期刊文献+
共找到88篇文章
< 1 2 5 >
每页显示 20 50 100
Numerical Investigation on Vortex-Induced Rotations of A Triangular Cylinder Using An Immersed Boundary Method 被引量:3
1
作者 WANG Hua-kun YAN Yu-hao +2 位作者 CHEN Can-ming JI Chun-ning ZHAI Qiu 《China Ocean Engineering》 SCIE EI CSCD 2019年第6期723-733,共11页
A numerical study of vortex-induced rotations(VIRs) of an equivalent triangular cylinder, which is free to rotate in the azimuthal direction in a uniform flow, is presented. Based on an immersed boundary method, the n... A numerical study of vortex-induced rotations(VIRs) of an equivalent triangular cylinder, which is free to rotate in the azimuthal direction in a uniform flow, is presented. Based on an immersed boundary method, the numerical model is established, and is verified through the benchmark problem of flow past a freely rotating rectangular body.The computation is performed for a fixed reduced mass of m~*=2.0 and the structural stiffness and damping ratio are set to zero. The effects of Reynolds number(Re=25-180) on the characteristics of VIR are studied. It is found that the dynamic response of the triangular cylinder exhibits four distinct modes with increasing Re: a rest position,periodic rotational oscillation, random rotation and autorotation. For the rotational oscillation mode, the cylinder undergoes a periodic vibration around an equilibrium position with one side facing the incoming flow. Since the rotation effect, the outset of vortex shedding from cylinder shifts to a much lower Reynolds number. Further increase in Re leads to 2 P and P+S vortex shedding modes besides the typical 2 S pattern. Our simulation results also elucidate that the free rotation significantly changes the drag and lift forces. Inspired by these facts, the effect of free rotation on flow-induced vibration of a triangular cylinder in the in-line and transverse directions is investigated. The results show that when the translational vibration is coupled with rotation, the triangular cylinder presents a galloping response instead of vortex-induced vibration(VIV). 展开更多
关键词 vortex-induced rotation triangular cylinder dynamic response vortex shedding mode immersed boundary method
下载PDF
Numerical Simulation of Fluid and Heat Transfer in a Biological Tissue Using an Immersed Boundary Method Mimicking the Exact Structure of the Microvascular Network 被引量:3
2
作者 Yuanliang Tang Lizhong Mu Ying He 《Fluid Dynamics & Materials Processing》 EI 2020年第2期281-296,共16页
The aim of this study is to develop a model of fluid and heat transfer in a biological tissue taking into account the exact structure of the related microvascular network,and to analyze the influence of structural cha... The aim of this study is to develop a model of fluid and heat transfer in a biological tissue taking into account the exact structure of the related microvascular network,and to analyze the influence of structural changes of such a network induced by diabetes.A cubic region representing local skin tissue is selected as the computational domain,which in turn includes two intravascular and extravascular sub-domains.To save computational resources,the capillary network is reduced to a 1D pipeline model and embedded into the extravascular region.On the basis of the immersed boundary method(IBM)strategy,fluid and heat fluxes across a capillary wall are distributed to the surrounding tissue nodes by a delta function.We consider both steady and periodic blood pressure conditions at the entrances of the capillary network.Under steady blood pressure conditions,both the interstitial fluid pressure and tissue temperature around the capillary network are larger than those in other places.When the periodic blood pressure condition is considered,tissue temperature tends to fluctuate with the same frequency of the forcing,but the related waveform displays a smaller amplitude and a certain time(phase)delay.When the connectivity of capillary network is diminished,the capacity of blood redistribution through the capillary network becomes weaker and a subset of the vessel branches lose blood flow,which further aggravates the amplitude attenuation and time delay of the skin temperature fluctuation. 展开更多
关键词 Bioheat transfer porous media immersed boundary method DIABETES microvascular dysfunction skin temperature fluctuation
下载PDF
New Immersed Boundary Method on the Adaptive Cartesian Grid Applied to the Local Discontinuous Galerkin Method 被引量:1
3
作者 Xu-Jiu Zhang Yong-Sheng Zhu +1 位作者 Ke Yan You-Yun Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第2期176-185,共10页
