs,there is not only the local information but also long-distance dependence between the lesion features(e.g.hemorrhages and exudates)scattered throughout the whole image.The proposed method incorporates correlations between long-range patches into the deep learning framework to improve DR detection.Patch-wise re-lationships are used to enhance the local patch features since lesions of DR usually appear as plaques.The Long-Range unit in the proposed network with a residual structure can be flexibly embedded into other trained networks.Extensive experimental results demon-strate that the proposed approach can achieve higher accuracy than existing state-of-the-art models on Messidor and EyePACS datasets.展开更多
Artificial Intelligence(AI)is being increasingly used for diagnosing Vision-Threatening Diabetic Retinopathy(VTDR),which is a leading cause of visual impairment and blindness worldwide.However,previous automated VTDR ...Artificial Intelligence(AI)is being increasingly used for diagnosing Vision-Threatening Diabetic Retinopathy(VTDR),which is a leading cause of visual impairment and blindness worldwide.However,previous automated VTDR detection methods have mainly relied on manual feature extraction and classification,leading to errors.This paper proposes a novel VTDR detection and classification model that combines different models through majority voting.Our proposed methodology involves preprocessing,data augmentation,feature extraction,and classification stages.We use a hybrid convolutional neural network-singular value decomposition(CNN-SVD)model for feature extraction and selection and an improved SVM-RBF with a Decision Tree(DT)and K-Nearest Neighbor(KNN)for classification.We tested our model on the IDRiD dataset and achieved an accuracy of 98.06%,a sensitivity of 83.67%,and a specificity of 100%for DR detection and evaluation tests,respectively.Our proposed approach outperforms baseline techniques and provides a more robust and accurate method for VTDR detection.展开更多
In the intricate network environment,the secure transmission of medical images faces challenges such as information leakage and malicious tampering,significantly impacting the accuracy of disease diagnoses by medical ...In the intricate network environment,the secure transmission of medical images faces challenges such as information leakage and malicious tampering,significantly impacting the accuracy of disease diagnoses by medical professionals.To address this problem,the authors propose a robust feature watermarking algorithm for encrypted medical images based on multi-stage discrete wavelet transform(DWT),Daisy descriptor,and discrete cosine transform(DCT).The algorithm initially encrypts the original medical image through DWT-DCT and Logistic mapping.Subsequently,a 3-stage DWT transformation is applied to the encrypted medical image,with the centre point of the LL3 sub-band within its low-frequency component serving as the sampling point.The Daisy descriptor matrix for this point is then computed.Finally,a DCT transformation is performed on the Daisy descriptor matrix,and the low-frequency portion is processed using the perceptual hashing algorithm to generate a 32-bit binary feature vector for the medical image.This scheme utilises cryptographic knowledge and zero-watermarking technique to embed watermarks without modifying medical images and can extract the watermark from test images without the original image,which meets the basic re-quirements of medical image watermarking.The embedding and extraction of water-marks are accomplished in a mere 0.160 and 0.411s,respectively,with minimal computational overhead.Simulation results demonstrate the robustness of the algorithm against both conventional attacks and geometric attacks,with a notable performance in resisting rotation attacks.展开更多
This article proposes a novel fractional heterogeneous neural network by coupling a Rulkov neuron with a Hopfield neural network(FRHNN),utilizing memristors for emulating neural synapses.The study firstly demonstrates...This article proposes a novel fractional heterogeneous neural network by coupling a Rulkov neuron with a Hopfield neural network(FRHNN),utilizing memristors for emulating neural synapses.The study firstly demonstrates the coexistence of multiple firing patterns through phase diagrams,Lyapunov exponents(LEs),and bifurcation diagrams.Secondly,the parameter related firing behaviors are described through two-parameter bifurcation diagrams.Subsequently,local attraction basins reveal multi-stability phenomena related to initial values.Moreover,the proposed model is implemented on a microcomputer-based ARM platform,and the experimental results correspond to the numerical simulations.Finally,the article explores the application of digital watermarking for medical images,illustrating its features of excellent imperceptibility,extensive key space,and robustness against attacks including noise and cropping.展开更多
Aim:This study aims to establish an artificial intelligence model,ThyroidNet,to diagnose thyroid nodules using deep learning techniques accurately.Methods:A novel method,ThyroidNet,is introduced and evaluated based on...Aim:This study aims to establish an artificial intelligence model,ThyroidNet,to diagnose thyroid nodules using deep learning techniques accurately.Methods:A novel method,ThyroidNet,is introduced and evaluated based on deep learning for the localization and classification of thyroid nodules.First,we propose the multitask TransUnet,which combines the TransUnet encoder and decoder with multitask learning.Second,we propose the DualLoss function,tailored to the thyroid nodule localization and classification tasks.It balances the learning of the localization and classification tasks to help improve the model’s generalization ability.Third,we introduce strategies for augmenting the data.Finally,we submit a novel deep learning model,ThyroidNet,to accurately detect thyroid nodules.Results:ThyroidNet was evaluated on private datasets and was comparable to other existing methods,including U-Net and TransUnet.Experimental results show that ThyroidNet outperformed these methods in localizing and classifying thyroid nodules.It achieved improved accuracy of 3.9%and 1.5%,respectively.Conclusion:ThyroidNet significantly improves the clinical diagnosis of thyroid nodules and supports medical image analysis tasks.Future research directions include optimization of the model structure,expansion of the dataset size,reduction of computational complexity and memory requirements,and exploration of additional applications of ThyroidNet in medical image analysis.展开更多
