期刊文献+
共找到32篇文章
< 1 2 >
每页显示 20 50 100
Impact dynamics analysis of free-floating space manipulator capturing satellite on orbit and robust adaptive compound control algorithm design for suppressing motion 被引量:8
1
作者 董楸煌 陈力 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第4期413-422,共10页
The impact dynamics, impact effect, and post-impact unstable motion sup- pression of free-floating space manipulator capturing a satellite on orbit are analyzed. Firstly, the dynamics equation of free-floating space m... The impact dynamics, impact effect, and post-impact unstable motion sup- pression of free-floating space manipulator capturing a satellite on orbit are analyzed. Firstly, the dynamics equation of free-floating space manipulator is derived using the sec- ond Lagrangian equation. Combining the momentum conservation principle, the impact dynamics and effect between the space manipulator end-effector and satellite of the cap- ture process are analyzed with the momentum impulse method. Focusing on the unstable motion of space manipulator due to the above impact effect, a robust adaptive compound control algorithm is designed to suppress the above unstable motion. There is no need to control the free-floating base position to save the jet fuel. Finally, the simulation is proposed to show the impact effect and verify the validity of the control algorithm. 展开更多
关键词 free-floating space manipulator satellite capturing impact dynamics robust adaptive compound control
下载PDF
Partition method for impact dynamics of flexible multibody systems based on contact constraint 被引量:4
2
作者 段玥晨 章定国 洪嘉振 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第11期1393-1404,共12页
The impact dynamics of a flexible multibody system is investigated. By using a partition method, the system is divided into two parts, the local impact region and the region away from the impact. The two parts are con... The impact dynamics of a flexible multibody system is investigated. By using a partition method, the system is divided into two parts, the local impact region and the region away from the impact. The two parts are connected by specific boundary conditions, and the system after partition is equivalent to the original system. According to the rigid-flexible coupling dynamic theory of multibody system, system's rigid-flexible coupling dynamic equations without impact are derived. A local impulse method for establishing the initial impact conditions is proposed. It satisfies the compatibility con- ditions for contact constraints and the actual physical situation of the impact process of flexible bodies. Based on the contact constraint method, system's impact dynamic equa- tions are derived in a differential-algebraic form. The contact/separation criterion and the algorithm are given. An impact dynamic simulation is given. The results show that system's dynamic behaviors including the energy, the deformations, the displacements, and the impact force during the impact process change dramatically. The impact makes great effects on the global dynamics of the system during and after impact. 展开更多
关键词 flexible multibody system impact dynamics partition method impulse-momentum method contact constraint
下载PDF
Partition method and experimental validation for impact dynamics of flexible multibody system 被引量:2
3
作者 J.Y.Wang Z.Y.Liu J.Z.Hong 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第3期482-492,共11页
The impact problem of a flexible multibody system is a non-smooth, high-transient, and strong-nonlinear dynamic process with variable boundary. How to model the contact/impact process accurately and efficiently is one... The impact problem of a flexible multibody system is a non-smooth, high-transient, and strong-nonlinear dynamic process with variable boundary. How to model the contact/impact process accurately and efficiently is one of the main difficulties in many engineering applications. The numerical approaches being used widely in impact analysis are mainly from two fields: multibody system dynamics (MBS) and computational solid mechanics (CSM). Approaches based on MBS provide a more efficient yet less accurate analysis of the contact/impact problems, while approaches based on CSM are well suited for particularly high accuracy needs, yet require very high computational effort. To bridge the gap between accuracy and efficiency in the dynamic simulation of a flexible multibody system with contacts/impacts, a partition method is presented considering that the contact body is divided into two parts, an impact region and a non-impact region. The impact region is modeled using the finite element method to guarantee the local accuracy, while the non-impact region is modeled using the modal reduction approach to raise the global efficiency. A three-dimensional rod-plate impact experiment is designed and performed to validate the numerical results. The principle for how to partition the contact bodies is proposed: the maximum radius of the impact region can be estimated by an analytical method, and the modal truncation orders of the non-impact region can be estimated by the highest frequency of the signal measured. The simulation results using the presented method are in good agreement with the experimental results. It shows that this method is an effec-rive formulation considering both accuracy and efficiency. Moreover, a more complicated multibody impact problem of a crank slider mechanism is investigated to strengthen this conclusion. 展开更多
