Objective To study the effect of using improved 2D computer-assisted fluoroscopic navigation through simulating 3D vertebrae image to guide pedicle screw internal fixation.Methods Posterior pedicle screw internal fixa...Objective To study the effect of using improved 2D computer-assisted fluoroscopic navigation through simulating 3D vertebrae image to guide pedicle screw internal fixation.Methods Posterior pedicle screw internal fixation,distraction展开更多
This research aims to define an efficient and fast quantification of bitumen removal on the road surface by Digital Imaging Processing (DIP) and spectral analysis. The retrieval of bitumen removal is an important issu...This research aims to define an efficient and fast quantification of bitumen removal on the road surface by Digital Imaging Processing (DIP) and spectral analysis. The retrieval of bitumen removal is an important issue for road management and environmental studies related to asphalt wear and environmental pollution. The calculation of the Exposed Aggregate Index (EAI), based on DIP, allows to quantify in each frame the superficial removal of bitumen and the exposure of aggregates. A procedure, based on non-parametric classification process of digital images, gives a fast response of EAI. A correlation among EAI and spectral data, between 390 nm and 900 nm range, is evaluated. Results show a good correlation between spectral data at different wavelength and EAI. Finally, this work evaluates the possibility to retrieve asphalt bitumen removal through remote sensed imagery.展开更多
This study reviews the recent advances in data-driven polarimetric imaging technologies based on a wide range of practical applications.The widespread international research and activity in polarimetric imaging techni...This study reviews the recent advances in data-driven polarimetric imaging technologies based on a wide range of practical applications.The widespread international research and activity in polarimetric imaging techniques demonstrate their broad applications and interest.Polarization information is increasingly incorporated into convolutional neural networks(CNN)as a supplemental feature of objects to improve performance in computer vision task applications.Polarimetric imaging and deep learning can extract abundant information to address various challenges.Therefore,this article briefly reviews recent developments in data-driven polarimetric imaging,including polarimetric descattering,3D imaging,reflection removal,target detection,and biomedical imaging.Furthermore,we synthetically analyze the input,datasets,and loss functions and list the existing datasets and loss functions with an evaluation of their advantages and disadvantages.We also highlight the significance of data-driven polarimetric imaging in future research and development.展开更多
Optical telescopes are an important tool for acquiring optical information about distant objects,and resolution is an important indicator that measures the ability to observe object details.However,due to the effects ...Optical telescopes are an important tool for acquiring optical information about distant objects,and resolution is an important indicator that measures the ability to observe object details.However,due to the effects of system aberration,atmospheric seeing,and other factors,the observed image of ground-based telescopes is often degraded,resulting in reduced resolution.This paper proposes an optical-neural network joint optimization method to improve the resolution of the observed image by co-optimizing the point-spread function(PSF)of the telescopic system and the image super-resolution(SR)network.To improve the speed of image reconstruction,we designed a generative adversarial net(LCR-GAN)with light parameters,which is much faster than the latest unsupervised networks.To reconstruct the PSF trained by the network in the optical path,a phase mask is introduced.It improves the image reconstruction effect of LCR-GAN by reconstructing the PSF that best matches the network.The results of simulation and verification experiments show that compared with the pure deep learning method,the SR image reconstructed by this method is rich in detail and it is easier to distinguish stars or stripes.展开更多
Oscillation detection has been a hot research topic in industries due to the high incidence of oscillation loops and their negative impact on plant profitability.Although numerous automatic detection techniques have b...Oscillation detection has been a hot research topic in industries due to the high incidence of oscillation loops and their negative impact on plant profitability.Although numerous automatic detection techniques have been proposed,most of them can only address part of the practical difficulties.An oscillation is heuristically defined as a visually apparent periodic variation.However,manual visual inspection is labor-intensive and prone to missed detection.Convolutional neural networks(CNNs),inspired by animal visual systems,have been raised with powerful feature extraction capabilities.In this work,an exploration of the typical CNN models for visual oscillation detection is performed.Specifically,we tested MobileNet-V1,ShuffleNet-V2,Efficient Net-B0,and GhostNet models,and found that such a visual framework is well-suited for oscillation detection.The feasibility and validity of this framework are verified utilizing extensive numerical and industrial cases.Compared with state-of-theart oscillation detectors,the suggested framework is more straightforward and more robust to noise and mean-nonstationarity.In addition,this framework generalizes well and is capable of handling features that are not present in the training data,such as multiple oscillations and outliers.展开更多
In today’s world,image processing techniques play a crucial role in the prognosis and diagnosis of various diseases due to the development of several precise and accurate methods for medical images.Automated analysis...In today’s world,image processing techniques play a crucial role in the prognosis and diagnosis of various diseases due to the development of several precise and accurate methods for medical images.Automated analysis of medical images is essential for doctors,as manual investigation often leads to inter-observer variability.This research aims to enhance healthcare by enabling the early detection of diabetic retinopathy through an efficient image processing framework.The proposed hybridized method combines Modified Inertia Weight Particle Swarm Optimization(MIWPSO)and Fuzzy C-Means clustering(FCM)algorithms.Traditional FCM does not incorporate spatial neighborhood features,making it highly sensitive to noise,which significantly affects segmentation output.Our method incorporates a modified FCM that includes spatial functions in the fuzzy membership matrix to eliminate noise.The results demonstrate that the proposed FCM-MIWPSO method achieves highly precise and accurate medical image segmentation.Furthermore,segmented images are classified as benign or malignant using the Decision Tree-Based Temporal Association Rule(DT-TAR)Algorithm.Comparative analysis with existing state-of-the-art models indicates that the proposed FCM-MIWPSO segmentation technique achieves a remarkable accuracy of 98.42%on the dataset,highlighting its significant impact on improving diagnostic capabilities in medical imaging.展开更多