In minimally invasive surgery,endoscopes or laparoscopes equipped with miniature cameras and tools are used to enter the human body for therapeutic purposes through small incisions or natural cavities.However,in clini...In minimally invasive surgery,endoscopes or laparoscopes equipped with miniature cameras and tools are used to enter the human body for therapeutic purposes through small incisions or natural cavities.However,in clinical operating environments,endoscopic images often suffer from challenges such as low texture,uneven illumination,and non-rigid structures,which affect feature observation and extraction.This can severely impact surgical navigation or clinical diagnosis due to missing feature points in endoscopic images,leading to treatment and postoperative recovery issues for patients.To address these challenges,this paper introduces,for the first time,a Cross-Channel Multi-Modal Adaptive Spatial Feature Fusion(ASFF)module based on the lightweight architecture of EfficientViT.Additionally,a novel lightweight feature extraction and matching network based on attention mechanism is proposed.This network dynamically adjusts attention weights for cross-modal information from grayscale images and optical flow images through a dual-branch Siamese network.It extracts static and dynamic information features ranging from low-level to high-level,and from local to global,ensuring robust feature extraction across different widths,noise levels,and blur scenarios.Global and local matching are performed through a multi-level cascaded attention mechanism,with cross-channel attention introduced to simultaneously extract low-level and high-level features.Extensive ablation experiments and comparative studies are conducted on the HyperKvasir,EAD,M2caiSeg,CVC-ClinicDB,and UCL synthetic datasets.Experimental results demonstrate that the proposed network improves upon the baseline EfficientViT-B3 model by 75.4%in accuracy(Acc),while also enhancing runtime performance and storage efficiency.When compared with the complex DenseDescriptor feature extraction network,the difference in Acc is less than 7.22%,and IoU calculation results on specific datasets outperform complex dense models.Furthermore,this method increases the F1 score by 33.2%and accelerates runtime by 70.2%.It is noteworthy that the speed of CMMCAN surpasses that of comparative lightweight models,with feature extraction and matching performance comparable to existing complex models but with faster speed and higher cost-effectiveness.展开更多
Many deep learning-based registration methods rely on a single-stream encoder-decoder network for computing deformation fields between 3D volumes.However,these methods often lack constraint information and overlook se...Many deep learning-based registration methods rely on a single-stream encoder-decoder network for computing deformation fields between 3D volumes.However,these methods often lack constraint information and overlook semantic consistency,limiting their performance.To address these issues,we present a novel approach for medical image registration called theDual-VoxelMorph,featuring a dual-channel cross-constraint network.This innovative network utilizes both intensity and segmentation images,which share identical semantic information and feature representations.Two encoder-decoder structures calculate deformation fields for intensity and segmentation images,as generated by the dual-channel cross-constraint network.This design facilitates bidirectional communication between grayscale and segmentation information,enabling the model to better learn the corresponding grayscale and segmentation details of the same anatomical structures.To ensure semantic and directional consistency,we introduce constraints and apply the cosine similarity function to enhance semantic consistency.Evaluation on four public datasets demonstrates superior performance compared to the baselinemethod,achieving Dice scores of 79.9%,64.5%,69.9%,and 63.5%for OASIS-1,OASIS-3,LPBA40,and ADNI,respectively.展开更多
With the rapid advancement in artificial intelligence(AI)and its application in the Internet of Things(IoT),intelligent technologies are being introduced in the medical field,giving rise to smart healthcare systems.Th...With the rapid advancement in artificial intelligence(AI)and its application in the Internet of Things(IoT),intelligent technologies are being introduced in the medical field,giving rise to smart healthcare systems.The medical imaging data contains sensitive information,which can easily be stolen or tampered with,necessitating secure encryption schemes designed specifically to protect these images.This paper introduces an artificial intelligence-driven novel encryption scheme tailored for the secure transmission and storage of high-resolution medical images.The proposed scheme utilizes an artificial intelligence-based autoencoder to compress highresolution medical images and to facilitate fast encryption and decryption.The proposed autoencoder retains important diagnostic information even after reducing the image dimensions.The low-resolution images then undergo a four-stage encryption process.The first two encryption stages involve permutation and the next two stages involve confusion.The first two stages ensure the disruption of the structure of the image,making it secure against statistical attacks.Whereas the two stages of confusion ensure the effective concealment of the pixel values making it difficult to decrypt without secret keys.This encrypted image is then safe for storage or transmission.The proposed scheme has been extensively evaluated against various attacks and statistical security parameters confirming its effectiveness in securing medical image data.展开更多
In blood or bone marrow,leukemia is a form of cancer.A person with leukemia has an expansion of white blood cells(WBCs).It primarily affects children and rarely affects adults.Treatment depends on the type of leukemia...In blood or bone marrow,leukemia is a form of cancer.A person with leukemia has an expansion of white blood cells(WBCs).It primarily affects children and rarely affects adults.Treatment depends on the type of leukemia and the extent to which cancer has established throughout the body.Identifying leukemia in the initial stage is vital to providing timely patient care.Medical image-analysis-related approaches grant safer,quicker,and less costly solutions while ignoring the difficulties of these invasive processes.It can be simple to generalize Computer vision(CV)-based and image-processing techniques and eradicate human error.Many researchers have implemented computer-aided diagnosticmethods andmachine learning(ML)for laboratory image analysis,hopefully overcoming the limitations of late leukemia detection and determining its subgroups.This study establishes a Marine Predators Algorithm with Deep Learning Leukemia Cancer Classification(MPADL-LCC)algorithm onMedical Images.The projectedMPADL-LCC system uses a bilateral filtering(BF)technique to pre-process medical images.The MPADL-LCC system uses Faster SqueezeNet withMarine Predators Algorithm(MPA)as a hyperparameter optimizer for feature extraction.Lastly,the denoising autoencoder(DAE)methodology can be executed to accurately detect and classify leukemia cancer.The hyperparameter tuning process using MPA helps enhance leukemia cancer classification performance.Simulation results are compared with other recent approaches concerning various measurements and the MPADL-LCC algorithm exhibits the best results over other recent approaches.展开更多
