期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Disaster Monitoring of Satellite Image Processing Using Progressive Image Classification 被引量:1
1
作者 Romany F.Mansour Eatedal Alabdulkreem 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1161-1169,共9页
The analysis of remote sensing image areas is needed for climate detec-tion and management,especially for monitoringflood disasters in critical environ-ments and applications.Satellites are mostly used to detect disast... The analysis of remote sensing image areas is needed for climate detec-tion and management,especially for monitoringflood disasters in critical environ-ments and applications.Satellites are mostly used to detect disasters on Earth,and they have advantages in capturing Earth images.Using the control technique,Earth images can be used to obtain detailed terrain information.Since the acquisi-tion of satellite and aerial imagery,this system has been able to detectfloods,and with increasing convenience,flood detection has become more desirable in the last few years.In this paper,a Big Data Set-based Progressive Image Classification Algorithm(PICA)system is introduced to implement an image processing tech-nique,detect disasters,and determine results with the help of the PICA,which allows disaster analysis to be extracted more effectively.The PICA is essential to overcoming strong shadows,for proper access to disaster characteristics to false positives by operators,and to false predictions that affect the impact of the disas-ter.The PICA creates tailoring and adjustments obtained from satellite images before training and post-disaster aerial image data patches.Two types of proposed PICA systems detect disasters faster and more accurately(95.6%). 展开更多
关键词 CLUSTERING SEGMENTATION progressive image classification algorithm satellite image disaster detection
下载PDF
Full Image Inference Conditionally upon Available Pieces Transmitted into Limited Resources Context
2
作者 Rodrigue Saoungoumi-Sourpele Jean Michel Nlong +2 位作者 David Jaurès Fotsa-Mbogne Jean-Robert Kala Kamdjoug Laurent Bitjoka 《Journal of Signal and Information Processing》 2021年第3期57-69,共13页
<span style="font-family:Verdana;">In a context marked by the proliferation of smartphones and multimedia applications, the processing and transmission of images </span><span style="font-... <span style="font-family:Verdana;">In a context marked by the proliferation of smartphones and multimedia applications, the processing and transmission of images </span><span style="font-family:Verdana;">ha</span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ve</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> become a real problem. Image compression </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">is</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> the first approach to address this problem, it nevertheless suffers from its inability to adapt to the dynamics of limited environments, consisting mainly of mobile equipment and wireless networks. In this work, we propose a stochastic model to gradually estimate an image upon </span><span style="font-family:Verdana;">information</span><span style="font-family:Verdana;"> on its pixels that are transmitted progressively. We consider this transmission as a </span><span style="font-family:Verdana;">dynamical</span><span style="font-family:Verdana;"> process, where the sender </span><span style="font-family:Verdana;">push</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">es</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> the data in decreasing significance order. In order to adapt to network conditions and performances, instead of truncating the pixels, we suggest a new method called Fast Reconstruction Method by Kalman Filtering (FRM-KF) consisting </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">of</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> recursive inference of the not yet received layers belonging to a sequence of bitplanes. After empirical analysis, we estimate </span><span style="font-family:Verdana;">parameters</span><span style="font-family:Verdana;"> of our model which is a linear discrete Kalman Filter. We assume the initial law of information to be the uniform distribution on the set [0, 255] corresponding to the range of gray levels. The performances of FRM-KF method ha</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ve </span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">been evaluated in terms of the ratios in the quality of data image/size sent and in the quality of image/time required for treatment. </span><span style="font-family:Verdana;">A high</span><span style="font-family:Verdana;"> quality was reached faster with relatively small data (less than 10% of image data is needed to obtain up to the sixth-quality image). The time for treatment also decreases faster with </span><span style="font-family:Verdana;">number</span><span style="font-family:Verdana;"> of received layers. However, we found that the time of image treatment might be large starting from </span><span style="font-family:Verdana;">a image</span><span style="font-family:Verdana;"> resolution of 1024 * 1024. Hence, we recommend </span><span style="font-family:Verdana;">FRM-KF</span><span style="font-family:Verdana;"> method for resolutions less or equal to 512 * 512. A statistical comparative analysis reveals that FRM-KF is competitive and suitable to be implemented </span><span style="font-family:Verdana;">on</span><span style="font-family:Verdana;"> limited </span><span style="font-family:Verdana;">resource</span><span style="font-family:Verdana;"> environments.</span></span></span></span> 展开更多
关键词 progressive Image Transmission Bitplane Coding Kalman Filtering Fast Reconstruction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部