Pd-containing ionic liquid (IL) 1-hexyl-3-methylimidazolium tetrafluoroborate (C6MIMBF4) immobilized on γ-Al2O3 (Pd-IL/γ-Al2O3) was prepared and characterized by Fourier transform infrared spectroscopy (FTIR...Pd-containing ionic liquid (IL) 1-hexyl-3-methylimidazolium tetrafluoroborate (C6MIMBF4) immobilized on γ-Al2O3 (Pd-IL/γ-Al2O3) was prepared and characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and Brunauer-Emmett- Teller (BET) analysis. The influences of C6MIMBF4 loading and Pd on methane conversion to C2 hydrocarbons under cold plasma were investigated. FTIR and SEM analyses indicated that C6MIMBF4 had been successfully immobilized on γ-Al2O3 and the C6MIMBF4 showed excellent stability under cold plasma. The results of BET and methane conversion showed that with the increase in immobilization amount of C6MIMBF4 onto γ-Al2O3, the specific surface area and pore volume of IL/γ-Al2O3 decreased, while the selectivity and yield of C2 hydrocarbons increased. The selectivity of C2 hydrocarbons was 94.6% when the loading of C6MIMBF4 was 40%, and the percentage of C2H4 in C2 hydrocarbons was as high as 64% when using Pd-IL/γ-Al2O3 as a catalyst with no conventional thermal reduction treatment. Optical emission spectra (OES) from the cold plasma reactor during methane conversion were also studied. The results indicated that the intensity of the C2, CH, H, and C active species from methane and hydrogen decomposition increased when IL/γ-Al2O3 or Pd-IL/γ-Al2O3 was introduced into the plasma system. Based on the analyses of the gas product and OES spectra, it can be concluded that the surface catalyzed reactions between plasma and ionic liquid were very important for the reduction of Pd2+ and the formation of C2H4.展开更多
A bifunctional heterogeneous catalyst was designed and synthesized,denoted DMEDA/IL–NH2-MIL-101.The structure and physical-chemical characterization of DMEDA/IL–NH2-MIL-101 and its precursors were characterized by S...A bifunctional heterogeneous catalyst was designed and synthesized,denoted DMEDA/IL–NH2-MIL-101.The structure and physical-chemical characterization of DMEDA/IL–NH2-MIL-101 and its precursors were characterized by SEM,N2 adsorption-desorption,XPS,FT-IR,PXRD,elemental analysis,and TGA techniques.The date showed that the two catalytic components of N,N-dimethylethylenediamine(DMEDA)and 1-butyl-3-methylimidazolium bromide(BmimBr)were chemically immobilized in NH2-MIL-101 nanocages.The amine of DMEDA was grafted onto carrier NH2-MIL-101 by N–Cr coordinate covalent bonds and the ionic liquid of BmimBr(IL(Br-))was anchored in the NH2-MIL-101 nanocages by'ship-in-a-bottle'method,in which the amidogen of NH2-MIL-101 condensed with N,N-carbonyldiimidazole(CDI)firstly,and then alkylated with 1-bromo butane.This novel heterogeneous catalyst with two different active sites can efficiently catalyze the synthesis of N-aryl oxazolidin-2-ones from carbon dioxide(CO2),epoxides,and anilines in one-pot under mild solvent-free conditions.It not only showed good stability and recoverability after five cycles but also exhibited shape selectivity for the substrate due to the synergic catalysis of amine,ionic liquid,and NH2-MIL-101.This novel bifunctional material is a promising solid catalyst for the green synthesis of N-aryl oxazolidin-2-ones.展开更多
Benzene alkylation catalyzed by immobilized ionic liquids(ILs)on solid carriers is considered as a heterogeneous reaction,in which the interfacial properties play an important role.Hence,the interfacial characteristic...Benzene alkylation catalyzed by immobilized ionic liquids(ILs)on solid carriers is considered as a heterogeneous reaction,in which the interfacial properties play an important role.Hence,the interfacial characteristics between benzene/1-dodecene mixture and immobilized chloroaluminate ILs with different alkyl chain length on the silica substrate were investigated by molecular dynamics simulation.The grafted ILs can obviously promote the enrichment of benzene near the interface,leading to a higher ratio of benzene to dodecene,and the interfacial width increases slightly with increased alkyl chain of grafted cations.At the same time,the grafted cations can also enhance the benzene diffusion and suppress the dodecene diffusion at the interface,which probably helps to inhibit the inactivation of catalysts.This work provides deeply insights into the rational design of novel immo-bilized ILs catalysts for the benzene alkylation.展开更多
In this work,acid functionalized multi-wall carbon nanotubes(MWCNTs) were modified with imidazolium-based ionic liquids.The selective oxidation of various alcohols with hydrogen peroxide catalyzed by [PZnMo2W9O39]^5...In this work,acid functionalized multi-wall carbon nanotubes(MWCNTs) were modified with imidazolium-based ionic liquids.The selective oxidation of various alcohols with hydrogen peroxide catalyzed by [PZnMo2W9O39]^5-,ZnPOM,supported on ionic liquids-modified with MWCNTs,MWCNTAPIB,is reported.This catalyst[ZnPOM@APIB-MWCNT],was characterized by X-ray diffraction,scanning electron microscopy(SEM) and FT-IR spectroscopic methods.This heterogeneous catalyst exhibited high stability and reusability in the oxidation reaction without loss of its catalytic performance.展开更多