In clinical practice,the microscopic examination of urine sediment is considered an important in vitro examination with many broad applications.Measuring the amount of each type of urine sediment allows for screening,...In clinical practice,the microscopic examination of urine sediment is considered an important in vitro examination with many broad applications.Measuring the amount of each type of urine sediment allows for screening,diagnosis and evaluation of kidney and urinary tract disease,providing insight into the specific type and severity.However,manual urine sediment examination is labor-intensive,time-consuming,and subjective.Traditional machine learning based object detection methods require hand-crafted features for localization and classification,which have poor generalization capabilities and are difficult to quickly and accurately detect the number of urine sediments.Deep learning based object detection methods have the potential to address the challenges mentioned above,but these methods require access to large urine sediment image datasets.Unfortunately,only a limited number of publicly available urine sediment datasets are currently available.To alleviate the lack of urine sediment datasets in medical image analysis,we propose a new dataset named UriSed2K,which contains 2465 high-quality images annotated with expert guidance.Two main challenges are associated with our dataset:a large number of small objects and the occlusion between these small objects.Our manuscript focuses on applying deep learning object detection methods to the urine sediment dataset and addressing the challenges presented by this dataset.Specifically,our goal is to improve the accuracy and efficiency of the detection algorithm and,in doing so,provide medical professionals with an automatic detector that saves time and effort.We propose an improved lightweight one-stage object detection algorithm called Discriminatory-YOLO.The proposed algorithm comprises a local context attention module and a global background suppression module,which aid the detector in distinguishing urine sediment features in the image.The local context attention module captures context information beyond the object region,while the global background suppression module emphasizes objects in uninformative backgrounds.We comprehensively evaluate our method on the UriSed2K dataset,which includes seven categories of urine sediments,such as erythrocytes(red blood cells),leukocytes(white blood cells),epithelial cells,crystals,mycetes,broken erythrocytes,and broken leukocytes,achieving the best average precision(AP)of 95.3%while taking only 10 ms per image.The source code and dataset are available at https://github.com/binghuiwu98/discriminatoryyolov5.展开更多
Automatic segmentation of medical images provides a reliable scientific basis for disease diagnosis and analysis.Notably,most existing methods that combine the strengths of convolutional neural networks(CNNs)and Trans...Automatic segmentation of medical images provides a reliable scientific basis for disease diagnosis and analysis.Notably,most existing methods that combine the strengths of convolutional neural networks(CNNs)and Transformers have made significant progress.However,there are some limitations in the current integration of CNN and Transformer technology in two key aspects.Firstly,most methods either overlook or fail to fully incorporate the complementary nature between local and global features.Secondly,the significance of integrating the multiscale encoder features from the dual-branch network to enhance the decoding features is often disregarded in methods that combine CNN and Transformer.To address this issue,we present a groundbreaking dual-branch cross-attention fusion network(DCFNet),which efficiently combines the power of Swin Transformer and CNN to generate complementary global and local features.We then designed the Feature Cross-Fusion(FCF)module to efficiently fuse local and global features.In the FCF,the utilization of the Channel-wise Cross-fusion Transformer(CCT)serves the purpose of aggregatingmulti-scale features,and the Feature FusionModule(FFM)is employed to effectively aggregate dual-branch prominent feature regions from the spatial perspective.Furthermore,within the decoding phase of the dual-branch network,our proposed Channel Attention Block(CAB)aims to emphasize the significance of the channel features between the up-sampled features and the features generated by the FCFmodule to enhance the details of the decoding.Experimental results demonstrate that DCFNet exhibits enhanced accuracy in segmentation performance.Compared to other state-of-the-art(SOTA)methods,our segmentation framework exhibits a superior level of competitiveness.DCFNet’s accurate segmentation of medical images can greatly assist medical professionals in making crucial diagnoses of lesion areas in advance.展开更多
Eye health has become a global health concern and attracted broad attention.Over the years,researchers have proposed many state-of-the-art convolutional neural networks(CNNs)to assist ophthalmologists in diagnosing oc...Eye health has become a global health concern and attracted broad attention.Over the years,researchers have proposed many state-of-the-art convolutional neural networks(CNNs)to assist ophthalmologists in diagnosing ocular diseases efficiently and precisely.However,most existing methods were dedicated to constructing sophisticated CNNs,inevitably ignoring the trade-off between performance and model complexity.To alleviate this paradox,this paper proposes a lightweight yet efficient network architecture,mixeddecomposed convolutional network(MDNet),to recognise ocular diseases.In MDNet,we introduce a novel mixed-decomposed depthwise convolution method,which takes advantage of depthwise convolution and depthwise dilated convolution operations to capture low-resolution and high-resolution patterns by using fewer computations and fewer parameters.We conduct extensive experiments on the clinical anterior segment optical coherence tomography(AS-OCT),LAG,University of California San Diego,and CIFAR-100 datasets.The results show our MDNet achieves a better trade-off between the performance and model complexity than efficient CNNs including MobileNets and MixNets.Specifically,our MDNet outperforms MobileNets by 2.5%of accuracy by using 22%fewer parameters and 30%fewer computations on the AS-OCT dataset.展开更多
文摘Introduction: Medical imaging is a medical specialty that involves producing images of the human body and interpreting them for diagnostic, therapeutic purposes, and for monitoring the progress of pathologies. We aimed to assess the theoretical knowledge of doctors and interns in medical imaging in the northern region of Burkina Faso. Methodology: This was a descriptive cross-sectional survey based on a self-administered questionnaire. Prescribers knowledge was estimated based on scores derived from questionnaire responses. Results: We collected 106 questionnaires out of 163, i.e. a participation rate of 65.03%. The average knowledge score was 81.71% for the contribution of medical imaging to patient management. It was 60.02% for the indications/counter-indications of radiological examinations and 72.56% for the risks associated with exposure to radiation during these examinations. The score was 59.83% for the methods used to select the appropriate radiological examination. As regards the completeness of the clinical and biological information on the forms requesting imaging examinations, the score was 96.65%. Specialist doctors had the highest overall level of knowledge (74.68%). Conclusion: Improved technical facilities, good initial and in-service training, and interdisciplinary collaboration will help to ensure that imaging tests are properly prescribed, leading to better patient care.