As deep learning techniques are increasingly applied with greater depth and sophistication in the food industry,the realm of food image processing has progressively emerged as a central focus of research interest.This...As deep learning techniques are increasingly applied with greater depth and sophistication in the food industry,the realm of food image processing has progressively emerged as a central focus of research interest.This work provides an overview of key practices in food image processing techniques,detailing common processing tasks including classification,recognition,detection,segmentation,and image retrieval,as well as outlining metrics for evaluating task performance and thoroughly examining existing food image datasets,along with specialized food-related datasets.In terms of methodology,this work offers insight into the evolution of food image processing,tracing its development from traditional methods extracting low and intermediate-level features to advanced deep learning techniques for high-level feature extraction,along with some synergistic fusion of these approaches.It is believed that these methods will play a significant role in practical application scenarios such as self-checkout systems,dietary health management,intelligent food service,disease etiology tracing,chronic disease management,and food safety monitoring.However,due to the complex content and various types of distortions in food images,further improvements in related methods are needed to meet the requirements of practical applications in the future.It is believed that this study can help researchers to further understand the research in the field of food imaging and provide some contribution to the advancement of research in this field.展开更多
Attitude is one of the crucial parameters for space objects and plays a vital role in collision prediction and debris removal.Analyzing light curves to determine attitude is the most commonly used method.In photometri...Attitude is one of the crucial parameters for space objects and plays a vital role in collision prediction and debris removal.Analyzing light curves to determine attitude is the most commonly used method.In photometric observations,outliers may exist in the obtained light curves due to various reasons.Therefore,preprocessing is required to remove these outliers to obtain high quality light curves.Through statistical analysis,the reasons leading to outliers can be categorized into two main types:first,the brightness of the object significantly increases due to the passage of a star nearby,referred to as“stellar contamination,”and second,the brightness markedly decreases due to cloudy cover,referred to as“cloudy contamination.”The traditional approach of manually inspecting images for contamination is time-consuming and labor-intensive.However,we propose the utilization of machine learning methods as a substitute.Convolutional Neural Networks and SVMs are employed to identify cases of stellar contamination and cloudy contamination,achieving F1 scores of 1.00 and 0.98 on a test set,respectively.We also explore other machine learning methods such as ResNet-18 and Light Gradient Boosting Machine,then conduct comparative analyses of the results.展开更多
Aiming to solve the bottleneck problem of electromagnetic scattering simulation in the scenes of extremely large-scale seas and ships,a high-frequency method by using graphics processing unit(GPU)parallel acceleration...Aiming to solve the bottleneck problem of electromagnetic scattering simulation in the scenes of extremely large-scale seas and ships,a high-frequency method by using graphics processing unit(GPU)parallel acceleration technique is proposed.For the implementation of different electromagnetic methods of physical optics(PO),shooting and bouncing ray(SBR),and physical theory of diffraction(PTD),a parallel computing scheme based on the CPU-GPU parallel computing scheme is realized to balance computing tasks.Finally,a multi-GPU framework is further proposed to solve the computational difficulty caused by the massive number of ray tubes in the ray tracing process.By using the established simulation platform,signals of ships at different seas are simulated and their images are achieved as well.It is shown that the higher sea states degrade the averaged peak signal-to-noise ratio(PSNR)of radar image.展开更多
The mechanical properties and failure mechanism of lightweight aggregate concrete(LWAC)is a hot topic in the engineering field,and the relationship between its microstructure and macroscopic mechanical properties is a...The mechanical properties and failure mechanism of lightweight aggregate concrete(LWAC)is a hot topic in the engineering field,and the relationship between its microstructure and macroscopic mechanical properties is also a frontier research topic in the academic field.In this study,the image processing technology is used to establish a micro-structure model of lightweight aggregate concrete.Through the information extraction and processing of the section image of actual light aggregate concrete specimens,the mesostructural model of light aggregate concrete with real aggregate characteristics is established.The numerical simulation of uniaxial tensile test,uniaxial compression test and three-point bending test of lightweight aggregate concrete are carried out using a new finite element method-the base force element method respectively.Firstly,the image processing technology is used to produce beam specimens,uniaxial compression specimens and uniaxial tensile specimens of light aggregate concrete,which can better simulate the aggregate shape and random distribution of real light aggregate concrete.Secondly,the three-point bending test is numerically simulated.Thirdly,the uniaxial compression specimen generated by image processing technology is numerically simulated.Fourth,the uniaxial tensile specimen generated by image processing technology is numerically simulated.The mechanical behavior and damage mode of the specimen during loading were analyzed.The results of numerical simulation are compared and analyzed with those of relevant experiments.The feasibility and correctness of the micromodel established in this study for analyzing the micromechanics of lightweight aggregate concrete materials are verified.Image processing technology has a broad application prospect in the field of concrete mesoscopic damage analysis.展开更多
The rail surface status image is affected by the noise in the shooting environment and contains a large amount of interference information, which increases the difficulty of rail surface status identification. In orde...The rail surface status image is affected by the noise in the shooting environment and contains a large amount of interference information, which increases the difficulty of rail surface status identification. In order to solve this problem, a preprocessing method for the rail surface state image is proposed. The preprocessing process mainly includes image graying, image denoising, image geometric correction, image extraction, data amplification, and finally building the rail surface image database. The experimental results show that this method can efficiently complete image processing, facilitate feature extraction of rail surface status images, and improve rail surface status recognition accuracy.展开更多
