AIM: To investigate the expression of SNC73, a transcript of the immunoglobulin α-1 gene (IgA1-H chain), in human epitheliα-derived tumor cells. METHODS: Total RNAs and cell lysates were prepared from five diffe...AIM: To investigate the expression of SNC73, a transcript of the immunoglobulin α-1 gene (IgA1-H chain), in human epitheliα-derived tumor cells. METHODS: Total RNAs and cell lysates were prepared from five different human epithelial cell lines derived from lung, stomach, liver, skin, and breast, respectively. RT-PCR and immunoblot analysis of these five cell lines were done. Both RT-PCR and immunochemistry were used to detect the expression of SNC73 in these cell lines. We also examined the expression of SNC73 in normal epithelial cells of colon mucosa by in situ hybridization. RT-PCR and immunoblot analysis were used to determine whether the recombination activating gene1/2 (RAG1 and RAG2) is present. The expression of three immunoglobulin transcription factors, EBF, E2A and Pax5, and the heavy chain of IgA1 and two types of light chains of immunoglobulin (κ and λ) in the aforementioned cell lines were analyzed by RT-PCR and immunochemistry, respectively. All the RT-PCR products were analyzed by sequencing. RESULTS: The results of RT-PCR and immunochemistry showed that both mRNA and protein of SNC73 were expressed in five human epitheliα-derived cancer cell lines. These data were further confirmed in the normal epithelial cells of colon mucosa by in situ hybridization. Also, the heavy chain of IgA1 and κ light chain were detected in these cells, but no λ light chain was observed. Both RAG1 and RAG2 were expressed in these human epitheliα-derived cancer cell lines and the sequence was identical to that expressed in pre-B and pre-T cells. In addition to RAG1 and RAG2, the mRNA in one of the immunoglobulin transcription factors, EBF, was also detected in these cell lines, and Pax5 was only expressed in SW480 cells, but no expression of E2A was observed in all the five cell lines. CONCLUSION: Immunoglobulin A1 is originally expressed and V(D)J recombination machine is also present in non-lymphoid cells, suggesting that V(D)J recombination machine mediates the assembly of immunoglobulin A1 in non-lymphoid cells as in prelymphocytes.展开更多
The most abundant immunoglobulin present in the human body is IgA. It has the highest concentrations at the mucosal lining and in biofluids such as milk and is the second most abundant class of antibodies in serum. We...The most abundant immunoglobulin present in the human body is IgA. It has the highest concentrations at the mucosal lining and in biofluids such as milk and is the second most abundant class of antibodies in serum. We assessed the structural diversity and clonal repertoire of IgA1-containing molecular assemblies longitudinally in human serum and milk from three donors using a mass spectrometry-based approach. IgA-containing molecules purified from serum or milk were assessed by the release and subsequent analysis of their Fab fragments. Our data revealed that serum IgA1 consists of two distinct structural populations, namely monomeric IgA1 (∼80%) and dimeric joining (J-) chain coupled IgA1 (∼20%). Also, we confirmed that IgA1 in milk is present solely as secretory (S)IgA, consisting of two (∼50%), three (∼33%) or four (∼17%) IgA1 molecules assembled with a J-chain and secretory component (SC). Interestingly, the serum and milk IgA1-Fab repertoires were distinct between monomeric, and J-chain coupled dimeric IgA1. The serum dimeric J-chain coupled IgA1 repertoire contained several abundant clones also observed in the milk IgA1 repertoire. The latter repertoire had little to no overlap with the serum monomeric IgA1 repertoire. This suggests that human IgA1s have (at least) two distinct origins;one of these produces dimeric J-chain coupled IgA1 molecules, shared in human serum and milk, and another produces monomeric IgA1 ending up exclusively in serum.展开更多
文摘AIM: To investigate the expression of SNC73, a transcript of the immunoglobulin α-1 gene (IgA1-H chain), in human epitheliα-derived tumor cells. METHODS: Total RNAs and cell lysates were prepared from five different human epithelial cell lines derived from lung, stomach, liver, skin, and breast, respectively. RT-PCR and immunoblot analysis of these five cell lines were done. Both RT-PCR and immunochemistry were used to detect the expression of SNC73 in these cell lines. We also examined the expression of SNC73 in normal epithelial cells of colon mucosa by in situ hybridization. RT-PCR and immunoblot analysis were used to determine whether the recombination activating gene1/2 (RAG1 and RAG2) is present. The expression of three immunoglobulin transcription factors, EBF, E2A and Pax5, and the heavy chain of IgA1 and two types of light chains of immunoglobulin (κ and λ) in the aforementioned cell lines were analyzed by RT-PCR and immunochemistry, respectively. All the RT-PCR products were analyzed by sequencing. RESULTS: The results of RT-PCR and immunochemistry showed that both mRNA and protein of SNC73 were expressed in five human epitheliα-derived cancer cell lines. These data were further confirmed in the normal epithelial cells of colon mucosa by in situ hybridization. Also, the heavy chain of IgA1 and κ light chain were detected in these cells, but no λ light chain was observed. Both RAG1 and RAG2 were expressed in these human epitheliα-derived cancer cell lines and the sequence was identical to that expressed in pre-B and pre-T cells. In addition to RAG1 and RAG2, the mRNA in one of the immunoglobulin transcription factors, EBF, was also detected in these cell lines, and Pax5 was only expressed in SW480 cells, but no expression of E2A was observed in all the five cell lines. CONCLUSION: Immunoglobulin A1 is originally expressed and V(D)J recombination machine is also present in non-lymphoid cells, suggesting that V(D)J recombination machine mediates the assembly of immunoglobulin A1 in non-lymphoid cells as in prelymphocytes.
基金support from the Netherlands Organization for Scientific Research(NOW)funding the Netherlands Proteomics Centre through the X-omics Road Map program(project 184.034.019)and Gravitation Subgrant 00022 from the Institute for Chemical Immunology.AJRH acknowledges support from the Netherlands Organization for Scientific Research(NOW)through the Spinoza Award SPI.2017.028 to AJRH.The COVID MILK studies was funded by Stichting Steun Emma Kinderziekenhuis.KAD acknowledges the Amsterdam Reproduction and Development Institute for funding this work though the AR&D grant(V.000296).
文摘The most abundant immunoglobulin present in the human body is IgA. It has the highest concentrations at the mucosal lining and in biofluids such as milk and is the second most abundant class of antibodies in serum. We assessed the structural diversity and clonal repertoire of IgA1-containing molecular assemblies longitudinally in human serum and milk from three donors using a mass spectrometry-based approach. IgA-containing molecules purified from serum or milk were assessed by the release and subsequent analysis of their Fab fragments. Our data revealed that serum IgA1 consists of two distinct structural populations, namely monomeric IgA1 (∼80%) and dimeric joining (J-) chain coupled IgA1 (∼20%). Also, we confirmed that IgA1 in milk is present solely as secretory (S)IgA, consisting of two (∼50%), three (∼33%) or four (∼17%) IgA1 molecules assembled with a J-chain and secretory component (SC). Interestingly, the serum and milk IgA1-Fab repertoires were distinct between monomeric, and J-chain coupled dimeric IgA1. The serum dimeric J-chain coupled IgA1 repertoire contained several abundant clones also observed in the milk IgA1 repertoire. The latter repertoire had little to no overlap with the serum monomeric IgA1 repertoire. This suggests that human IgA1s have (at least) two distinct origins;one of these produces dimeric J-chain coupled IgA1 molecules, shared in human serum and milk, and another produces monomeric IgA1 ending up exclusively in serum.