基金supported by the Information Technology Industry Development Agency (ITIDA),Egypt (Project No.CFP181).
文摘Image segmentation is crucial for various research areas. Manycomputer vision applications depend on segmenting images to understandthe scene, such as autonomous driving, surveillance systems, robotics, andmedical imaging. With the recent advances in deep learning (DL) and itsconfounding results in image segmentation, more attention has been drawnto its use in medical image segmentation. This article introduces a surveyof the state-of-the-art deep convolution neural network (CNN) models andmechanisms utilized in image segmentation. First, segmentation models arecategorized based on their model architecture and primary working principle.Then, CNN categories are described, and various models are discussed withineach category. Compared with other existing surveys, several applicationswith multiple architectural adaptations are discussed within each category.A comparative summary is included to give the reader insights into utilizedarchitectures in different applications and datasets. This study focuses onmedical image segmentation applications, where the most widely used architecturesare illustrated, and other promising models are suggested that haveproven their success in different domains. Finally, the present work discussescurrent limitations and solutions along with future trends in the field.
基金Supported by National Natural Science Foundation of China(62102036).
文摘Gland cancer is a high-incidence disease that endangers human health,and its early detection and treatment require efficient,accurate,and objective intelligent diagnosis methods.In recent years,the advent of machine learning techniques has yielded satisfactory results in intelligent gland cancer diagnosis based on clinical images,significantly improving the accuracy and efficiency of medical image interpretation while reducing the workload of doctors.The focus of this study is to review,classify,and analyze intelligent diagnosis methods for imaging gland cancer based on machine learning and deep learning.This paper briefly introduces some basic imaging principles of multimodal medical images,such as the commonly used computed tomography(CT),magnetic resonance imaging(MRI),ultrasound(US),positron emission tomography(PET),and pathology.In addition,the intelligent diagnosis methods for imaging gland cancer were further classified into supervised learning and weakly supervised learning.Supervised learning consists of traditional machine learning methods,such as K-nearest neighbor algorithm(KNN),support vector machine(SVM),and multilayer perceptron,and deep learning methods evolving from convolutional neural network(CNN).By contrast,weakly supervised learning can be further categorized into active learning,semisupervised learning,and transfer learning.State-of-the-art methods are illustrated with implementation details,including image segmentation,feature extraction,and optimization of classifiers.Their performances are evaluated through indicators,such as accuracy,precision,and sensitivity.In conclusion,the challenges and development trends of intelligent diagnosis methods for imaging gland cancer were addressed and discussed.
基金US National Institutes of Health,Nos.R01EB026646,R01CA233888,R01CA237267,R01HL151561,R21CA264772,and R01EB031102.
文摘Over recent years,the importance of the patent literature has become increasingly more recognized in the aca-demic setting.In the context of artificial intelligence,deep learning,and data sciences,patents are relevant to not only industry but also academe and other communities.In this article,we focus on deep tomographic imaging and perform a preliminary landscape analysis of the related patent literature.Our search tool is PatSeer.Our patent biblio-metric data is summarized in various figures and tables.In particular,we qualitatively analyze key deep tomographic patent literature.
文摘The earliest and most accurate detection of the pathological manifestations of hepatic diseases ensures effective treatments and thus positive prognostic outcomes.In clinical settings,screening and determining the extent of a pathology are prominent factors in preparing remedial agents and administering approp-riate therapeutic procedures.Moreover,in a patient undergoing liver resection,a realistic preoperative simulation of the subject-specific anatomy and physiology also plays a vital part in conducting initial assessments,making surgical decisions during the procedure,and anticipating postoperative results.Conventionally,various medical imaging modalities,e.g.,computed tomography,magnetic resonance imaging,and positron emission tomography,have been employed to assist in these tasks.In fact,several standardized procedures,such as lesion detection and liver segmentation,are also incorporated into prominent commercial software packages.Thus far,most integrated software as a medical device typically involves tedious interactions from the physician,such as manual delineation and empirical adjustments,as per a given patient.With the rapid progress in digital health approaches,especially medical image analysis,a wide range of computer algorithms have been proposed to facilitate those procedures.They include pattern recognition of a liver,its periphery,and lesion,as well as pre-and postoperative simulations.Prior to clinical adoption,however,software must conform to regulatory requirements set by the governing agency,for instance,valid clinical association and analytical and clinical validation.Therefore,this paper provides a detailed account and discussion of the state-of-the-art methods for liver image analyses,visualization,and simulation in the literature.Emphasis is placed upon their concepts,algorithmic classifications,merits,limitations,clinical considerations,and future research trends.