关键词 Partition method impact dynamics Experimental investigation Efficiency and accuracy Partition principle
下载PDF
Numerical and experimental studies on impact dynamics of a planar flexible multibody system 被引量:7
4
作者 Fu-Xiang Dong Jia-Zhen Hong Kun Zhu Zheng-Yue Yu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第4期635-642,共8页
In this paper a computational methodology on impact dynamics of the flexible multibody system is presented. First, the floating frame of reference approach and nodal coordinates on the basis of finite element formulat... In this paper a computational methodology on impact dynamics of the flexible multibody system is presented. First, the floating frame of reference approach and nodal coordinates on the basis of finite element formulation are used to describe the kinematics of planar deformable bodies. According to the kinematic description of contact conditions, the contact constraint equations of planar flexible bodies are derived. Based on the varying topology technique the impact dynamic equations for a planar multibody system are established. Then the initial conditions of the equations in each contact stage are determined according to the discontinuity theory in continuum mechanics. The experiments between the aluminum rods are performed to check the correctness of the proposed method. Through the comparison between the numerical and experimental results the proposed method is validated. Experimental results also show that the impulse momentum method cannot accurately predict the complex impact dynamic phenomena and the continuous model may lead to a serious error when used to simulate the impact problems with significant wave propagation effects. 展开更多
关键词 Flexible multibody system impact dynamics Appending constraint method (ACM) impact experiments
下载PDF
Impact Dynamics of a Dragonfly Wing
5
作者 Lihua Wang Wenjing Ye Yueting Zhou 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第3期889-906,共18页
The lift force was reported not to be high enough to support the dragonfly’s weight during flight in some conventional investigations,and higher lift force is required for its takeoff.In this study,by employing a thi... The lift force was reported not to be high enough to support the dragonfly’s weight during flight in some conventional investigations,and higher lift force is required for its takeoff.In this study,by employing a thin plate model,impact effect is investigated for the wing deformation in dragonfly flapping during takeoff.The static displacement is formulated to compare with the dynamical displacement caused by impact.The governing equation of motion for the impact dynamics of a dragonfly wing is derived based on Newton’s second law.Separation of variables technique and assumed modes method are introduced to solve the resulting equations.Further,lift force is presented for the cases of considering and without considering the impact on the wing flapping which indicates that the impact has prominent effects for the dragonfly’s aerodynamic performance.Numerical simulations demonstrate that considering the impact effect on the wing flapping can increase the wing deformation,which results in the rise of the lift force.The enhanced lift force is of critical importance for the dragonfly’s takeoff. 展开更多
关键词 impact dynamics wing deformation thin plate model lift force.
下载PDF
Dynamic impact properties of deep sandstone under thermal-hydraulicmechanical coupling loads
6
作者 CAO Chunhui DING Haonan ZOU Baoping 《Journal of Mountain Science》 SCIE CSCD 2024年第6期2113-2129,共17页
The deep rock mass within coal mines situated in a challenging environment are characterized by high ground stress,high geotemperature,high osmotic water pressure,and dynamic disturbances from mechanical excavation.To... The deep rock mass within coal mines situated in a challenging environment are characterized by high ground stress,high geotemperature,high osmotic water pressure,and dynamic disturbances from mechanical excavation.To investigate the impact of this complex mechanical environment on the dynamic characteristics of roof sandstone in self-formed roadways without coal pillars,standard specimens of deep sandstone from the 2611 upper tunnel working face of the Yongmei Company within the Henan Coal Chemical Industry Group in Henan,China were prepared,and an orthogonal test was designed.Using a self-developed geotechnical dynamic impact mechanics test system,triaxial dynamic impact tests under thermal-hydraulicmechanical coupling conditions were conducted on deep sandstone.The results indicate that under high confining pressure,deep sandstone exhibits pronounced brittle failure at low temperatures,with peak strength gradually decreasing as temperature and osmotic water pressure increase.Conversely,under low confining pressure and low temperature,the brittleness of deep sandstone weakens gradually,while