The current research of Charpy impact mainly focuses on obtaining the ductile brittle transition temperature of materials by experiments.Compared with experiments,numerical simulation can study many problems with hars...The current research of Charpy impact mainly focuses on obtaining the ductile brittle transition temperature of materials by experiments.Compared with experiments,numerical simulation can study many problems with harsh conditions.However,there are still few studies on the influence of geometric factors such as side grooves.In this paper,the geometry of standard Charpy impact test is designed.Specimens with different widths and side grooves are tested.The finite element model of Charpy impact was established by ABAQUS software.Use test results and simulation results to verify each other.The effects of sample width,side groove depth and side groove bottom fillet on the impact fracture resistance of the sample were studied.The results show that the specimen width is positively correlated with the impact toughness of the specimen.The side groove greatly reduces the impact toughness of the material;the toughness of side groove decreases with the increase of depth;the fracture toughness of side groove decreases with the increase of fillet at the bottom of side groove.The proportion of toughness energy to impact energy of samples was analyzed.The results show that the toughness energy accounts for about 70%of the impact energy of the sample,which has little to do with the geometric characteristics of the sample.This study presents a reliable method for studying Charpy impact tests.The influence of geometric parameters is obtained,which provides a reference method for the study of impact toughness of high toughness materials.展开更多
Objective: This systematic review examines the impact of lifestyle factors on migraine frequency and severity through a comprehensive analysis of lifestyle factors such as diet, physical activity, sleep patterns, stre...Objective: This systematic review examines the impact of lifestyle factors on migraine frequency and severity through a comprehensive analysis of lifestyle factors such as diet, physical activity, sleep patterns, stress, mental health, and environmental influences. Methods: We thoroughly searched Google Scholar, PUBMED, Scopus, and Web of Science databases using keywords related to migraines and lifestyle factors. Keywords incorporated the Boolean operator “and” to narrow search results. Following the PRISMA guidelines, we identified, screened, and evaluated studies for inclusion, resulting in nine studies meeting the eligibility criteria. Results: A total of 4917 records were initially identified from Scopus (2786), PubMed (854), and Web of Science (1277). Following deduplication, 3657 records underwent title screening, with 382 additionally screened by abstract. Ultimately, 88 full-text articles were assessed, resulting in 9 studies meeting eligibility for qualitative synthesis: 7 prospective and 2 retrospective studies. Our findings highlight the multifaceted role of lifestyle factors in migraine pathophysiology and management. Dietary habits, such as high-calorie, high-fat, and gluten-containing diets were linked to migraine triggers. Moderate physical activity showed beneficial effects on migraine management, while intense exercise could exacerbate symptoms. Poor sleep hygiene and insomnia were strongly associated with increased migraine frequency and severity. Chronic stress and poor mental health significantly contributed to migraine exacerbation, with stress management techniques proving beneficial. Environmental factors, including light, sound, weather changes, and allergens, were also identified as significant migraine triggers. Conclusions: Personalized lifestyle modifications, tailored to individual patient profiles, are crucial in managing migraines. Evidence-based recommendations include balanced diets, moderate physical activity, improved sleep hygiene, stress management techniques, and environmental adaptations.展开更多
Objective:To elucidate the characteristics,management strategies,risk factors,and clinical impacts associated with adverse drug reactions(ADRs)induced by first-line antitubercular drugs to enhance tuberculosis(TB)mana...Objective:To elucidate the characteristics,management strategies,risk factors,and clinical impacts associated with adverse drug reactions(ADRs)induced by first-line antitubercular drugs to enhance tuberculosis(TB)management.Methods:A retrospective cohort study was conducted by retrieving drug-susceptible TB records among adult patients who received TB treatment from 2018 to 2021 at 10 public health clinics in Sarawak,Malaysia.Only the initial TB treatment and occurrence of specific ADRs within the study period were considered.Regression analysis was performed to identify the risk factors associated with both overall ADRs and individual types of ADRs.Results:Among 2953 cases,705(23.9%)developed ADRs.Cutaneous reactions were the most prevalent(47.1%),followed by hepatotoxicity(32.8%)and gastrointestinal disturbances(29.8%).Six out of seven types of ADRs investigated occurred within the intensive phase,mostly manifesting at approximately 2 weeks of initiation.Hepatotoxicity resulted in the majority(85.3%)of treatment discontinuations,while vision problems led to treatment modifications in half of the cases.Risk factors for all ADRs included age≥60 years,females,illicit drug use,and comorbidities such as HIV-positive,diabetes,and chronic liver disease.Alcohol consumption was independently associated with hepatotoxicity.ADRs caused around one-third of interruptions exceeding 2 weeks(33.0%)and subsequently necessitated treatment restarts(34.5%).Conclusions:Understanding these various aspects contributes to improving the overall management of ADRs in TB treatment.Close ADR monitoring and reporting are essential to strengthen ADR management.展开更多