Real-time capabilities and computational efficiency are provided by parallel image processing utilizing OpenMP. However, race conditions can affect the accuracy and reliability of the outcomes. This paper highlights t...Real-time capabilities and computational efficiency are provided by parallel image processing utilizing OpenMP. However, race conditions can affect the accuracy and reliability of the outcomes. This paper highlights the importance of addressing race conditions in parallel image processing, specifically focusing on color inverse filtering using OpenMP. We considered three solutions to solve race conditions, each with distinct characteristics: #pragma omp atomic: Protects individual memory operations for fine-grained control. #pragma omp critical: Protects entire code blocks for exclusive access. #pragma omp parallel sections reduction: Employs a reduction clause for safe aggregation of values across threads. Our findings show that the produced images were unaffected by race condition. However, it becomes evident that solving the race conditions in the code makes it significantly faster, especially when it is executed on multiple cores.展开更多
In recent years, the widespread adoption of parallel computing, especially in multi-core processors and high-performance computing environments, ushered in a new era of efficiency and speed. This trend was particularl...In recent years, the widespread adoption of parallel computing, especially in multi-core processors and high-performance computing environments, ushered in a new era of efficiency and speed. This trend was particularly noteworthy in the field of image processing, which witnessed significant advancements. This parallel computing project explored the field of parallel image processing, with a focus on the grayscale conversion of colorful images. Our approach involved integrating OpenMP into our framework for parallelization to execute a critical image processing task: grayscale conversion. By using OpenMP, we strategically enhanced the overall performance of the conversion process by distributing the workload across multiple threads. The primary objectives of our project revolved around optimizing computation time and improving overall efficiency, particularly in the task of grayscale conversion of colorful images. Utilizing OpenMP for concurrent processing across multiple cores significantly reduced execution times through the effective distribution of tasks among these cores. The speedup values for various image sizes highlighted the efficacy of parallel processing, especially for large images. However, a detailed examination revealed a potential decline in parallelization efficiency with an increasing number of cores. This underscored the importance of a carefully optimized parallelization strategy, considering factors like load balancing and minimizing communication overhead. Despite challenges, the overall scalability and efficiency achieved with parallel image processing underscored OpenMP’s effectiveness in accelerating image manipulation tasks.展开更多
This Letter gives the general construction of an enhanced self-heterodyne synthetic aperture imaging ladar(SAIL) system, and proposes the principle of image processing. A point target is reconstructed in the enhance...This Letter gives the general construction of an enhanced self-heterodyne synthetic aperture imaging ladar(SAIL) system, and proposes the principle of image processing. A point target is reconstructed in the enhanced self-heterodyne SAIL as well as in down-looking SAIL experiments, and the achieved imaging resolution of the enhanced self-heterodyne SAIL is analyzed. The signal-to-noise ratio(SNR) of the point target final image in the enhanced self-heterodyne SAIL is higher than that in the down-looking SAIL. The enhanced self-heterodyne SAIL can improve the SNR of the target image in far-distance imaging, with practicality.展开更多
This study investigated the correlations between mechanical properties and mineralogy of granite using the digital image processing(DIP) and discrete element method(DEM). The results showed that the X-ray diffraction(...This study investigated the correlations between mechanical properties and mineralogy of granite using the digital image processing(DIP) and discrete element method(DEM). The results showed that the X-ray diffraction(XRD)-based DIP method effectively analyzed the mineral composition contents and spatial distributions of granite. During the particle flow code(PFC2D) model calibration phase, the numerical simulation exhibited that the uniaxial compressive strength(UCS) value, elastic modulus(E), and failure pattern of the granite specimen in the UCS test were comparable to the experiment. By establishing 351 sets of numerical models and exploring the impacts of mineral composition on the mechanical properties of granite, it indicated that there was no negative correlation between quartz and feldspar for UCS, tensile strength(σ_(t)), and E. In contrast, mica had a significant negative correlation for UCS, σ_(t), and E. The presence of quartz increased the brittleness of granite, whereas the presence of mica and feldspar increased its ductility in UCS and direct tensile strength(DTS) tests. Varying contents of major mineral compositions in granite showed minor influence on the number of cracks in both UCS and DTS tests.展开更多
Large structures,such as bridges,highways,etc.,need to be inspected to evaluate their actual physical and functional condition,to predict future conditions,and to help decision makers allocating maintenance and rehabi...Large structures,such as bridges,highways,etc.,need to be inspected to evaluate their actual physical and functional condition,to predict future conditions,and to help decision makers allocating maintenance and rehabilitation resources.The assessment of civil infrastructure condition is carried out through information obtained by inspection and/or monitoring operations.Traditional techniques in structural health monitoring(SHM)involve visual inspection related to inspection standards that can be time-consuming data collection,expensive,labor intensive,and dangerous.To address these limitations,machine vision-based inspection procedures have increasingly been investigated within the research community.In this context,this paper proposes and compares four different computer vision procedures to identify damage by image processing:Otsu method thresholding,Markov random fields segmentation,RGB color detection technique,and K-means clustering algorithm.The first method is based on segmentation by thresholding that returns a binary image from a grayscale image.The Markov random fields technique uses a probabilistic approach to assign labels to model the spatial dependencies in image pixels.The RGB technique uses color detection to evaluate the defect extensions.Finally,K-means algorithm is based on Euclidean distance for clustering of the images.The benefits and limitations of each technique are discussed,and the challenges of using the techniques are highlighted.To show the effectiveness of the described techniques in damage detection of civil infrastructures,a case study is presented.Results show that various types of corrosion and cracks can be detected by image processing techniques making the proposed techniques a suitable tool for the prediction of the damage evolution in civil infrastructures.展开更多