Currently, many studies on the local discontinuous Galerkin method focus on the Cartesian grid with low computational e ciency and poor adaptability to complex shapes. A new immersed boundary method is presented, and ... Currently, many studies on the local discontinuous Galerkin method focus on the Cartesian grid with low computational e ciency and poor adaptability to complex shapes. A new immersed boundary method is presented, and this method employs the adaptive Cartesian grid to improve the adaptability to complex shapes and the immersed boundary to increase computational e ciency. The new immersed boundary method employs different boundary cells(the physical cell and ghost cell) to impose the boundary condition and the reconstruction algorithm of the ghost cell is the key for this method. The classical model elliptic equation is used to test the method. This method is tested and analyzed from the viewpoints of boundary cell type, error distribution and accuracy. The numerical result shows that the presented method has low error and a good rate of the convergence and works well in complex geometries. The method has good prospect for practical application research of the numerical calculation research. 展开更多
关键词 immersed boundary method Adaptive Cartesian grid Local discontinuous Galerkin method RECONSTRUCTION Heat transfer equation
下载PDF
Combined immersed boundary method and multiple-relaxation-time lattice Boltzmann flux solver for numerical simulations of incompressible flows 被引量:1
4
作者 Xiaodi WU Fu CHEN Huaping LIU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2017年第12期1679-1696,共18页
A method combining the immersed boundary technique and a multirelaxation-time(MRT) lattice Boltzmann flux solver(LBFS) is presented for numerical simulation of incompressible flows over circular and elliptic cylinders... A method combining the immersed boundary technique and a multirelaxation-time(MRT) lattice Boltzmann flux solver(LBFS) is presented for numerical simulation of incompressible flows over circular and elliptic cylinders and NACA 0012 Airfoil. The method uses a simple Cartesian mesh to simulate flows past immersed complicated bodies. With the Chapman-Enskog expansion analysis, a transform is performed between the Navier-Stokes and lattice Boltzmann equations(LBEs). The LBFS is used to discretize the macroscopic differential equations with a finite volume method and evaluate the interface fluxes through local reconstruction of the lattice Boltzmann solution.The immersed boundary technique is used to correct the intermediate velocity around the solid boundary to satisfy the no-slip boundary condition. Agreement of simulation results with the data found in the literature shows reliability of the proposed method in simulating laminar flows on a Cartesian mesh. 展开更多
关键词 immersed boundary method lattice Boltzmann equation(LBE) multiple relaxation time incompressible flow
下载PDF
A three dimensional implicit immersed boundary method with application
5
作者 Jian Hao1,2 and Luoding Zhu1, 1)Department of Mathematical Sciences and Center for Mathematical Biosciences Indiana University - Purdue University, Indianapolis, IN 46202, USA 2)Department of Mathematics and Center for Research in Scientific Computation, North Carolina State University, Raleigh, NC 27695, USA 《Theoretical & Applied Mechanics Letters》 CAS 2011年第6期22-25,共4页
Most algorithms of the immersed boundary method originated by Peskin are explicit when it comes to the computation of the elastic forces exerted by the immersed boundary to the fluid. A drawback of such an explicit ap... Most algorithms of the immersed boundary method originated by Peskin are explicit when it comes to the computation of the elastic forces exerted by the immersed boundary to the fluid. A drawback of such an explicit approach is a severe restriction on the time step size for maintaining numerical stability. An implicit immersed boundary method in two dimensions using the lattice Boltzmann approach has been proposed. This paper reports an extension of the method to three dimensions and its application to simulation of a massive flexible sheet interacting with an incompressible viscous flow. 展开更多
关键词 immersed boundary method lattice-Boltzmann method implicit schemes fluid-structure-interaction bi-stability flag-in-wind
下载PDF
Effect of regularized delta function on accuracy of immersed boundary method
6
作者 宫兆新 鲁传敬 黄华雄 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2012年第11期1453-1466,共14页
The immersed boundary method is an effective technique for modeling and simulating fluid-structure interactions especially in the area of biomechanics. The effect of the regularized delta function on the accuracy is a... The immersed boundary method is an effective technique for modeling and simulating fluid-structure interactions especially in the area of biomechanics. The effect of the regularized delta function on the accuracy is an important subject in the property study. A method of manufactured solutions is used in the research. The computational code is first verified to be mistake-free by using smooth manufactured solutions. Then, a jump in the manufactured solution for pressure is introduced to study the accuracy of the immersed boundary method. Four kinds of regularized delta functions are used to test the effect on the accuracy analysis. By analyzing the discretization errors, the accuracy of the immersed boundary method is proved to be first-order. The results show that the regularized delta function cannot improve the accuracy, but it can change the discretization errors in the entire computational domain. 展开更多
