期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A novel numerical simulation of CO_(2) immiscible flooding coupled with viscosity and starting pressure gradient modeling in ultra-low permeability reservoir
1
作者 Jie CHI Binshan JU +3 位作者 Jiabei WANG Xing ZHANG Wenbin CHEN Mengfei ZHANG 《Frontiers of Earth Science》 SCIE CSCD 2023年第3期884-898,共15页
CO_(2) immiscible flooding is an environmentally-friendly and effective method to enhance oil recovery in ultra-low permeability reservoirs.A mathematical model of CO_(2) immiscible flooding was developed,considering ... CO_(2) immiscible flooding is an environmentally-friendly and effective method to enhance oil recovery in ultra-low permeability reservoirs.A mathematical model of CO_(2) immiscible flooding was developed,considering the variation in crude oil viscosity and starting pressure gradient in ultra-low permeability reservoirs based on the non-Darcy percolation theory.The mathematical model and numerical simulator were developed in the C++language to simulate the effects of fluid viscosity,starting pressure gradient,and other physical parameters on the distribution of the oil pressure field,oil saturation field,gas saturation field,oil viscosity field,and oil production.The results showed that the formation pressure and pressure propagation velocity in CO_(2) immiscible flooding were lower than the findings without considering the starting pressure gradient.The formation oil content saturation and the crude oil formation viscosity were higher after the consideration of the starting pressure gradient.The viscosity of crude oil considering the initiation pressure gradient during the formation was higher than that without this gradient,but the yield was lower than that condition.Our novel mathematical models helped the characterization of seepage resistance,revealed the influence of fluid property changes on seepage,improved the mathematical model of oil seepage in immiscible flooding processes,and guided the improvement of crude oil recovery in immiscible flooding processes. 展开更多
关键词 VISCOSITY starting pressure gradient flow simulation CO_(2)immiscible flooding ultra-low permeability reservoir
原文传递
Estimation of the water–oil–gas relative permeability curve from immiscible WAG coreflood experiments using the cubic B-spline model
2
作者 Dai-Gang Wang Yong-Le Hu +1 位作者 Jing-Jing Sun Yong Li 《Petroleum Science》 SCIE CAS CSCD 2016年第3期507-516,共10页
Immiscible water-alternating-gas(WAG) flooding is an EOR technique that has proven successful for water drive reservoirs due to its ability to improve displacement and sweep efficiency.Nevertheless,considering the c... Immiscible water-alternating-gas(WAG) flooding is an EOR technique that has proven successful for water drive reservoirs due to its ability to improve displacement and sweep efficiency.Nevertheless,considering the complicated phase behavior and various multiphase flow characteristics,gas tends to break through early in production wells in heterogeneous formations because of overriding,fingering,and channeling,which may result in unfavorable recovery performance.On the basis of phase behavior studies,minimum miscibility pressure measurements,and immiscible WAG coreflood experiments,the cubic B-spline model(CBM) was employed to describe the three-phase relative permeability curve.Using the Levenberg-Marquardt algorithm to adjust the vector of unknown model parameters of the CBM sequentially,optimization of production performance including pressure drop,water cut,and the cumulative gas-oil ratio was performed.A novel numerical inversion method was established for estimation of the water-oil-gas relative permeability curve during the immiscible WAG process.Based on the quantitative characterization of major recovery mechanisms,the proposed method was validated by interpreting coreflood data of the immiscible WAG experiment.The proposed method is reliable and can meet engineering requirements.It provides a basic calculation theory for implicit estimation of oil-water-gas relative permeability curve. 展开更多
关键词 Cubic B-spline model immiscible WAG flooding Relative permeability Numerical inversion
下载PDF
Laboratory simulation of CO_(2) immiscible gas flooding and characterization of seepage resistance
3
作者 Jie CHI Binshan JU +5 位作者 Wenbin CHEN Mengfei ZHANG Rui ZHANG Anqi MIAO Dayan WANG Fengyun CUI 《Frontiers of Earth Science》 SCIE CSCD 2023年第3期797-817,共21页
CO_(2) flooding can significantly improve the recovery rate, effectively recover crude oil, and has the advantages of energy saving and emission reduction. At present, most domestic researches on CO_(2) flooding seepa... CO_(2) flooding can significantly improve the recovery rate, effectively recover crude oil, and has the advantages of energy saving and emission reduction. At present, most domestic researches on CO_(2) flooding seepage experiments are field tests in actual reservoirs or simulations with reservoir numerical simulators. Although targeted, the promotion is poor. For the characterization of seepage resistance, there are few studies on the variation law of seepage resistance caused by the combined action in the reservoir. To solve this problem, based on the mechanism of CO_(2), a physical simulation experiment device for CO_(2) non-miscible flooding production manner is designed. The device adopts two displacement schemes, gas-displacing water and gas-displacing oil, it mainly studies the immiscible gas flooding mechanism and oil displacement characteristics based on factors such as formation dip angle, gas injection position, and gas injection rate. It can provide a more accurate development simulation for the actual field application. By studying the variation law of crude oil viscosity and start-up pressure gradient, the characterization method of seepage resistance gradient affected by these two factors in the seepage process is proposed. The field test is carried out for the natural core of the S oilfield, and the seepage resistance is described more accurately. The results show that the advancing front of the gas drive is an arc, and the advancing speed of the gas drive oil front is slower than that of gas drive water;the greater the dip angle, the higher the displacement efficiency;the higher the gas injection rate is, the higher the early recovery rate is, and the lower the later recovery rate is;oil displacement efficiency is lower than water displacement efficiency;taking the actual core of S oilfield as an example, the mathematical representation method of core start-up pressure gradient in low permeability reservoir is established. 展开更多
关键词 laboratory_simulation viscosity starting pressure gradient CO immiscible flooding characterization of seepage resistance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部