Terahertz(THz)imaging has drawn significant attention because THz wave has a unique capability to transient,ultrawide spectrum and low photon energy.However,the low resolution has always been a problem due to its long...Terahertz(THz)imaging has drawn significant attention because THz wave has a unique capability to transient,ultrawide spectrum and low photon energy.However,the low resolution has always been a problem due to its long wavelength,limiting their application of fields practical use.In this paper,we proposed a complex one-shot super-resolution(COSSR)framework based on a complex convolution neural network to restore superior THz images at 0.35 times wavelength by extracting features directly from a reference measured sample and groundtruth without the measured PSF.Compared with real convolution neural network-based approaches and complex zero-shot super-resolution(CZSSR),COSSR delivers at least 6.67,0.003,and 6.96%superior higher imaging efficacy in terms of peak signal to noise ratio(PSNR),mean square error(MSE),and structural similarity index measure(SSIM),respectively,for the analyzed data.Additionally,the proposed method is experimentally demonstrated to have a good generalization and to perform well on measured data.The COSSR provides a new pathway for THz imaging super-resolution(SR)reconstruction below the diffraction limit.展开更多
The scientists are dedicated to studying the detection of Alzheimer’s disease onset to find a cure, or at the very least, medication that can slow the progression of the disease. This article explores the effectivene...The scientists are dedicated to studying the detection of Alzheimer’s disease onset to find a cure, or at the very least, medication that can slow the progression of the disease. This article explores the effectiveness of longitudinal data analysis, artificial intelligence, and machine learning approaches based on magnetic resonance imaging and positron emission tomography neuroimaging modalities for progression estimation and the detection of Alzheimer’s disease onset. The significance of feature extraction in highly complex neuroimaging data, identification of vulnerable brain regions, and the determination of the threshold values for plaques, tangles, and neurodegeneration of these regions will extensively be evaluated. Developing automated methods to improve the aforementioned research areas would enable specialists to determine the progression of the disease and find the link between the biomarkers and more accurate detection of Alzheimer’s disease onset.展开更多
A comprehensive understanding of spatial distribution and clustering patterns of gravels is of great significance for ecological restoration and monitoring.However,traditional methods for studying gravels are low-effi...A comprehensive understanding of spatial distribution and clustering patterns of gravels is of great significance for ecological restoration and monitoring.However,traditional methods for studying gravels are low-efficiency and have many errors.This study researched the spatial distribution and cluster characteristics of gravels based on digital image processing technology combined with a self-organizing map(SOM)and multivariate statistical methods in the grassland of northern Tibetan Plateau.Moreover,the correlation of morphological parameters of gravels between different cluster groups and the environmental factors affecting gravel distribution were analyzed.The results showed that the morphological characteristics of gravels in northern region(cluster C)and southern region(cluster B)of the Tibetan Plateau were similar,with a low gravel coverage,small gravel diameter,and elongated shape.These regions were mainly distributed in high mountainous areas with large topographic relief.The central region(cluster A)has high coverage of gravels with a larger diameter,mainly distributed in high-altitude plains with smaller undulation.Principal component analysis(PCA)results showed that the gravel distribution of cluster A may be mainly affected by vegetation,while those in clusters B and C could be mainly affected by topography,climate,and soil.The study confirmed that the combination of digital image processing technology and SOM could effectively analyzed the spatial distribution characteristics of gravels,providing a new mode for gravel research.展开更多
Image processing networks have gained great success in many fields,and thus the issue of copyright protection for image processing networks hasbecome a focus of attention. Model watermarking techniques are widely used...Image processing networks have gained great success in many fields,and thus the issue of copyright protection for image processing networks hasbecome a focus of attention. Model watermarking techniques are widely usedin model copyright protection, but there are two challenges: (1) designinguniversal trigger sample watermarking for different network models is stilla challenge;(2) existing methods of copyright protection based on trigger swatermarking are difficult to resist forgery attacks. In this work, we propose adual model watermarking framework for copyright protection in image processingnetworks. The trigger sample watermark is embedded in the trainingprocess of the model, which can effectively verify the model copyright. And wedesign a common method for generating trigger sample watermarks based ongenerative adversarial networks, adaptively generating trigger sample watermarksaccording to different models. The spatial watermark is embedded intothe model output. When an attacker steals model copyright using a forgedtrigger sample watermark, which can be correctly extracted to distinguishbetween the piratical and the protected model. The experiments show that theproposed framework has good performance in different image segmentationnetworks of UNET, UNET++, and FCN (fully convolutional network), andeffectively resists forgery attacks.展开更多
文摘Objective To study the effect of using improved 2D computer-assisted fluoroscopic navigation through simulating 3D vertebrae image to guide pedicle screw internal fixation.Methods Posterior pedicle screw internal fixation,distraction
文摘This research aims to define an efficient and fast quantification of bitumen removal on the road surface by Digital Imaging Processing (DIP) and spectral analysis. The retrieval of bitumen removal is an important issue for road management and environmental studies related to asphalt wear and environmental pollution. The calculation of the Exposed Aggregate Index (EAI), based on DIP, allows to quantify in each frame the superficial removal of bitumen and the exposure of aggregates. A procedure, based on non-parametric classification process of digital images, gives a fast response of EAI. A correlation among EAI and spectral data, between 390 nm and 900 nm range, is evaluated. Results show a good correlation between spectral data at different wavelength and EAI. Finally, this work evaluates the possibility to retrieve asphalt bitumen removal through remote sensed imagery.