关键词 immersed boundary method method of manufactured solutions regularized delta function order of accuracy
下载PDF
On the capability of the curvilinear immersed boundary method in predicting near-wall turbulence of turbulent channel flows
7
作者 Fei Liao Xiaolei Yang 《Theoretical & Applied Mechanics Letters》 CSCD 2021年第4期213-218,共6页
The immersed boundary method has been widely used for simulating flows over complex geometries.However,its accuracy in predicting the statistics of near-wall turbulence has not been fully tested.In this work,we evalua... The immersed boundary method has been widely used for simulating flows over complex geometries.However,its accuracy in predicting the statistics of near-wall turbulence has not been fully tested.In this work,we evaluate the capability of the curvilinear immersed boundary(CURVIB)method in predicting near-wall velocity and pressure fluctuations in turbulent channel flows.Simulation results show that quantities including the time-averaged streamwise velocity,the rms(root-mean-square)of velocity fluctuations,the rms of vorticity fluctuations,the shear stresses,and the correlation coefficients of u'and v"computed from the CURVIB simulations are in good agreement with those from the body-fitted simulations.More importantly,it is found that the time-averaged pressure,the rms and wavenumber-frequency spectra of pressure fluctuations computed using the CURVIB method agree well with the body-fitted results. 展开更多
关键词 immersed boundary method Turbulent channel flow Wavenumber-frequency spectra Near-wall turbulence
下载PDF
Application of immersed boundary method in turbomachines 被引量:1
8
作者 Congcong CHEN Yuwei WANG +2 位作者 Zhuo WANG Lin DU Xiaofeng SUN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第5期268-279,共12页
Simulating unsteady turbulent flow in turbomachines is still challenging due to the complexity of blade geometry and relative motion between rotor and stator.This study presents an Immersed Boundary Method(IBM)for hig... Simulating unsteady turbulent flow in turbomachines is still challenging due to the complexity of blade geometry and relative motion between rotor and stator.This study presents an Immersed Boundary Method(IBM)for high-Reynolds turbomachinery internal flows,and shows the advantage of the automatic grid generation techniques and flexible moving boundary treatments.The wall functions are used in the present method to alleviate the wall resolution restriction of turbulence simulation.The Two-Dimensional(2-D)IBM solver,which was previously developed and tested for a low-speed compressor,is further validated for a well-documented Low-Pressure Turbine(LPT)cascade.Both the blade loading and the total pressure losses in the wake are well captured by the present 2-D solver.The complex Three-Dimensional(3-D)effects in turbomachines motivate the further development of an extended 3-D IBM solver by using a curvilinear-coordinate system that facilitates the hub and casing boundary treatment.The good performance of the 3-D solver is demonstrated through comparison with CFX solver solutions for the rotor configuration of Advanced Noise Control Fan(ANCF).Further effects of the grid resolution on capturing the blade wake are discussed.The results indicate that the present 3-D solver is capable of reproducing the evolution of the blade wake with suitable computational grid. 展开更多
关键词 immersed boundary method TURBOMACHINERY Turbulence simulation Wake prediction Wall function
原文传递
Lattice Boltzmann Simulations of Two Linear Microswimmers Using the Immersed Boundary Method
9
作者 D.Geyer S.Ziegler +5 位作者 A.Sukhov M.Hubert A.-S.Smith O.Aouane P.Malgaretti J.Harting 《Communications in Computational Physics》 SCIE 2023年第1期310-329,共20页
The performance of a single or the collection of microswimmers strongly depends on the hydrodynamic coupling among their constituents and themselves.We present a numerical study for a single and a pair of microswimmer... The performance of a single or the collection of microswimmers strongly depends on the hydrodynamic coupling among their constituents and themselves.We present a numerical study for a single and a pair of microswimmers based on lattice Boltzmann method(LBM)simulations.Our numerical algorithm consists of two separable parts.Lagrange polynomials provide a discretization of the microswimmers and the lattice Boltzmann method captures the dynamics of the surrounding fluid.The two components couple via an immersed boundary method.We present data for a single swimmer system and our data also show the onset of collective effects and,in particular,an overall velocity increment of clusters of swimmers. 展开更多