文摘In the process of continuous maturity and development of medical imaging diagnosis,it is common to transmit images through public networks.How to ensure the security of transmission,cultivate talents who combine medical imaging and information security,and explore and cultivate new discipline growth points are difficult problems and challenges for schools and educators.In order to cope with industrial changes,a new round of scientific and technological revolution,and the challenges of the further development of artificial intelligence in medicine,this article will analyze the existing problems in the training of postgraduates in medical imaging information security by combining the actual conditions and characteristics of universities,and put forward countermeasures and suggestions to promote the progress of technology in universities.
基金This work was supported by Xinjiang Medical University Education and Teaching Research Project“Virtual Simulation Technology Combined with PACS System in Medical Imaging Practice”(Project no.YG2021044).
文摘Objective:To explore the application effect of virtual simulation teaching platform in the practical teaching of medical imaging.Methods:A total of 97 students majoring in medical imaging technology of class 2022 were selected and divided into two groups according to the random number method:control group(n=48)and observation group(n=49).The observation group was under the practical teaching mode based on the virtual simulation teaching platform,while the control group was under the traditional multimedia teaching mode.Questionnaire survey and teaching assessment were carried out after the teaching period,and the application effects of the two teaching modes were compared.Results:The reading and theoretical scores of the students in the observation group were significantly higher than those of the students in the control group(P<0.01);there were statistically significant differences in the results of the questionnaire survey(improved learning interest,improved language expression,improved ability to comprehensively analyze problems,and improved teamwork awareness)between the two groups of students(P<0.05);the students in the observation group were markedly more satisfied with the teaching content,teaching methods,and teaching quality than the students in the control group(P<0.05).Conclusion:The medical imaging practical teaching mode based on virtual simulation platform not only helps improve students’theoretical understanding and practical ability in medical imaging technology,but also improves students’learning interest,language expression ability,ability to comprehensively analyze problems,communication skills,teamwork awareness,and satisfaction with the teaching content,teaching methods,and teaching quality.Therefore,it has wide application value in medical specialty education.
基金supported by Xinjiang Medical University Education and Teaching Research Project“Virtual Simulation Technology Combined with PACS System in Medical Imaging Practice”(Project No.YG2021044).
文摘Objective:To explore the application effect of virtual simulation experiment combined with picture archiving and communication system(PACS)in medical imaging practical teaching.Methods:97 students from the medical imaging class of 2022 were divided into two groups;the control group(n=48)was taught by the traditional teaching method,whereas the research group was taught by virtual simulation experiment combined with PACS(n=49).The teaching achievements and teaching effects of the two groups were compared to define the advantages of the two teaching modes.Results:Initially,there were no significant differences in the basic theory,image analysis,report writing,and differential diagnosis scores between the two groups of students(P>0.05);however,after 16 weeks of teaching,the scores of the research group were better than those of the control group(P<0.05);the pass rate of students in the study group(93.88%)was higher than that in the control group(81.25%);the scores of students in the research group in terms of clinical inquiry skills,X-ray/computed tomography/magnetic resonance imaging(X-ray/CT/MRI)operation skills,and doctor-patient communication skills were significantly higher than those in the control group(P<0.05).Conclusion:In medical imaging practical teaching,the application of virtual simulation experiment combined with PACS can effectively address several problems in the traditional teaching mode,including the single teaching method,the single teaching content,and the lack of innovation,and,at the same time,improve students’basic theoretical knowledge,X-ray/CT/MRI operation skills,consultation skills,and doctor-patient communication skills,thereby effectively improving the teaching quality and learning effect.
基金National Natural Science Foundation of China,Grant/Award Numbers:62001141,62272319Science,Technology and Innovation Commission of Shenzhen Municipality,Grant/Award Numbers:GJHZ20210705141812038,JCYJ20210324094413037,JCYJ20210324131800002,RCBS20210609103820029Stable Support Projects for Shenzhen Higher Education Institutions,Grant/Award Number:20220715183602001。
文摘Diabetic retinopathy(DR),the main cause of irreversible blindness,is one of the most common complications of diabetes.At present,deep convolutional neural networks have achieved promising performance in automatic DR detection tasks.The convolution operation of methods is a local cross-correlation operation,whose receptive field de-termines the size of the local neighbourhood for processing.However,for retinal fundus photographs,there is not only the local information but also long-distance dependence between the lesion features(e.g.hemorrhages and exudates)scattered throughout the whole image.The proposed method incorporates correlations between long-range patches into the deep learning framework to improve DR detection.Patch-wise re-lationships are used to enhance the local patch features since lesions of DR usually appear as plaques.The Long-Range unit in the proposed network with a residual structure can be flexibly embedded into other trained networks.Extensive experimental results demon-strate that the proposed approach can achieve higher accuracy than existing state-of-the-art models on Messidor and EyePACS datasets.
基金This research was funded by the National Natural Science Foundation of China(Nos.71762010,62262019,62162025,61966013,12162012)the Hainan Provincial Natural Science Foundation of China(Nos.823RC488,623RC481,620RC603,621QN241,620RC602,121RC536)+1 种基金the Haikou Science and Technology Plan Project of China(No.2022-016)the Project supported by the Education Department of Hainan Province,No.Hnky2021-23.