基金support from the National Natural Science Foundation of China(Nos.62205259,62075175,61975254,62375212,62005203 and 62105254)the Open Research Fund of CAS Key Laboratory of Space Precision Measurement Technology(No.B022420004)the Fundamental Research Funds for the Central Universities(No.ZYTS23125).
文摘This study reviews the recent advances in data-driven polarimetric imaging technologies based on a wide range of practical applications.The widespread international research and activity in polarimetric imaging techniques demonstrate their broad applications and interest.Polarization information is increasingly incorporated into convolutional neural networks(CNN)as a supplemental feature of objects to improve performance in computer vision task applications.Polarimetric imaging and deep learning can extract abundant information to address various challenges.Therefore,this article briefly reviews recent developments in data-driven polarimetric imaging,including polarimetric descattering,3D imaging,reflection removal,target detection,and biomedical imaging.Furthermore,we synthetically analyze the input,datasets,and loss functions and list the existing datasets and loss functions with an evaluation of their advantages and disadvantages.We also highlight the significance of data-driven polarimetric imaging in future research and development.
基金Funding is provided by the National Natural Science Foundation of China(NSFC,Grant Nos.62375027 and 62127813)Natural Science Foundation of Chongqing Municipality(CSTB2023NSCQ-MSX0504)+1 种基金Natural Science Foundation of Jilin Provincial(YDZJ202201ZYTS411)Jilin Provincial Education Department Fund of China(JJKH20240920KJ)。
文摘Optical telescopes are an important tool for acquiring optical information about distant objects,and resolution is an important indicator that measures the ability to observe object details.However,due to the effects of system aberration,atmospheric seeing,and other factors,the observed image of ground-based telescopes is often degraded,resulting in reduced resolution.This paper proposes an optical-neural network joint optimization method to improve the resolution of the observed image by co-optimizing the point-spread function(PSF)of the telescopic system and the image super-resolution(SR)network.To improve the speed of image reconstruction,we designed a generative adversarial net(LCR-GAN)with light parameters,which is much faster than the latest unsupervised networks.To reconstruct the PSF trained by the network in the optical path,a phase mask is introduced.It improves the image reconstruction effect of LCR-GAN by reconstructing the PSF that best matches the network.The results of simulation and verification experiments show that compared with the pure deep learning method,the SR image reconstructed by this method is rich in detail and it is easier to distinguish stars or stripes.
基金the National Natural Science Foundation of China(62003298,62163036)the Major Project of Science and Technology of Yunnan Province(202202AD080005,202202AH080009)the Yunnan University Professional Degree Graduate Practice Innovation Fund Project(ZC-22222770)。
文摘Oscillation detection has been a hot research topic in industries due to the high incidence of oscillation loops and their negative impact on plant profitability.Although numerous automatic detection techniques have been proposed,most of them can only address part of the practical difficulties.An oscillation is heuristically defined as a visually apparent periodic variation.However,manual visual inspection is labor-intensive and prone to missed detection.Convolutional neural networks(CNNs),inspired by animal visual systems,have been raised with powerful feature extraction capabilities.In this work,an exploration of the typical CNN models for visual oscillation detection is performed.Specifically,we tested MobileNet-V1,ShuffleNet-V2,Efficient Net-B0,and GhostNet models,and found that such a visual framework is well-suited for oscillation detection.The feasibility and validity of this framework are verified utilizing extensive numerical and industrial cases.Compared with state-of-theart oscillation detectors,the suggested framework is more straightforward and more robust to noise and mean-nonstationarity.In addition,this framework generalizes well and is capable of handling features that are not present in the training data,such as multiple oscillations and outliers.
基金Scientific Research Deanship has funded this project at the University of Ha’il–Saudi Arabia Ha’il–Saudi Arabia through project number RG-21104.
文摘In today’s world,image processing techniques play a crucial role in the prognosis and diagnosis of various diseases due to the development of several precise and accurate methods for medical images.Automated analysis of medical images is essential for doctors,as manual investigation often leads to inter-observer variability.This research aims to enhance healthcare by enabling the early detection of diabetic retinopathy through an efficient image processing framework.The proposed hybridized method combines Modified Inertia Weight Particle Swarm Optimization(MIWPSO)and Fuzzy C-Means clustering(FCM)algorithms.Traditional FCM does not incorporate spatial neighborhood features,making it highly sensitive to noise,which significantly affects segmentation output.Our method incorporates a modified FCM that includes spatial functions in the fuzzy membership matrix to eliminate noise.The results demonstrate that the proposed FCM-MIWPSO method achieves highly precise and accurate medical image segmentation.Furthermore,segmented images are classified as benign or malignant using the Decision Tree-Based Temporal Association Rule(DT-TAR)Algorithm.Comparative analysis with existing state-of-the-art models indicates that the proposed FCM-MIWPSO segmentation technique achieves a remarkable accuracy of 98.42%on the dataset,highlighting its significant impact on improving diagnostic capabilities in medical imaging.