关键词 immersed boundary method lattice Boltzmann method finite element method microswimmer collective motion
原文传递
Effective Force Stabilising Technique for the Immersed Boundary Method
10
作者 Arnab Ghosh Alessandro Gabbana +1 位作者 Herman Wijshoff Federico Toschi 《Communications in Computational Physics》 SCIE 2023年第1期349-366,共18页
The immersed boundary method has emerged as an efficient approach for the simulation of finite-sized solid particles in complex fluid flows.However,one of the well known shortcomings of the method is the limited suppo... The immersed boundary method has emerged as an efficient approach for the simulation of finite-sized solid particles in complex fluid flows.However,one of the well known shortcomings of the method is the limited support for the simulation of light particles,i.e.particles with a density lower than that of the surrounding fluid,both in terms of accuracy and numerical stability.Although a broad literature exists,with several authors reporting different approaches for improving the stability of the method,most of these attempts introduce extra complexities and are very costly from a computational point of view.In this work,we introduce an effective force stabilizing technique,allowing to extend the stability range of the method by filtering spurious oscillations arising when dealing with light-particles,pushing down the particle-to-fluid density ratio as low as 0.04.We thoroughly validate the method comparing with both experimental and numerical data available in literature. 展开更多
关键词 immersed boundary method lattice Boltzmann method light particle force stabilization added mass effect
原文传递
A Level Set Immersed Boundary Method for Water Entry and Exit 被引量:2
11
作者 Yali Zhang Qingping Zou +5 位作者 Deborah Greaves Dominic Reeve Alison Hunt-Raby David Graham Phil James Xin Lv 《Communications in Computational Physics》 SCIE 2010年第7期265-288,共24页
The interaction between free surface flow and structure is investigated using a new level set immersed boundary method.The incorporation of an improved immersed boundary method with a free surface capture scheme imple... The interaction between free surface flow and structure is investigated using a new level set immersed boundary method.The incorporation of an improved immersed boundary method with a free surface capture scheme implemented in a Navier-Stokes solver allows the interaction between fluid flow with free surface and moving body/bodies of almost arbitrary shape to be modelled.A new algorithm is proposed to locate exact forcing points near solid boundaries,which provides an accurate numerical solution.The discretized linear system of the Poisson pressure equation is solved using the Generalized Minimum Residual(GMRES)method with incomplete LU preconditioning.Uniform flow past a cylinder at Reynolds number Re=100 is modelled using the present model and results agree well with the experiment and numerical data in the literature.Water exit and entry of a cylinder at the prescribed velocity is also investigated.The predicted slamming coefficient is in good agreement with experimental data and previous numerical simulations using a ComFlow model.The vertical slamming force and pressure distribution for the free falling wedge is also studied by the present model and comparisons with available theoretical solutions and experimental data are made. 展开更多
关键词 Level set method immersed boundary method slamming coefficient water entry and exit free surface fluid-structure interaction
原文传递
2008 Stability Analysis of the Immersed Boundary Method for a Two-Dimensional Membrane with Bending Rigidity 被引量:2
12
作者 Zhaoxin Gong Huaxiong Huang Chuanjing Lu 《Communications in Computational Physics》 SCIE 2008年第3期704-723,共20页
In this paper,we analyze the stability of the Immersed Boundary Methodapplied to a membrane-fluid system with a plasma membrane immersed in an incompressibleviscous fluid.We show that for small deformations,the planar... In this paper,we analyze the stability of the Immersed Boundary Methodapplied to a membrane-fluid system with a plasma membrane immersed in an incompressibleviscous fluid.We show that for small deformations,the planar rest state isstable for a membrane with bending rigidity.The smoothed version,using a standardregularization technique for the singular force,is also shown to be stable.Furthermore,we show that the coupled fluid-membrane system is stiff and smoothing helpsto reduce the stiffness.Compared to the system of elastic fibers immersed in an incompressiblefluid,membrane with bending rigidity consist of a wider range of decayrates.Therefore numerical instability could occur more easily for an explicit methodwhen the time step size is not sufficiently small,even though the continuous problemis stable. 展开更多
关键词 Bending rigidity immersed boundary method MEMBRANE moving interface stability.
