Ear-related traits are often selection targets for maize improvement. This study used an immortalized F(IF) population to elucidate the genetic basis of ear-related traits. Twelve ear-related traits(namely, row number...Ear-related traits are often selection targets for maize improvement. This study used an immortalized F(IF) population to elucidate the genetic basis of ear-related traits. Twelve ear-related traits(namely, row number(RN), kernel number per row(KNPR), ear length(EL), ear diameter(ED), ten-kernel thickness(TKT), ear weight(EW), cob diameter(CD),kernel length(KL), kernel width(KW), grain weight per ear(GW), 100-kernel weight(HKW), and grain yield per plot(GY)),were collected from the IFpopulation. The ear-related traits were comprised of 265 crosses derived from 516 individuals of the recombinant inbred lines(RILs) under two separated environments in 2017 and 2018, respectively. Quantitative trait loci(QTLs) analyses identified 165 ear traits related QTLs, which explained phenotypic variation ranging from 0.1 to 12.66%. Among the 165 QTLs, 19 underlying nine ear-related traits(CD, ED, GY, RN, TKT, HKW, KL, GW, and KNPR)were identified across multiple environments and recognized as reliable QTLs. Furthermore, 44.85% of the total QTLs showed an overdominance effect, and 12.72% showed a dominance effect. Additionally, we found 35 genomic regions exhibiting pleiotropic effects across the whole maize genome, and 17 heterotic loci(HLs) for RN, EL, ED and EW were identified. The results provide insights into genetic components of ear-related traits and enhance the understanding of the genetic basis of heterosis in maize.展开更多
Immortalized F2 population of rice (Oryza sativa L.) was developed by randomly mating F1 among recombinant inbred (RI) lines derived from (Zhenshan 97B×Minghui 63),which allowed replications within and across env...Immortalized F2 population of rice (Oryza sativa L.) was developed by randomly mating F1 among recombinant inbred (RI) lines derived from (Zhenshan 97B×Minghui 63),which allowed replications within and across environments.QTL (quantitative trait loci) mapping analysis on kilo-grain weight of immortalized F2 population was performed by using newly developed software for QTL mapping,QTL Mapper 2.0. Eleven distinctly digenic epistatic loci included a total of 15 QTL were located on eight chromosomes.QTL main effects of additive,dominance,and additive×additive,additive×dominance,and dominance×dominance interactions were estimated.Interaction effects between QTL main effects and environments (QE) were predicted.Less than 40% of single effects,most of which were additive effects,for identified QTL were significant at 5% level.The directional difference for QTL main effects suggested that these QTL were distributed in parents in the repulsion phase.This should make it feasible to improve kilo-grain weight of both parents by selecting appropriate new recombinants. Only few of the QE interaction effects were significant.Application prospect for QTL mapping achievements in genetic breeding was discussed.展开更多
基金supported by the National Key R&D Program of China(2016YFD0100802 and 2016YFD0101803)the National Natural Science Foundation of China(31421005 and 91935303)。
文摘Ear-related traits are often selection targets for maize improvement. This study used an immortalized F(IF) population to elucidate the genetic basis of ear-related traits. Twelve ear-related traits(namely, row number(RN), kernel number per row(KNPR), ear length(EL), ear diameter(ED), ten-kernel thickness(TKT), ear weight(EW), cob diameter(CD),kernel length(KL), kernel width(KW), grain weight per ear(GW), 100-kernel weight(HKW), and grain yield per plot(GY)),were collected from the IFpopulation. The ear-related traits were comprised of 265 crosses derived from 516 individuals of the recombinant inbred lines(RILs) under two separated environments in 2017 and 2018, respectively. Quantitative trait loci(QTLs) analyses identified 165 ear traits related QTLs, which explained phenotypic variation ranging from 0.1 to 12.66%. Among the 165 QTLs, 19 underlying nine ear-related traits(CD, ED, GY, RN, TKT, HKW, KL, GW, and KNPR)were identified across multiple environments and recognized as reliable QTLs. Furthermore, 44.85% of the total QTLs showed an overdominance effect, and 12.72% showed a dominance effect. Additionally, we found 35 genomic regions exhibiting pleiotropic effects across the whole maize genome, and 17 heterotic loci(HLs) for RN, EL, ED and EW were identified. The results provide insights into genetic components of ear-related traits and enhance the understanding of the genetic basis of heterosis in maize.
文摘Immortalized F2 population of rice (Oryza sativa L.) was developed by randomly mating F1 among recombinant inbred (RI) lines derived from (Zhenshan 97B×Minghui 63),which allowed replications within and across environments.QTL (quantitative trait loci) mapping analysis on kilo-grain weight of immortalized F2 population was performed by using newly developed software for QTL mapping,QTL Mapper 2.0. Eleven distinctly digenic epistatic loci included a total of 15 QTL were located on eight chromosomes.QTL main effects of additive,dominance,and additive×additive,additive×dominance,and dominance×dominance interactions were estimated.Interaction effects between QTL main effects and environments (QE) were predicted.Less than 40% of single effects,most of which were additive effects,for identified QTL were significant at 5% level.The directional difference for QTL main effects suggested that these QTL were distributed in parents in the repulsion phase.This should make it feasible to improve kilo-grain weight of both parents by selecting appropriate new recombinants. Only few of the QE interaction effects were significant.Application prospect for QTL mapping achievements in genetic breeding was discussed.