文摘As deep learning techniques are increasingly applied with greater depth and sophistication in the food industry,the realm of food image processing has progressively emerged as a central focus of research interest.This work provides an overview of key practices in food image processing techniques,detailing common processing tasks including classification,recognition,detection,segmentation,and image retrieval,as well as outlining metrics for evaluating task performance and thoroughly examining existing food image datasets,along with specialized food-related datasets.In terms of methodology,this work offers insight into the evolution of food image processing,tracing its development from traditional methods extracting low and intermediate-level features to advanced deep learning techniques for high-level feature extraction,along with some synergistic fusion of these approaches.It is believed that these methods will play a significant role in practical application scenarios such as self-checkout systems,dietary health management,intelligent food service,disease etiology tracing,chronic disease management,and food safety monitoring.However,due to the complex content and various types of distortions in food images,further improvements in related methods are needed to meet the requirements of practical applications in the future.It is believed that this study can help researchers to further understand the research in the field of food imaging and provide some contribution to the advancement of research in this field.
基金funded by the National Natural Science Foundation of China(NSFC,Nos.12373086 and 12303082)CAS“Light of West China”Program+2 种基金Yunnan Revitalization Talent Support Program in Yunnan ProvinceNational Key R&D Program of ChinaGravitational Wave Detection Project No.2022YFC2203800。
文摘Attitude is one of the crucial parameters for space objects and plays a vital role in collision prediction and debris removal.Analyzing light curves to determine attitude is the most commonly used method.In photometric observations,outliers may exist in the obtained light curves due to various reasons.Therefore,preprocessing is required to remove these outliers to obtain high quality light curves.Through statistical analysis,the reasons leading to outliers can be categorized into two main types:first,the brightness of the object significantly increases due to the passage of a star nearby,referred to as“stellar contamination,”and second,the brightness markedly decreases due to cloudy cover,referred to as“cloudy contamination.”The traditional approach of manually inspecting images for contamination is time-consuming and labor-intensive.However,we propose the utilization of machine learning methods as a substitute.Convolutional Neural Networks and SVMs are employed to identify cases of stellar contamination and cloudy contamination,achieving F1 scores of 1.00 and 0.98 on a test set,respectively.We also explore other machine learning methods such as ResNet-18 and Light Gradient Boosting Machine,then conduct comparative analyses of the results.
基金supported by the Opening Foundation of the Agile and Intelligence Computing Key Laboratory of Sichuan Province under Grant No.H23004the Chengdu Municipal Science and Technology Bureau Technological Innovation R&D Project(Key Project)under Grant No.2024-YF08-00106-GX.
文摘Aiming to solve the bottleneck problem of electromagnetic scattering simulation in the scenes of extremely large-scale seas and ships,a high-frequency method by using graphics processing unit(GPU)parallel acceleration technique is proposed.For the implementation of different electromagnetic methods of physical optics(PO),shooting and bouncing ray(SBR),and physical theory of diffraction(PTD),a parallel computing scheme based on the CPU-GPU parallel computing scheme is realized to balance computing tasks.Finally,a multi-GPU framework is further proposed to solve the computational difficulty caused by the massive number of ray tubes in the ray tracing process.By using the established simulation platform,signals of ships at different seas are simulated and their images are achieved as well.It is shown that the higher sea states degrade the averaged peak signal-to-noise ratio(PSNR)of radar image.
基金supported by the National Science Foundation of China(10972015,11172015)the Beijing Natural Science Foundation(8162008).
文摘The mechanical properties and failure mechanism of lightweight aggregate concrete(LWAC)is a hot topic in the engineering field,and the relationship between its microstructure and macroscopic mechanical properties is also a frontier research topic in the academic field.In this study,the image processing technology is used to establish a micro-structure model of lightweight aggregate concrete.Through the information extraction and processing of the section image of actual light aggregate concrete specimens,the mesostructural model of light aggregate concrete with real aggregate characteristics is established.The numerical simulation of uniaxial tensile test,uniaxial compression test and three-point bending test of lightweight aggregate concrete are carried out using a new finite element method-the base force element method respectively.Firstly,the image processing technology is used to produce beam specimens,uniaxial compression specimens and uniaxial tensile specimens of light aggregate concrete,which can better simulate the aggregate shape and random distribution of real light aggregate concrete.Secondly,the three-point bending test is numerically simulated.Thirdly,the uniaxial compression specimen generated by image processing technology is numerically simulated.Fourth,the uniaxial tensile specimen generated by image processing technology is numerically simulated.The mechanical behavior and damage mode of the specimen during loading were analyzed.The results of numerical simulation are compared and analyzed with those of relevant experiments.The feasibility and correctness of the micromodel established in this study for analyzing the micromechanics of lightweight aggregate concrete materials are verified.Image processing technology has a broad application prospect in the field of concrete mesoscopic damage analysis.