ductility increases.Moreover,sandstone demonstrates higher peak strength at low temperatures under high axial pressure conditions,lower peak strength at high temperatures,and greater strain under low axial pressure and high osmotic water pressure.Increases in impact air pressure and osmotic water pressure have proportionally greater effects on peak stress and peak strain.Approximately 50%of the input strain energy is utilized as effective energy driving the sandstone fracture process.Polar analysis identifies the optimal combination of factors affecting the peak stress and peak strain of sandstone.Under the coupling effect,intergranular and transgranular fractures occur within the sandstone.SEM images illustrate that the damage forms range from minor damage with multiple fissures to extensive fractures and severe fragmentation.This study elucidates the varied dynamic impact mechanical properties of deep sandstones under thermal-hydraulic-mechanical coupling,along with multifactor analysis methods and their optimal factor combinations. 展开更多
关键词 Deep sandstone Thermal-hydraulicmechanical coupling Dynamic impact STRESS-STRAIN Failure Modes Polar analysis
下载PDF
Water film coated composite liquid metal marble and its fluidic impact dynamics phenomenon
7
作者 Yujie DING Jing LIU 《Frontiers in Energy》 SCIE CSCD 2016年第1期29-36,共8页
A composite liquid metal marble made of metal droplet coated with water film was proposed and its impact dynamics phenomenon was disclosed. After encapsulating the liquid metal into water droplets, the fabricated liqu... A composite liquid metal marble made of metal droplet coated with water film was proposed and its impact dynamics phenomenon was disclosed. After encapsulating the liquid metal into water droplets, the fabricated liquid marble successfully avoided being oxygenized by the metal fluid and thus significantly improved its many physical capabilities such as surface tension modification and shape control. The striking behaviors of the composite liquid metal marbles on a substrate at room temperature were experimentally inves- tigated in a high speed imaging way. It was disclosed that such marbles could disintegrate, merge, and even rebound when impacting the substrate, unlike the existing dynamic fluidic behaviors of liquid marble or metal droplet. The mechanisms lying behind these features were preliminarily interpreted. This fundamental finding raised profound multiphase fluid mechanics for understanding the complex liquid composite which was also critical for a variety of practical applications such as liquid metal jet cooling, inkjet printed electronics, 3D printing or metal particle fabrication etc. 展开更多
关键词 liquid metal marble metallic droplet composite fluid impact dynamics multiphase fluid mechanics
原文传递
Initial Conditions of Impact Dynamics
8
作者 董富祥 洪嘉振 +1 位作者 朱焜 余征跃 《Journal of Shanghai Jiaotong university(Science)》 EI 2010年第3期368-371,共4页
The effects of the initial conditions of impact dynamics equations are investigated numerically and experimentally.The inadequacies of previous studies on initial conditions are pointed out.Then a coefficient of veloc... The effects of the initial conditions of impact dynamics equations are investigated numerically and experimentally.The inadequacies of previous studies on initial conditions are pointed out.Then a coefficient of velocity jump at the moment of impact is introduced,and the experiments for the mental rods are implemented to validate the appending constraints modeling methods for impact process.The comparisons between the experimental and simulated results at different coefficients are used to study the effects of the velocity jump conditions to the numerical simulation.The results indicate that the physical velocity response of bodies during impact is smooth;the different values of velocity jump only have small effects on numerical oscillation of velocity response,and they have no effects on the time history of impact force. 展开更多
关键词 impact dynamics velocity jump impact experiments numerical simulation
原文传递
Modeling the dynamics of firms' technological impact
9
作者 徐舒琪 Manuel Sebastian Mariani 吕琳媛 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第12期111-120,共10页
Recent studies in complexity science have uncovered temporal regularities in the dynamics of impact along scientific and other creative careers, but they did not extend the obtained insights to firms. In this paper, w... Recent studies in complexity science have uncovered temporal regularities in the dynamics of impact along scientific and other creative careers, but they did not extend the obtained insights to firms. In this paper, we show that firms' technological impact patterns cannot be captured by the state-of-the-art dynamical models for the evolution of scientists' research impact, such as the Q model. Therefore, we propose a time-varying returns model which integrates the empiricallyobserved relation between patent order and technological impact into the Q model. The proposed model can reproduce the timing pattern of firms' highest-impact patents accurately. Our results shed light on modeling the differences behind the impact dynamics of researchers and firms. 展开更多