文摘Artificial Intelligence(AI)is being increasingly used for diagnosing Vision-Threatening Diabetic Retinopathy(VTDR),which is a leading cause of visual impairment and blindness worldwide.However,previous automated VTDR detection methods have mainly relied on manual feature extraction and classification,leading to errors.This paper proposes a novel VTDR detection and classification model that combines different models through majority voting.Our proposed methodology involves preprocessing,data augmentation,feature extraction,and classification stages.We use a hybrid convolutional neural network-singular value decomposition(CNN-SVD)model for feature extraction and selection and an improved SVM-RBF with a Decision Tree(DT)and K-Nearest Neighbor(KNN)for classification.We tested our model on the IDRiD dataset and achieved an accuracy of 98.06%,a sensitivity of 83.67%,and a specificity of 100%for DR detection and evaluation tests,respectively.Our proposed approach outperforms baseline techniques and provides a more robust and accurate method for VTDR detection.
基金National Natural Science Foundation of China,Grant/Award Numbers:62063004,62350410483Key Research and Development Project of Hainan Province,Grant/Award Number:ZDYF2021SHFZ093Zhejiang Provincial Postdoctoral Science Foundation,Grant/Award Number:ZJ2021028。
文摘In the intricate network environment,the secure transmission of medical images faces challenges such as information leakage and malicious tampering,significantly impacting the accuracy of disease diagnoses by medical professionals.To address this problem,the authors propose a robust feature watermarking algorithm for encrypted medical images based on multi-stage discrete wavelet transform(DWT),Daisy descriptor,and discrete cosine transform(DCT).The algorithm initially encrypts the original medical image through DWT-DCT and Logistic mapping.Subsequently,a 3-stage DWT transformation is applied to the encrypted medical image,with the centre point of the LL3 sub-band within its low-frequency component serving as the sampling point.The Daisy descriptor matrix for this point is then computed.Finally,a DCT transformation is performed on the Daisy descriptor matrix,and the low-frequency portion is processed using the perceptual hashing algorithm to generate a 32-bit binary feature vector for the medical image.This scheme utilises cryptographic knowledge and zero-watermarking technique to embed watermarks without modifying medical images and can extract the watermark from test images without the original image,which meets the basic re-quirements of medical image watermarking.The embedding and extraction of water-marks are accomplished in a mere 0.160 and 0.411s,respectively,with minimal computational overhead.Simulation results demonstrate the robustness of the algorithm against both conventional attacks and geometric attacks,with a notable performance in resisting rotation attacks.
文摘This article proposes a novel fractional heterogeneous neural network by coupling a Rulkov neuron with a Hopfield neural network(FRHNN),utilizing memristors for emulating neural synapses.The study firstly demonstrates the coexistence of multiple firing patterns through phase diagrams,Lyapunov exponents(LEs),and bifurcation diagrams.Secondly,the parameter related firing behaviors are described through two-parameter bifurcation diagrams.Subsequently,local attraction basins reveal multi-stability phenomena related to initial values.Moreover,the proposed model is implemented on a microcomputer-based ARM platform,and the experimental results correspond to the numerical simulations.Finally,the article explores the application of digital watermarking for medical images,illustrating its features of excellent imperceptibility,extensive key space,and robustness against attacks including noise and cropping.
基金supported by MRC,UK (MC_PC_17171)Royal Society,UK (RP202G0230)+8 种基金BHF,UK (AA/18/3/34220)Hope Foundation for Cancer Research,UK (RM60G0680)GCRF,UK (P202PF11)Sino-UK Industrial Fund,UK (RP202G0289)LIAS,UK (P202ED10,P202RE969)Data Science Enhancement Fund,UK (P202RE237)Fight for Sight,UK (24NN201)Sino-UK Education Fund,UK (OP202006)BBSRC,UK (RM32G0178B8).
文摘Aim:This study aims to establish an artificial intelligence model,ThyroidNet,to diagnose thyroid nodules using deep learning techniques accurately.Methods:A novel method,ThyroidNet,is introduced and evaluated based on deep learning for the localization and classification of thyroid nodules.First,we propose the multitask TransUnet,which combines the TransUnet encoder and decoder with multitask learning.Second,we propose the DualLoss function,tailored to the thyroid nodule localization and classification tasks.It balances the learning of the localization and classification tasks to help improve the model’s generalization ability.Third,we introduce strategies for augmenting the data.Finally,we submit a novel deep learning model,ThyroidNet,to accurately detect thyroid nodules.Results:ThyroidNet was evaluated on private datasets and was comparable to other existing methods,including U-Net and TransUnet.Experimental results show that ThyroidNet outperformed these methods in localizing and classifying thyroid nodules.It achieved improved accuracy of 3.9%and 1.5%,respectively.Conclusion:ThyroidNet significantly improves the clinical diagnosis of thyroid nodules and supports medical image analysis tasks.Future research directions include optimization of the model structure,expansion of the dataset size,reduction of computational complexity and memory requirements,and exploration of additional applications of ThyroidNet in medical image analysis.
基金This work was supported by Science and Technology Cooperation Special Project of Shijiazhuang(SJZZXA23005).