原文传递
Adaptive mesh refinement immersed boundary method for simulations of laminar flows past a moving thin elastic structure 被引量:1
13
作者 Mohammed Suleman Aldlemy Mohammad Rasidi Rasani +1 位作者 AKAriffin TMYSTuan Ya 《Journal of Hydrodynamics》 SCIE EI CSCD 2020年第1期148-160,共13页
One of the critical issues in numerical simulation of fluid-structure interaction problems is inaccuracy of the solutions,especially for flows past a stationary thin elastic structure where large deformations occur.Hi... One of the critical issues in numerical simulation of fluid-structure interaction problems is inaccuracy of the solutions,especially for flows past a stationary thin elastic structure where large deformations occur.High resolution is required to capture the flow characteristics near the fluid-structure interface to enhance accuracy of the solutions within proximity of the thin deformable body.Hence,in this work,an algorithm is developed to simulate fluid-structure interactions of moving deformable structures with very thin thicknesses.In this algorithm,adaptive mesh refinement(AMR)is integrated with immersed boundary finite element method(IBFEM)with two-stage pressure-velocity corrections.Despite successive interpolation of the flow field by IBM,the governing equations were solved using a fixed structured mesh,which significantly reduces the computational time associated with mesh reconstruction.The cut-cell IBM is used to predict the body forces while FEM is used to predict deformation of the thin elastic structure in order to integrate the motions of the fluid and solid at the interface.AMR is used to discretize the governing equations and obtain solutions that efficiently capture the thin boundary layer at the fluid-solid interface.The AMR-IBFEM algorithm is first verified by comparing the drag coefficient,lift coefficient,and Strouhal number for a benchmark case(laminar flow past a circular cylinder at Re=100)and the results showed good agreement with those of other researchers.The algorithm is then used to simulate 2-D laminar flows past stationary and moving thin structures positioned perpendicular to the freestream direction.The results also showed good agreement with those obtained from the arbitrary Lagrangian-Eulerian(ALE)algorithm for elastic thin boundaries.It is concluded that the AMR-IBFEM algorithm is capable of predicting the characteristics of laminar flow past an elastic structure with acceptable accuracy(error of-0.02%)with only-1%of the computational time for simulations with full mesh refinement. 展开更多
关键词 immersed boundary method finite element method adaptive mesh refinement two-stage velocity-pressure correction thin deformable structures
原文传递
A Hybrid Immersed Boundary/Coarse-Graining Method for Modeling Inextensible Semi-Flexible Filaments in Thermally Fluctuating Fluids Dedicated to Professor Karl Stark Pister for his 95th birthday
14
作者 Magdalini Ntetsika Panayiotis Papadopoulos 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第12期1243-1258,共16页
A new and computationally efficient version of the immersed boundary method,which is combined with the coarse-graining method,is introduced for modeling inextensible filaments immersed in low-Reynolds number flows.Thi... A new and computationally efficient version of the immersed boundary method,which is combined with the coarse-graining method,is introduced for modeling inextensible filaments immersed in low-Reynolds number flows.This is used to represent actin biopolymers,which are constituent elements of the cytoskeleton,a complex network-like structure that plays a fundamental role in shape morphology.An extension of the traditional immersed boundary method to include a stochastic stress tensor is also proposed in order to model the thermal fluctuations in the fluid at smaller scales.By way of validation,the response of a single,massless,inextensible semiflexible filament immersed in a thermally fluctuating fluid is obtained using the suggested numerical scheme and the resulting time-averaged contraction of the filament is compared to the theoretical value obtained from the worm-like chain model. 展开更多
关键词 Semiflexible biopolymers immersed boundary method COARSE-GRAINING actin filaments fluid-structure interaction thermal fluctuations persistence length
下载PDF
Numerical Study of Stability and Accuracy of the Immersed Boundary Method Coupled to the Lattice Boltzmann BGK Model
15
作者 Yongguang Cheng Luoding Zhu Chunze Zhang 《Communications in Computational Physics》 SCIE 2014年第6期136-168,共33页