关键词 firm technological impact patent analysis impact dynamics
下载PDF
Dynamic Mechanical Behavior and Numerical Simulation of an Ancient Underground Rock Mass under Impact Loading
10
作者 Baoping Zou Zhiping Liu +2 位作者 Weifeng Jin Haonan Ding Zhanyou Luo 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第1期517-539,共23页
To study the dynamic mechanical properties of tuff under different environmental conditions,the tuff from an ancient quarry in Shepan Island was prepared.The impact damage to the rock was tested using a triaxial dynam... To study the dynamic mechanical properties of tuff under different environmental conditions,the tuff from an ancient quarry in Shepan Island was prepared.The impact damage to the rock was tested using a triaxial dynamic impact mechanical testing system(TDIMTS)with different ground stresses,temperatures,and groundwater pressures.The time-strain relationship,dynamic stress-strain relationship,energy dissipation law,energy-peak strain relationship,and the impact damage pattern of the tuff specimens under impact air pressures were investigated.The TDIMTS experiment on ancient underground rock mass under impact loading was also simulated using the finite element analysis software LS-DYNA based on the Holmquist-Johnson-Cook(HJC)material model.The dynamic failure process,failure pattern and peak stress of tuff specimen were calculated.The simulation results obtained using the above methods were in good agreement with the experimental results.The results of the dynamic experiment show that with the same local stress,groundwater pressure,and temperature,the damage to the tuff specimens caused by blasting and quarrying disturbances gradually increases as the impact pressure increases.Under the same local stress,groundwater pressure,and temperature,the energy required to rupture the tuffs in ancient underground caverns is relatively small if the impact pressure is low accordingly,but as the impact pressure increases,the damage to the tuff caused by quarrying disturbance gradually increases.The damage gradually increases and the degree of damage to the tuff and the strain energy exhibit asymptotic growth when the tuff specimens are subjected to the greater strain energy,increasing the degree of rupturing of the tuff.In addition,the average crushing size decreases with increasing strain energy.By comparing the simulation results with the experimental results,it was found that the HJC model reflected the dynamic impact performance of tuff specimen,and the simulation results showed an evident strain rate effect.These results of this study can offer some guidance and theoretical support for the stability evaluation,protection,and safe operation of the ancient underground caverns in future. 展开更多
关键词 Ancient underground caverns numerical simulation thermal-hydraulic-mechanical coupling dynamic impact TUFF stability of surrounding rock
下载PDF
Experimental study on anti-penetration mechanism of bolted composite protective structure with limited span under impact of low-velocity projectile 被引量:2
11
作者 Yu-jia Liu Dian Li +2 位作者 Hai-liang Hou Zhu-jie Zhao Yue Xie 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第6期995-1005,共11页
In order to study the influence of the bolt joint mode on low-velocity projectiles penetrating the composite protective structure,two bolt joint models which connect the composite target to the fixed frame were design... In order to study the influence of the bolt joint mode on low-velocity projectiles penetrating the composite protective structure,two bolt joint models which connect the composite target to the fixed frame were designed,the ballistic test of the bolted composite protective structure with limited span was carried out,and the bearing and failure characteristics of the bolted region,as well as the energy dissipation of each part of the structure,were analyzed.The results show that in the condition of lowvelocity impact,there are three failure modes for the bolted composite protective structure subjected to projectile penetration,including failure of the impact point of the composite target,failure of protective structure connecting components and failure of the holes in the bolted region of the composite target;the failure mode of bolt holes in the bolted region has a great influence on the protection performance,and the allowable value of the bearing capacity of the bolted region depends on the sum of the minimum failure load in the failure modes and the friction force;shear-out failure occurring in the bolt holes in the bolted region exerts the greatest effect on ballistic performance,which should be avoided;When simultaneous failure occurs in the bolted region and the free deformation region of the composite protective structure,the energy absorption per unit surface density of the composite protective structure reaches the maximum,which can give full play to its anti-penetration efficiency. 展开更多
关键词 impact dynamics Composite protective structure Bolt joint Ballistic test Failure modes
下载PDF
Parameter calibration of the tensile-shear interactive damage constitutive model for sandstone failure
12