文摘In minimally invasive surgery,endoscopes or laparoscopes equipped with miniature cameras and tools are used to enter the human body for therapeutic purposes through small incisions or natural cavities.However,in clinical operating environments,endoscopic images often suffer from challenges such as low texture,uneven illumination,and non-rigid structures,which affect feature observation and extraction.This can severely impact surgical navigation or clinical diagnosis due to missing feature points in endoscopic images,leading to treatment and postoperative recovery issues for patients.To address these challenges,this paper introduces,for the first time,a Cross-Channel Multi-Modal Adaptive Spatial Feature Fusion(ASFF)module based on the lightweight architecture of EfficientViT.Additionally,a novel lightweight feature extraction and matching network based on attention mechanism is proposed.This network dynamically adjusts attention weights for cross-modal information from grayscale images and optical flow images through a dual-branch Siamese network.It extracts static and dynamic information features ranging from low-level to high-level,and from local to global,ensuring robust feature extraction across different widths,noise levels,and blur scenarios.Global and local matching are performed through a multi-level cascaded attention mechanism,with cross-channel attention introduced to simultaneously extract low-level and high-level features.Extensive ablation experiments and comparative studies are conducted on the HyperKvasir,EAD,M2caiSeg,CVC-ClinicDB,and UCL synthetic datasets.Experimental results demonstrate that the proposed network improves upon the baseline EfficientViT-B3 model by 75.4%in accuracy(Acc),while also enhancing runtime performance and storage efficiency.When compared with the complex DenseDescriptor feature extraction network,the difference in Acc is less than 7.22%,and IoU calculation results on specific datasets outperform complex dense models.Furthermore,this method increases the F1 score by 33.2%and accelerates runtime by 70.2%.It is noteworthy that the speed of CMMCAN surpasses that of comparative lightweight models,with feature extraction and matching performance comparable to existing complex models but with faster speed and higher cost-effectiveness.
基金National Natural Science Foundation of China(Grant Nos.62171130,62172197,61972093)the Natural Science Foundation of Fujian Province(Grant Nos.2020J01573,2022J01131257,2022J01607)+3 种基金Fujian University Industry University Research Joint Innovation Project(No.2022H6006)in part by the Fund of Cloud Computing and BigData for SmartAgriculture(GrantNo.117-612014063)NationalNatural Science Foundation of China(Grant No.62301160)Nature Science Foundation of Fujian Province(Grant No.2022J01607).
文摘Many deep learning-based registration methods rely on a single-stream encoder-decoder network for computing deformation fields between 3D volumes.However,these methods often lack constraint information and overlook semantic consistency,limiting their performance.To address these issues,we present a novel approach for medical image registration called theDual-VoxelMorph,featuring a dual-channel cross-constraint network.This innovative network utilizes both intensity and segmentation images,which share identical semantic information and feature representations.Two encoder-decoder structures calculate deformation fields for intensity and segmentation images,as generated by the dual-channel cross-constraint network.This design facilitates bidirectional communication between grayscale and segmentation information,enabling the model to better learn the corresponding grayscale and segmentation details of the same anatomical structures.To ensure semantic and directional consistency,we introduce constraints and apply the cosine similarity function to enhance semantic consistency.Evaluation on four public datasets demonstrates superior performance compared to the baselinemethod,achieving Dice scores of 79.9%,64.5%,69.9%,and 63.5%for OASIS-1,OASIS-3,LPBA40,and ADNI,respectively.
文摘With the rapid advancement in artificial intelligence(AI)and its application in the Internet of Things(IoT),intelligent technologies are being introduced in the medical field,giving rise to smart healthcare systems.The medical imaging data contains sensitive information,which can easily be stolen or tampered with,necessitating secure encryption schemes designed specifically to protect these images.This paper introduces an artificial intelligence-driven novel encryption scheme tailored for the secure transmission and storage of high-resolution medical images.The proposed scheme utilizes an artificial intelligence-based autoencoder to compress highresolution medical images and to facilitate fast encryption and decryption.The proposed autoencoder retains important diagnostic information even after reducing the image dimensions.The low-resolution images then undergo a four-stage encryption process.The first two encryption stages involve permutation and the next two stages involve confusion.The first two stages ensure the disruption of the structure of the image,making it secure against statistical attacks.Whereas the two stages of confusion ensure the effective concealment of the pixel values making it difficult to decrypt without secret keys.This encrypted image is then safe for storage or transmission.The proposed scheme has been extensively evaluated against various attacks and statistical security parameters confirming its effectiveness in securing medical image data.
基金funded by Researchers Supporting Program at King Saud University,(RSPD2024R809).
文摘In blood or bone marrow,leukemia is a form of cancer.A person with leukemia has an expansion of white blood cells(WBCs).It primarily affects children and rarely affects adults.Treatment depends on the type of leukemia and the extent to which cancer has established throughout the body.Identifying leukemia in the initial stage is vital to providing timely patient care.Medical image-analysis-related approaches grant safer,quicker,and less costly solutions while ignoring the difficulties of these invasive processes.It can be simple to generalize Computer vision(CV)-based and image-processing techniques and eradicate human error.Many researchers have implemented computer-aided diagnosticmethods andmachine learning(ML)for laboratory image analysis,hopefully overcoming the limitations of late leukemia detection and determining its subgroups.This study establishes a Marine Predators Algorithm with Deep Learning Leukemia Cancer Classification(MPADL-LCC)algorithm onMedical Images.The projectedMPADL-LCC system uses a bilateral filtering(BF)technique to pre-process medical images.The MPADL-LCC system uses Faster SqueezeNet withMarine Predators Algorithm(MPA)as a hyperparameter optimizer for feature extraction.Lastly,the denoising autoencoder(DAE)methodology can be executed to accurately detect and classify leukemia cancer.The hyperparameter tuning process using MPA helps enhance leukemia cancer classification performance.Simulation results are compared with other recent approaches concerning various measurements and the MPADL-LCC algorithm exhibits the best results over other recent approaches.
基金This work was partially supported by the National Natural Science Foundation of China(Grant Nos.61906168,U20A20171)Zhejiang Provincial Natural Science Foundation of China(Grant Nos.LY23F020023,LY21F020027)Construction of Hubei Provincial Key Laboratory for Intelligent Visual Monitoring of Hydropower Projects(Grant Nos.2022SDSJ01).