基金supported by the National Science Foundation of China(No.20973028)
文摘Pd-containing ionic liquid (IL) 1-hexyl-3-methylimidazolium tetrafluoroborate (C6MIMBF4) immobilized on γ-Al2O3 (Pd-IL/γ-Al2O3) was prepared and characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and Brunauer-Emmett- Teller (BET) analysis. The influences of C6MIMBF4 loading and Pd on methane conversion to C2 hydrocarbons under cold plasma were investigated. FTIR and SEM analyses indicated that C6MIMBF4 had been successfully immobilized on γ-Al2O3 and the C6MIMBF4 showed excellent stability under cold plasma. The results of BET and methane conversion showed that with the increase in immobilization amount of C6MIMBF4 onto γ-Al2O3, the specific surface area and pore volume of IL/γ-Al2O3 decreased, while the selectivity and yield of C2 hydrocarbons increased. The selectivity of C2 hydrocarbons was 94.6% when the loading of C6MIMBF4 was 40%, and the percentage of C2H4 in C2 hydrocarbons was as high as 64% when using Pd-IL/γ-Al2O3 as a catalyst with no conventional thermal reduction treatment. Optical emission spectra (OES) from the cold plasma reactor during methane conversion were also studied. The results indicated that the intensity of the C2, CH, H, and C active species from methane and hydrogen decomposition increased when IL/γ-Al2O3 or Pd-IL/γ-Al2O3 was introduced into the plasma system. Based on the analyses of the gas product and OES spectra, it can be concluded that the surface catalyzed reactions between plasma and ionic liquid were very important for the reduction of Pd2+ and the formation of C2H4.
基金Support of this work by the National Natural Science Foundation of China(21573016)is gratefully acknowledged.
文摘A bifunctional heterogeneous catalyst was designed and synthesized,denoted DMEDA/IL–NH2-MIL-101.The structure and physical-chemical characterization of DMEDA/IL–NH2-MIL-101 and its precursors were characterized by SEM,N2 adsorption-desorption,XPS,FT-IR,PXRD,elemental analysis,and TGA techniques.The date showed that the two catalytic components of N,N-dimethylethylenediamine(DMEDA)and 1-butyl-3-methylimidazolium bromide(BmimBr)were chemically immobilized in NH2-MIL-101 nanocages.The amine of DMEDA was grafted onto carrier NH2-MIL-101 by N–Cr coordinate covalent bonds and the ionic liquid of BmimBr(IL(Br-))was anchored in the NH2-MIL-101 nanocages by'ship-in-a-bottle'method,in which the amidogen of NH2-MIL-101 condensed with N,N-carbonyldiimidazole(CDI)firstly,and then alkylated with 1-bromo butane.This novel heterogeneous catalyst with two different active sites can efficiently catalyze the synthesis of N-aryl oxazolidin-2-ones from carbon dioxide(CO2),epoxides,and anilines in one-pot under mild solvent-free conditions.It not only showed good stability and recoverability after five cycles but also exhibited shape selectivity for the substrate due to the synergic catalysis of amine,ionic liquid,and NH2-MIL-101.This novel bifunctional material is a promising solid catalyst for the green synthesis of N-aryl oxazolidin-2-ones.
基金The financial support by State Key Laboratory of Heavy Oil Processing
文摘Benzene alkylation catalyzed by immobilized ionic liquids(ILs)on solid carriers is considered as a heterogeneous reaction,in which the interfacial properties play an important role.Hence,the interfacial characteristics between benzene/1-dodecene mixture and immobilized chloroaluminate ILs with different alkyl chain length on the silica substrate were investigated by molecular dynamics simulation.The grafted ILs can obviously promote the enrichment of benzene near the interface,leading to a higher ratio of benzene to dodecene,and the interfacial width increases slightly with increased alkyl chain of grafted cations.At the same time,the grafted cations can also enhance the benzene diffusion and suppress the dodecene diffusion at the interface,which probably helps to inhibit the inactivation of catalysts.This work provides deeply insights into the rational design of novel immo-bilized ILs catalysts for the benzene alkylation.
基金the Yazd University Research Council for partial support of this work
文摘In this work,acid functionalized multi-wall carbon nanotubes(MWCNTs) were modified with imidazolium-based ionic liquids.The selective oxidation of various alcohols with hydrogen peroxide catalyzed by [PZnMo2W9O39]^5-,ZnPOM,supported on ionic liquids-modified with MWCNTs,MWCNTAPIB,is reported.This catalyst[ZnPOM@APIB-MWCNT],was characterized by X-ray diffraction,scanning electron microscopy(SEM) and FT-IR spectroscopic methods.This heterogeneous catalyst exhibited high stability and reusability in the oxidation reaction without loss of its catalytic performance.