作者 Yun Shu Zheming Zhu +4 位作者 Meng Wang Weiting Gao Fei Wang Duanying Wan Yuntao Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1153-1174,共22页
The tensile-shear interactive damage(TSID)model is a novel and powerful constitutive model for rock-like materials.This study proposes a methodology to calibrate the TSID model parameters to simulate sandstone.The bas... The tensile-shear interactive damage(TSID)model is a novel and powerful constitutive model for rock-like materials.This study proposes a methodology to calibrate the TSID model parameters to simulate sandstone.The basic parameters of sandstone are determined through a series of static and dynamic tests,including uniaxial compression,Brazilian disc,triaxial compression under varying confining pressures,hydrostatic compression,and dynamic compression and tensile tests with a split Hopkinson pressure bar.Based on the sandstone test results from this study and previous research,a step-by-step procedure for parameter calibration is outlined,which accounts for the categories of the strength surface,equation of state(EOS),strain rate effect,and damage.The calibrated parameters are verified through numerical tests that correspond to the experimental loading conditions.Consistency between numerical results and experimental data indicates the precision and reliability of the calibrated parameters.The methodology presented in this study is scientifically sound,straightforward,and essential for improving the TSID model.Furthermore,it has the potential to contribute to other rock constitutive models,particularly new user-defined models. 展开更多
关键词 Damage constitutive model Parameter calibration Rock modeling SANDSTONE Dynamic impact load Tensile-shear interactive damage(TSID)model
下载PDF
An efficient formulation based on the Lagrangian method for contact–impact analysis of flexible multi-body system 被引量:7
13
作者 Peng Chen Jin-Yang Liu Jia-Zhen Hong 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第2期326-334,共9页
In this paper,an efficien formulation based on the Lagrangian method is presented to investigate the contact–impact problems of f exible multi-body systems.Generally,the penalty method and the Hertz contact law are t... In this paper,an efficien formulation based on the Lagrangian method is presented to investigate the contact–impact problems of f exible multi-body systems.Generally,the penalty method and the Hertz contact law are the most commonly used methods in engineering applications.However,these methods are highly dependent on various non-physical parameters,which have great effects on the simulation results.Moreover,a tremendous number of degrees of freedom in the contact–impact problems will influenc thenumericalefficien ysignificantl.Withtheconsideration of these two problems,a formulation combining the component mode synthesis method and the Lagrangian method is presented to investigate the contact–impact problems in fl xible multi-body system numerically.Meanwhile,the finit element meshing laws of the contact bodies will be studied preliminarily.A numerical example with experimental verificatio will certify the reliability of the presented formulationincontact–impactanalysis.Furthermore,aseries of numerical investigations explain how great the influenc of the finit element meshing has on the simulation results.Finally the limitations of the element size in different regions are summarized to satisfy both the accuracy and efficien y. 展开更多
关键词 Multi-body dynamics Contact–impact analysis Lagrangian method Component mode synthesis
下载PDF
Dynamic Impact Factor Induced by Idling Vehicle-Bridge Coupling Vibration 被引量:1
14
作者 Lang Liu Jie Wang Hong Yang 《Journal of Harbin Institute of Technology(New Series)》 CAS 2022年第3期79-87,共9页
To analyze the impact effect induced by vehicle-bridge coupling vibration during traffic congesting, hundreds and thousands of congestion scenarios consisting of various vehicle platoons were collected and used to dev... To analyze the impact effect induced by vehicle-bridge coupling vibration during traffic congesting, hundreds and thousands of congestion scenarios consisting of various vehicle platoons were collected and used to develop vehicle models as well as traffic congestion load models. Furthermore, the idling vehicle-bridge coupling model was established by the finite element method and the congestion models were applied to calculate dynamic impact factors. Compared with the value specified in Chinese codes, the calculated values were 1.15-2.67 times as large as the latter, which indicates the impact factors caused by idling vehicle-bridge coupling under congestion situations were much larger than those in normal traffic conditions. As a result, a calibration factor of 1.7 was recommended for bridge design or evaluation when considering vehicle-bridge coupling vibration under heavy traffic congestion. The proposed analytical model, analysis method, and results could also be beneficial references to further investigation in this field. 展开更多
关键词 dynamic impact factor vehicle-bridge interaction traffic congestion code provisions
下载PDF
Optimal design and dynamic impact tests of removable bollards
15