文摘In clinical practice,the microscopic examination of urine sediment is considered an important in vitro examination with many broad applications.Measuring the amount of each type of urine sediment allows for screening,diagnosis and evaluation of kidney and urinary tract disease,providing insight into the specific type and severity.However,manual urine sediment examination is labor-intensive,time-consuming,and subjective.Traditional machine learning based object detection methods require hand-crafted features for localization and classification,which have poor generalization capabilities and are difficult to quickly and accurately detect the number of urine sediments.Deep learning based object detection methods have the potential to address the challenges mentioned above,but these methods require access to large urine sediment image datasets.Unfortunately,only a limited number of publicly available urine sediment datasets are currently available.To alleviate the lack of urine sediment datasets in medical image analysis,we propose a new dataset named UriSed2K,which contains 2465 high-quality images annotated with expert guidance.Two main challenges are associated with our dataset:a large number of small objects and the occlusion between these small objects.Our manuscript focuses on applying deep learning object detection methods to the urine sediment dataset and addressing the challenges presented by this dataset.Specifically,our goal is to improve the accuracy and efficiency of the detection algorithm and,in doing so,provide medical professionals with an automatic detector that saves time and effort.We propose an improved lightweight one-stage object detection algorithm called Discriminatory-YOLO.The proposed algorithm comprises a local context attention module and a global background suppression module,which aid the detector in distinguishing urine sediment features in the image.The local context attention module captures context information beyond the object region,while the global background suppression module emphasizes objects in uninformative backgrounds.We comprehensively evaluate our method on the UriSed2K dataset,which includes seven categories of urine sediments,such as erythrocytes(red blood cells),leukocytes(white blood cells),epithelial cells,crystals,mycetes,broken erythrocytes,and broken leukocytes,achieving the best average precision(AP)of 95.3%while taking only 10 ms per image.The source code and dataset are available at https://github.com/binghuiwu98/discriminatoryyolov5.
基金supported by the National Key R&D Program of China(2018AAA0102100)the National Natural Science Foundation of China(No.62376287)+3 种基金the International Science and Technology Innovation Joint Base of Machine Vision and Medical Image Processing in Hunan Province(2021CB1013)the Key Research and Development Program of Hunan Province(2022SK2054)the Natural Science Foundation of Hunan Province(No.2022JJ30762,2023JJ70016)the 111 Project under Grant(No.B18059).
文摘Automatic segmentation of medical images provides a reliable scientific basis for disease diagnosis and analysis.Notably,most existing methods that combine the strengths of convolutional neural networks(CNNs)and Transformers have made significant progress.However,there are some limitations in the current integration of CNN and Transformer technology in two key aspects.Firstly,most methods either overlook or fail to fully incorporate the complementary nature between local and global features.Secondly,the significance of integrating the multiscale encoder features from the dual-branch network to enhance the decoding features is often disregarded in methods that combine CNN and Transformer.To address this issue,we present a groundbreaking dual-branch cross-attention fusion network(DCFNet),which efficiently combines the power of Swin Transformer and CNN to generate complementary global and local features.We then designed the Feature Cross-Fusion(FCF)module to efficiently fuse local and global features.In the FCF,the utilization of the Channel-wise Cross-fusion Transformer(CCT)serves the purpose of aggregatingmulti-scale features,and the Feature FusionModule(FFM)is employed to effectively aggregate dual-branch prominent feature regions from the spatial perspective.Furthermore,within the decoding phase of the dual-branch network,our proposed Channel Attention Block(CAB)aims to emphasize the significance of the channel features between the up-sampled features and the features generated by the FCFmodule to enhance the details of the decoding.Experimental results demonstrate that DCFNet exhibits enhanced accuracy in segmentation performance.Compared to other state-of-the-art(SOTA)methods,our segmentation framework exhibits a superior level of competitiveness.DCFNet’s accurate segmentation of medical images can greatly assist medical professionals in making crucial diagnoses of lesion areas in advance.
基金Stable Support Plan Program,Grant/Award Number:20200925174052004Shenzhen Natural Science Fund,Grant/Award Number:JCYJ20200109140820699+2 种基金National Natural Science Foundation of China,Grant/Award Number:82272086Guangdong Provincial Department of Education,Grant/Award Numbers:2020ZDZX3043,SJZLGC202202Guangdong Provincial Key Laboratory,Grant/Award Number:2020B121201001。
文摘Eye health has become a global health concern and attracted broad attention.Over the years,researchers have proposed many state-of-the-art convolutional neural networks(CNNs)to assist ophthalmologists in diagnosing ocular diseases efficiently and precisely.However,most existing methods were dedicated to constructing sophisticated CNNs,inevitably ignoring the trade-off between performance and model complexity.To alleviate this paradox,this paper proposes a lightweight yet efficient network architecture,mixeddecomposed convolutional network(MDNet),to recognise ocular diseases.In MDNet,we introduce a novel mixed-decomposed depthwise convolution method,which takes advantage of depthwise convolution and depthwise dilated convolution operations to capture low-resolution and high-resolution patterns by using fewer computations and fewer parameters.We conduct extensive experiments on the clinical anterior segment optical coherence tomography(AS-OCT),LAG,University of California San Diego,and CIFAR-100 datasets.The results show our MDNet achieves a better trade-off between the performance and model complexity than efficient CNNs including MobileNets and MixNets.Specifically,our MDNet outperforms MobileNets by 2.5%of accuracy by using 22%fewer parameters and 30%fewer computations on the AS-OCT dataset.