This paper aims to study the numerical features of a coupling scheme between the immersed boundary(IB)method and the lattice Boltzmann BGK(LBGK)model by four typical test problems:the relaxation of a circular membrane... This paper aims to study the numerical features of a coupling scheme between the immersed boundary(IB)method and the lattice Boltzmann BGK(LBGK)model by four typical test problems:the relaxation of a circular membrane,the shearing flow induced by a moving fiber in the middle of a channel,the shearing flow near a non-slip rigid wall,and the circular Couette flow between two inversely rotating cylinders.The accuracy and robustness of the IB-LBGK coupling scheme,the performances of different discrete Dirac delta functions,the effect of iteration on the coupling scheme,the importance of the external forcing term treatment,the sensitivity of the coupling scheme to flow and boundary parameters,the velocity slip near non-slip rigid wall,and the origination of numerical instabilities are investigated in detail via the four test cases.It is found that the iteration in the coupling cycle can effectively improve stability,the introduction of a second-order forcing term in LBGK model is crucial,the discrete fiber segment length and the orientation of the fiber boundary obviously affect accuracy and stability,and the emergence of both temporal and spatial fluctuations of boundary parameters seems to be the indication of numerical instability.These elaborate results shed light on the nature of the coupling scheme and may benefit those who wish to use or improve the method. 展开更多
关键词 immersed boundary method lattice Boltzmann method fluid-structure interaction flexible boundary complex boundary ACCURACY stability verification
原文传递
Numerical Simulation of Moving Contact Lines with Surfactant by Immersed Boundary Method
16
作者 Ming-Chih Lai Yu-Hau Tseng Huaxiong Huang 《Communications in Computational Physics》 SCIE 2010年第9期735-757,共23页
In this paper,we present an immersed boundary method for simulating moving contact lines with surfactant.The governing equations are the incompressible Navier-Stokes equations with the usual mixture of Eulerian fluid ... In this paper,we present an immersed boundary method for simulating moving contact lines with surfactant.The governing equations are the incompressible Navier-Stokes equations with the usual mixture of Eulerian fluid variables and Lagrangian interfacial markers.The immersed boundary force has two components:one from the nonhomogeneous surface tension determined by the distribution of surfactant along the fluid interface,and the other from unbalanced Young’s force at the moving contact lines.An artificial tangential velocity has been added to the Lagrangian markers to ensure that the markers are uniformly distributed at all times.The corresponding modified surfactant equation is solved in a way such that the total surfactant mass is conserved.Numerical experiments including convergence analysis are carefully conducted.The effect of the surfactant on the motion of hydrophilic and hydrophobic drops are investigated in detail. 展开更多
关键词 immersed boundary method interfacial flow Navier-Stokes equations SURFACTANT moving contact line hydrophilic drop hydrophobic drop WETTING
原文传递
Hybrid Diffuse and Sharp Interface Immersed Boundary Methods for Particulate Flows in the Presence of Complex Boundaries
17
作者 Jianhua Qin Xiaolei Yang Zhaobin Li 《Communications in Computational Physics》 SCIE 2022年第4期1242-1271,共30页
A coupling framework that leverages the advantages of the diffuse and sharp interface immersed boundary(IB)methods is presented for handling the interaction among particles and particles with the static complex geomet... A coupling framework that leverages the advantages of the diffuse and sharp interface immersed boundary(IB)methods is presented for handling the interaction among particles and particles with the static complex geometries of the environment.In the proposed coupling approach,the curvilinear IB method is employed to represent the static complex geometries,a variant of the direct forcing IB method is proposed for simulating particles,and the discrete element method is employed for particle-particle and particle-wall collisions.The proposed approach is validated using several classical benchmark problems,which include flow around a sphere,sedimentation of a sphere,collision of two sedimenting spheres,and collision between a particle and a flat wall,with the present predictions showing an overall good agreement with the results reported in the literature.The capability of the proposed framework is further demonstrated by simulating the interaction between multiple particles and a wall-mounted cylinder,and the particle-laden turbulent flow over periodic hills.The proposed method provides an efficient way to simulate particle-laden turbulent flows in environments with complex boundaries. 展开更多
关键词 immersed boundary method particle-laden flow complex geometry
原文传递
The Immersed Boundary Method for Two-Dimensional Foam with Topological Changes
18
作者 Yongsam Kim Yunchang Seol +1 位作者 Ming-Chih Lai Charles S.Peskin 《Communications in Computational Physics》 SCIE 2012年第7期479-493,共15页