作者 Chen Suwen Liu Tianyi +2 位作者 Li Guoqiang Liu Qing Sun Jianyun 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2017年第4期793-802,共10页
Anti-ram bollard systems, which are installed around buildings and infrastructure, can prevent unauthorized vehicles from entering, maintain distance from vehicle-borne improvised explosive devices (VBIED) and reduc... Anti-ram bollard systems, which are installed around buildings and infrastructure, can prevent unauthorized vehicles from entering, maintain distance from vehicle-borne improvised explosive devices (VBIED) and reduce the corresponding damage. Compared with a fixed bollard system, a removable bollard system provides more flexibility as it can be removed when needed. This paper first proposes a new type of K4-rated removable anti-ram bollard system. To simulate the collision of a vehicle hitting the bollard system, a finite element model was then built and verified through comparison of numerical simulation results and existing experimental results. Based on the orthogonal design method, the factors influencing the safety and economy of this proposed system were examined and sorted according to their importance. An optimal design scheme was then produced. Finally, to validate the effectiveness of the proposed design scheme, four dynamic impact tests, including two front impact tests and two side impact tests, have been conducted according to BSI Specifications. The residual rotation angles of the specimen are smaller than 30~ and satisfy the requirements of the BSI Specification. 展开更多
关键词 REMOVABLE anti-ram bollards optimal design orthogonal design method dynamic impact test
下载PDF
Fracture Behavior of CrN Coatings Under Indentation and Dynamic Cycle Impact
16
作者 田林海 唐宾 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第3期411-414,共4页
Fracture behavior of CrN coatings deposited on the surface of silicon and AISI52100 steel by different energy ion beam assisted magnetron sputtering technique (IBAMS) was studied using indentation and dynamic cycle ... Fracture behavior of CrN coatings deposited on the surface of silicon and AISI52100 steel by different energy ion beam assisted magnetron sputtering technique (IBAMS) was studied using indentation and dynamic cycle impact. It is found that, for the coatings on silicon substrate, the cracks form in the indentation corners and then propagate outward under Vickers indentation. The coating prepared using ion assisted energy of 800 eV shows the highest fracture resistance due to its compact structure. Under Rockwell indentation, only finer radial cracks are found in the CrN coating on AISI 52100 steel without ion assisting while in the condition of ion assisting energy of 800 eV, radial, lateral cracks and spalling appear in the vicinity of indentation. The fracture of CrN coatings under dynamic cycle impact is similar to fatigue. The impact fracture resistance of CrN coatings increases with the increase of ion assisting energy. 展开更多
关键词 CrN coatings IBAMS fracture behaviors INDENTATION dynamic cycle impact
下载PDF
THE DYNAMIC COMPUTATION OF CLOSED CYLINDRICAL SHELL UNDER IMPACT LOAD
17
作者 成祥生 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1989年第2期175-181,共7页
This article discusses the dynamic computation of the closed cylindrical shell under impact load. In the text we analyse the changes of the momenta and the energy on each stage in the impact process, take into account... This article discusses the dynamic computation of the closed cylindrical shell under impact load. In the text we analyse the changes of the momenta and the energy on each stage in the impact process, take into account the effect of the mass of impact object and the system of the closed cylindrical shell by impact, and transform the distributed mass of the whole cylindrical shell into an only concentrated 'equivalent mass' by the method of reduced mass. Consequently we derive the dynamic factor of the closed cylindrical shell due to impact load.The method proposed in this paper is of practical worth and is more convenient in calculations. 展开更多
关键词 THE DYNAMIC COMPUTATION OF CLOSED CYLINDRICAL SHELL UNDER impact LOAD
下载PDF
THE APPLICATION OF COMPATIBLE STRESS ITERATIVE METHOD IN DYNAMIC FINITE ELEMENT ANALYSIS OF HIGH VELOCITY IMPACT
18
作者 宋顺成 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1989年第2期145-152,共8页
There is a common difficulty in elastic-plastic impact codes such as EPIC[2,3] NONSAP[4], etc.. Most of these codes use the simple linear functions usually taken from static problem to represent the displacement compo... There is a common difficulty in elastic-plastic impact codes such as EPIC[2,3] NONSAP[4], etc.. Most of these codes use the simple linear functions usually taken from static problem to represent the displacement components. In such finite element formulation, the stress components are constant in each element and they are discontinuous in any two neighboring elements. Therefore, the bases of using the virtual work principle in such elements are unreliable. In this paper, we introduce a new method, namely, the compatible stress iterative method, to eliminate the above-said difficulty. The calculated examples show that the calculation using the new method in dynamic finite element analysis of high velocity impact is valid and stable, and the element stiffness can be somewhat reduced. 展开更多