文摘The rail surface status image is affected by the noise in the shooting environment and contains a large amount of interference information, which increases the difficulty of rail surface status identification. In order to solve this problem, a preprocessing method for the rail surface state image is proposed. The preprocessing process mainly includes image graying, image denoising, image geometric correction, image extraction, data amplification, and finally building the rail surface image database. The experimental results show that this method can efficiently complete image processing, facilitate feature extraction of rail surface status images, and improve rail surface status recognition accuracy.
文摘Real-time capabilities and computational efficiency are provided by parallel image processing utilizing OpenMP. However, race conditions can affect the accuracy and reliability of the outcomes. This paper highlights the importance of addressing race conditions in parallel image processing, specifically focusing on color inverse filtering using OpenMP. We considered three solutions to solve race conditions, each with distinct characteristics: #pragma omp atomic: Protects individual memory operations for fine-grained control. #pragma omp critical: Protects entire code blocks for exclusive access. #pragma omp parallel sections reduction: Employs a reduction clause for safe aggregation of values across threads. Our findings show that the produced images were unaffected by race condition. However, it becomes evident that solving the race conditions in the code makes it significantly faster, especially when it is executed on multiple cores.
文摘In recent years, the widespread adoption of parallel computing, especially in multi-core processors and high-performance computing environments, ushered in a new era of efficiency and speed. This trend was particularly noteworthy in the field of image processing, which witnessed significant advancements. This parallel computing project explored the field of parallel image processing, with a focus on the grayscale conversion of colorful images. Our approach involved integrating OpenMP into our framework for parallelization to execute a critical image processing task: grayscale conversion. By using OpenMP, we strategically enhanced the overall performance of the conversion process by distributing the workload across multiple threads. The primary objectives of our project revolved around optimizing computation time and improving overall efficiency, particularly in the task of grayscale conversion of colorful images. Utilizing OpenMP for concurrent processing across multiple cores significantly reduced execution times through the effective distribution of tasks among these cores. The speedup values for various image sizes highlighted the efficacy of parallel processing, especially for large images. However, a detailed examination revealed a potential decline in parallelization efficiency with an increasing number of cores. This underscored the importance of a carefully optimized parallelization strategy, considering factors like load balancing and minimizing communication overhead. Despite challenges, the overall scalability and efficiency achieved with parallel image processing underscored OpenMP’s effectiveness in accelerating image manipulation tasks.
基金supported by the National Natural Science Foundation of China(Nos.61605226 and 61505233)the Key Laboratory of Space Laser Communication and Detection Technology of Chinese Academy of Sciences
文摘This Letter gives the general construction of an enhanced self-heterodyne synthetic aperture imaging ladar(SAIL) system, and proposes the principle of image processing. A point target is reconstructed in the enhanced self-heterodyne SAIL as well as in down-looking SAIL experiments, and the achieved imaging resolution of the enhanced self-heterodyne SAIL is analyzed. The signal-to-noise ratio(SNR) of the point target final image in the enhanced self-heterodyne SAIL is higher than that in the down-looking SAIL. The enhanced self-heterodyne SAIL can improve the SNR of the target image in far-distance imaging, with practicality.
基金This research was supported by the Department of Mining Engineering at the University of Utah.In addition,the lead author wishes to acknowledge the financial support received from the Talent Introduction Project,part of the Elite Program of Shandong University of Science and Technology(No.0104060540171).
文摘This study investigated the correlations between mechanical properties and mineralogy of granite using the digital image processing(DIP) and discrete element method(DEM). The results showed that the X-ray diffraction(XRD)-based DIP method effectively analyzed the mineral composition contents and spatial distributions of granite. During the particle flow code(PFC2D) model calibration phase, the numerical simulation exhibited that the uniaxial compressive strength(UCS) value, elastic modulus(E), and failure pattern of the granite specimen in the UCS test were comparable to the experiment. By establishing 351 sets of numerical models and exploring the impacts of mineral composition on the mechanical properties of granite, it indicated that there was no negative correlation between quartz and feldspar for UCS, tensile strength(σ_(t)), and E. In contrast, mica had a significant negative correlation for UCS, σ_(t), and E. The presence of quartz increased the brittleness of granite, whereas the presence of mica and feldspar increased its ductility in UCS and direct tensile strength(DTS) tests. Varying contents of major mineral compositions in granite showed minor influence on the number of cracks in both UCS and DTS tests.
基金Part of the research leading to these results has received funding from the research project DESDEMONA–Detection of Steel Defects by Enhanced MONitoring and Automated procedure for self-inspection and maintenance (grant agreement number RFCS-2018_800687) supported by EU Call RFCS-2017sponsored by the NATO Science for Peace and Security Programme under grant id. G5924。
文摘Large structures,such as bridges,highways,etc.,need to be inspected to evaluate their actual physical and functional condition,to predict future conditions,and to help decision makers allocating maintenance and rehabilitation resources.The assessment of civil infrastructure condition is carried out through information obtained by inspection and/or monitoring operations.Traditional techniques in structural health monitoring(SHM)involve visual inspection related to inspection standards that can be time-consuming data collection,expensive,labor intensive,and dangerous.To address these limitations,machine vision-based inspection procedures have increasingly been investigated within the research community.In this context,this paper proposes and compares four different computer vision procedures to identify damage by image processing:Otsu method thresholding,Markov random fields segmentation,RGB color detection technique,and K-means clustering algorithm.The first method is based on segmentation by thresholding that returns a binary image from a grayscale image.The Markov random fields technique uses a probabilistic approach to assign labels to model the spatial dependencies in image pixels.The RGB technique uses color detection to evaluate the defect extensions.Finally,K-means algorithm is based on Euclidean distance for clustering of the images.The benefits and limitations of each technique are discussed,and the challenges of using the techniques are highlighted.To show the effectiveness of the described techniques in damage detection of civil infrastructures,a case study is presented.Results show that various types of corrosion and cracks can be detected by image processing techniques making the proposed techniques a suitable tool for the prediction of the damage evolution in civil infrastructures.