We extend the immersed boundary(IB)method to simulate the dynamics of a 2D dry foam by including the topological changes of the bubble network.In the article[Y.Kim,M.-C.Lai,and C.S.Peskin,J.Comput.Phys.229:5194-5207,2... We extend the immersed boundary(IB)method to simulate the dynamics of a 2D dry foam by including the topological changes of the bubble network.In the article[Y.Kim,M.-C.Lai,and C.S.Peskin,J.Comput.Phys.229:5194-5207,2010],we implemented an IB method for the foam problem in the two-dimensional case,and tested it by verifying the von Neumann relation which governs the coarsening of a two-dimensional dry foam.However,the method implemented in that article had an important limitation;we did not allow for the resolution of quadruple or higher order junctions into triple junctions.A total shrinkage of a bubble with more than four edges generates a quadruple or higher order junction.In reality,a higher order junction is unstable and resolves itself into triple junctions.We here extend the methodology previously introduced by allowing topological changes,and we illustrate the significance of such topological changes by comparing the behaviors of foams in which topological changes are allowed to those in which they are not. 展开更多
关键词 Foam PERMEABILITY capillary-driven motion immersed boundary method COARSENING topological changes T1 and T2 processes
原文传递
A Semi-Implicit Fractional Step Method Immersed Boundary Method for the Numerical Simulation of Natural Convection Non-Boussinesq Flows
19
作者 Dmitry Zviaga Ido Silverman +1 位作者 Alexander Gelfgat Yuri Feldman 《Communications in Computational Physics》 SCIE 2022年第8期737-778,共42页
The paper presents a novel pressure-corrected formulation of the immersed boundary method(IBM)for the simulation of fully compressible non-Boussinesq natural convection flows.The formulation incorporated into the pres... The paper presents a novel pressure-corrected formulation of the immersed boundary method(IBM)for the simulation of fully compressible non-Boussinesq natural convection flows.The formulation incorporated into the pressure-based fractional step approach facilitates simulation of the flows in the presence of an immersed body characterized by a complex geometry.Here,we first present extensive grid independence and verification studies addressing incompressible pressure-driven flow in an extended channel and non-Boussinesq natural convection flow in a differentially heated cavity.Next,the steady-state non-Boussinesq natural convection flow developing in the presence of hot cylinders of various diameters placed within a cold square cavity is thoroughly investigated.The obtained results are presented and analyzed in terms of the spatial distribution of path lines and temperature fields and of heat flux values typical of the hot cylinder and the cold cavity surfaces.Flow characteristics of multiple steady-state solutions discovered for several configurations are presented and discussed in detail. 展开更多
关键词 Natural convection non-Boussinesq flows pressure-corrected immersed boundary method multiple steady state solutions
原文传递
On the Volume Conservation of the Immersed Boundary Method
20
作者 Boyce E.Griffith 《Communications in Computational Physics》 SCIE 2012年第7期401-432,共32页
The immersed boundary(IB)method is an approach to problems of fluid-structure interaction in which an elastic structure is immersed in a viscous incompressible fluid.The IB formulation of such problems uses a Lagrangi... The immersed boundary(IB)method is an approach to problems of fluid-structure interaction in which an elastic structure is immersed in a viscous incompressible fluid.The IB formulation of such problems uses a Lagrangian description of the structure and an Eulerian description of the fluid.It is well known that some versions of the IB method can suffer from poor volume conservation.Methods have been introduced to improve the volume-conservation properties of the IB method,but they either have been fairly specialized,or have used complex,nonstandard Eulerian finite-difference discretizations.In this paper,we use quasi-static and dynamic benchmark problems to investigate the effect of the choice of Eulerian discretization on the volume-conservation properties of a formally second-order accurate IB method.We consider both collocated and staggered-grid discretization methods.For the tests considered herein,the staggered-grid IB scheme generally yields at least a modest improvement in volume conservation when compared to cell-centered methods,and in many cases considered in this work,the spurious volume changes exhibited by the staggered-grid IB method are more than an order of magnitude smaller than those of the collocated schemes.We also compare the performance of cell-centered schemes that use either exact or approximate projection methods.We find that the volumeconservation properties of approximate projection IB methods depend strongly on the formulation of the projection method.When used with the IB method,we find that pressure-free approximate projection methods can yield extremely poor volume conservation,whereas pressure-increment approximate projection methods yield volume conservation that is nearly identical to that of a cell-centered exact projection method. 展开更多
关键词 immersed boundary method fluid-structure interaction collocated discretization staggered-grid discretization exact projection method approximate projection method volume conservation
原文传递
上一页 1 2 5 下一页 到第
使用帮助 返回顶部