关键词 THE APPLICATION OF COMPATIBLE STRESS ITERATIVE METHOD IN DYNAMIC FINITE ELEMENT ANALYSIS OF HIGH VELOCITY impact
下载PDF
Dynamic mechanical characteristics and application of constant resistance energy-absorbing supporting material 被引量:10
19
作者 Qi Wang Shuo Xu +3 位作者 Manchao He Bei Jiang Huayong Wei Yue Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第3期447-458,共12页
In deep underground engineering,rock burst and other dynamic disasters are prone to occur due to stress concentration and energy accumulation in surrounding rock.The control of dynamic disasters requires bolts and cab... In deep underground engineering,rock burst and other dynamic disasters are prone to occur due to stress concentration and energy accumulation in surrounding rock.The control of dynamic disasters requires bolts and cables with high strength,high elongation,and high energy-absorbing capacity.Therefore,a constant resistance energy-absorbing(CREA)material is developed.In this study,the dynamic characteristics of the new material are obtained via the drop hammer tests and the Split Hopkinson Pressure Bar(SHPB)tests of the new material and two common bolt(CB)materials widely used in the field.The test results of drop hammer test and SHPB test show that the percentage elongation of CREA material is more than 2.64 and 3.22 times those of the CB material,and the total impact energy acting on CREA material is more than 18.50 and 21.84 times,respectively,indicating that the new material has high elongation and high energy-absorbing capacity.Subsequently,the CREA bolts and cables using the new material are developed,which are applied in roadways with high stress and strong dynamic disturbance.The field monitoring results show that CREA bolts and cables can effectively control the surrounding rock deformation and ensure engineering safety. 展开更多
关键词 Constant resistance energy-absorbing Supporting material Dynamic impact tests Mechanical characteristics Field application
下载PDF
Test and numerical investigations on static and dynamic characteristics of extra-wide concrete self-anchored suspension bridge under vehicle loads 被引量:7
20
作者 周广盼 李爱群 +1 位作者 李建慧 端茂军 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第10期2382-2395,共14页
The present work is aimed at studying the mechanic properties of the extra-wide concrete self-anchored suspension bridge under static and dynamic vehicle loads. Based on the field test using 12 heavy trucks and finite... The present work is aimed at studying the mechanic properties of the extra-wide concrete self-anchored suspension bridge under static and dynamic vehicle loads. Based on the field test using 12 heavy trucks and finite element simulations, the static deformations of different components, stress increments and distributions of the girder, as well as the vibration characteristics and damping ratio of the Hunan Road Bridge were analyzed, which is the widest self-anchored suspension bridge in China at present. The dynamic responses were calculated using the Newmark-β integration method assisted by the simulation models of bridge and vehicles, the influences on the dynamic impact coefficient(DIC) brought by the vehicle parameters, girder width, eccentricity travel and deck flatness were also researched. The spatial effect of the girder is obvious due to the extra width, which performs as the stress increments distribute unevenly along the transverse direction, and the girder deflections and stress increments of the upper plate change as a "V" and "M" shape respectively under the symmetrical vehicle loads affected by the shear lag effect, cross slope and local effect of the wheels, the maximum of stress increments are located in the junctions with the inner webs. The obvious girder torsional deformation and the apparent unevenness of the hanger forces between the two cable planes under the eccentric vehicle loads, together with the mode shapes such as the girder transverse bending and torsion which appear relatively earlier, all reflect the weakened torsional rigidity of the extra-wide girder. The transverse displacements of towers are more obvious than the longitudinal ones. As for the influences on the DIC, the static effect of the heavier vehicles plays a major role when pass through with a higher speed and the changes of vehicle suspension stiffness generate greater impacts than the suspension damp. The values of DIC in the vehicle-running side during the eccentric travel, affected by the restricts from the static effects of the eccentric moving trucks, are significantly smaller than the vehicle-free side, the increase in the road roughness is the most sensitive one among the above influential factors. The results could provide references for the design, static and dynamic response analysis of the similar extra-wide suspension bridges. 展开更多
关键词 self-anchored suspension bridge extra-wide girder field test simulation vehicle loads increments distribution damping ratio mode shape dynamic impact coefficient
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部