基金"XingLiaoYingCai"Talents of Liaoning Province,China(Grant No.XLYC2007074)Shenyang Young and Middle-aged Science and Technology Innovation Talent Support Program(Grant No.RC200512)+1 种基金Project supported by“XingLiaoYingCai"Talents of Liaoning Province,China(Grant No.XLYC2007074)Shenyang Young and Middle-aged Science and Technology Innovation Talent Support Program(Grant No.RC200512),。
文摘Terahertz(THz)imaging has drawn significant attention because THz wave has a unique capability to transient,ultrawide spectrum and low photon energy.However,the low resolution has always been a problem due to its long wavelength,limiting their application of fields practical use.In this paper,we proposed a complex one-shot super-resolution(COSSR)framework based on a complex convolution neural network to restore superior THz images at 0.35 times wavelength by extracting features directly from a reference measured sample and groundtruth without the measured PSF.Compared with real convolution neural network-based approaches and complex zero-shot super-resolution(CZSSR),COSSR delivers at least 6.67,0.003,and 6.96%superior higher imaging efficacy in terms of peak signal to noise ratio(PSNR),mean square error(MSE),and structural similarity index measure(SSIM),respectively,for the analyzed data.Additionally,the proposed method is experimentally demonstrated to have a good generalization and to perform well on measured data.The COSSR provides a new pathway for THz imaging super-resolution(SR)reconstruction below the diffraction limit.
文摘The scientists are dedicated to studying the detection of Alzheimer’s disease onset to find a cure, or at the very least, medication that can slow the progression of the disease. This article explores the effectiveness of longitudinal data analysis, artificial intelligence, and machine learning approaches based on magnetic resonance imaging and positron emission tomography neuroimaging modalities for progression estimation and the detection of Alzheimer’s disease onset. The significance of feature extraction in highly complex neuroimaging data, identification of vulnerable brain regions, and the determination of the threshold values for plaques, tangles, and neurodegeneration of these regions will extensively be evaluated. Developing automated methods to improve the aforementioned research areas would enable specialists to determine the progression of the disease and find the link between the biomarkers and more accurate detection of Alzheimer’s disease onset.
基金funded by the National Natural Science Foundation of China(41971226,41871357)the Major Research and Development and Achievement Transformation Projects of Qinghai,China(2022-QY-224)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA28110502,XDA19030303).
文摘A comprehensive understanding of spatial distribution and clustering patterns of gravels is of great significance for ecological restoration and monitoring.However,traditional methods for studying gravels are low-efficiency and have many errors.This study researched the spatial distribution and cluster characteristics of gravels based on digital image processing technology combined with a self-organizing map(SOM)and multivariate statistical methods in the grassland of northern Tibetan Plateau.Moreover,the correlation of morphological parameters of gravels between different cluster groups and the environmental factors affecting gravel distribution were analyzed.The results showed that the morphological characteristics of gravels in northern region(cluster C)and southern region(cluster B)of the Tibetan Plateau were similar,with a low gravel coverage,small gravel diameter,and elongated shape.These regions were mainly distributed in high mountainous areas with large topographic relief.The central region(cluster A)has high coverage of gravels with a larger diameter,mainly distributed in high-altitude plains with smaller undulation.Principal component analysis(PCA)results showed that the gravel distribution of cluster A may be mainly affected by vegetation,while those in clusters B and C could be mainly affected by topography,climate,and soil.The study confirmed that the combination of digital image processing technology and SOM could effectively analyzed the spatial distribution characteristics of gravels,providing a new mode for gravel research.
基金supported by the National Natural Science Foundation of China under grants U1836208,by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)fundby the Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET)fund,China.
文摘Image processing networks have gained great success in many fields,and thus the issue of copyright protection for image processing networks hasbecome a focus of attention. Model watermarking techniques are widely usedin model copyright protection, but there are two challenges: (1) designinguniversal trigger sample watermarking for different network models is stilla challenge;(2) existing methods of copyright protection based on trigger swatermarking are difficult to resist forgery attacks. In this work, we propose adual model watermarking framework for copyright protection in image processingnetworks. The trigger sample watermark is embedded in the trainingprocess of the model, which can effectively verify the model copyright. And wedesign a common method for generating trigger sample watermarks based ongenerative adversarial networks, adaptively generating trigger sample watermarksaccording to different models. The spatial watermark is embedded intothe model output. When an attacker steals model copyright using a forgedtrigger sample watermark, which can be correctly extracted to distinguishbetween the piratical and the protected model. The experiments show that theproposed framework has good performance in different image segmentationnetworks of UNET, UNET++, and FCN (fully convolutional network), andeffectively resists forgery attacks.