Deep-sea pipelines play a pivotal role in seabed mineral resource development,global energy and resource supply provision,network communication,and environmental protection.However,the placement of these pipelines on ...Deep-sea pipelines play a pivotal role in seabed mineral resource development,global energy and resource supply provision,network communication,and environmental protection.However,the placement of these pipelines on the seabed surface exposes them to potential risks arising from the complex deep-sea hydrodynamic and geological environment,particularly submarine slides.Historical incidents have highlighted the substantial damage to pipelines due to slides.Specifically,deep-sea fluidized slides(in a debris/mud flow or turbidity current physical state),characterized by high speed,pose a significant threat.Accurately assessing the impact forces exerted on pipelines by fluidized submarine slides is crucial for ensuring pipeline safety.This study aimed to provide a comprehensive overview of recent advancements in understanding pipeline impact forces caused by fluidized deep-sea slides,thereby identifying key factors and corresponding mechanisms that influence pipeline impact forces.These factors include the velocity,density,and shear behavior of deep-sea fluidized slides,as well as the geometry,stiffness,self-weight,and mechanical model of pipelines.Additionally,the interface contact conditions and spatial relations were examined within the context of deep-sea slides and their interactions with pipelines.Building upon a thorough review of these achievements,future directions were proposed for assessing and characterizing the key factors affecting slide impact loading on pipelines.A comprehensive understanding of these results is essential for the sustainable development of deep-sea pipeline projects associated with seabed resource development and the implementation of disaster prevention measures.展开更多
Understanding the spatial heterogeneity of debris-flow-prone areas holds significant implications for regional risk management, particularly in seismically active regions with geological faults. Despite the significan...Understanding the spatial heterogeneity of debris-flow-prone areas holds significant implications for regional risk management, particularly in seismically active regions with geological faults. Despite the significance of this knowledge, a comprehensive quantification of the influence of regional topographical and geological factors on the spatial heterogeneity of debris-flow-prone areas has been lacking. This study selected the Hengduan Mountains, an earthquake-prone region characterized by diverse surface conditions and complex landforms, as a representative study area. An improved units zoning and objective factors identification methodology was employed in earthquake and fault analysis to assess the impact of seismic activity and geological factors on spatial heterogeneity of debrisflow prone areas. Results showed that the application of GIS technology with hydrodynamic intensity and geographical units analysis can effectively analyze debris-flow prone areas. Meanwhile, earthquake and fault zones obviously increase the density of debrisflow prone catchments and make them unevenly distributed. The number of debris-flow prone areas shows a nonlinear variation with the gradual increase of geomorphic factor value. Specifically, the area with 1000 m-2500 m elevation difference, 25°-30° average slope, and 0.13-0.15 land use index is the most favorable conditions for debris-flow occurrence;The average annual rainfall from 600 to 1150 mm and landslides gradient from 16° to 35° are the main causal factors to trigger debris flow. Our study sheds light on the quantification of spatial heterogeneity in debris flow-prone areas in earthquake-prone regions, which can offer crucial support for post-debris flow risk management strategies.展开更多
Objective:To study the efficacy of treating pediatric bronchial asthma with a modified Dingchuan Decoction and its effect on inflammatory factors and lung function levels.Methods:Sixty cases of bronchial asthma admitt...Objective:To study the efficacy of treating pediatric bronchial asthma with a modified Dingchuan Decoction and its effect on inflammatory factors and lung function levels.Methods:Sixty cases of bronchial asthma admitted to the hospital between January and December 2023 were divided into two groups using a computerized randomization method.One group of 30 cases received basic treatment with a salmeterol ticarcoson powder inhaler(control group),while the observation group received the same treatment plus a modified Dingchuan Decoction.The disappearance time of symptoms,levels of inflammatory factors,lung function indexes,and clinical efficacy were compared between the two groups.Results:The disappearance time of symptoms in the observation group was shorter than that in the control group.The levels of inflammatory factors after treatment were lower,and lung function indexes were higher in the observation group compared to the control group.Additionally,the total effective rate of treatment in the observation group was higher than that in the control group(P<0.05).Conclusion:In the clinical treatment of pediatric bronchial asthma,supplementing conventional Western medicine with a modified Dingchuan Decoction is effective,as it actively reduces inflammatory factor levels and improves lung function.展开更多
BACKGROUND Colon cancer is a common malignant tumor in the gastrointestinal tract that is typically treated surgically.However,postradical surgery is prone to complic-ations such as anastomotic fistulas.AIM To investi...BACKGROUND Colon cancer is a common malignant tumor in the gastrointestinal tract that is typically treated surgically.However,postradical surgery is prone to complic-ations such as anastomotic fistulas.AIM To investigate the risk factors for postoperative anastomotic fistulas and their impact on the prognosis of patients with colon cancer.METHODS We conducted a retrospective analysis of 488 patients with colon cancer who underwent radical surgery.This study was performed between April 2016 and April 2019 at a tertiary hospital in Wuxi,Jiangsu Province,China.A t-test was used to compare laboratory indicators between patients with and those without postoperative anastomotic fistulas.Multiple logistic regression analysis was performed to identify independent risk factors for postoperative anastomotic fistulas.The Functional Assessment of Cancer Therapy-Colorectal Cancer was also used to assess postoperative recovery.RESULTS Binary logistic regression analysis revealed that age[odds ratio(OR)=1.043,P=0.015],tumor,node,metastasis stage(OR=2.337,P=0.041),and surgical procedure were independent risk factors for postoperative anastomotic fistulas.Multiple linear regression analysis showed that the development of postoperative anastomotic fistula(P=0.000),advanced age(P=0.003),and the presence of diabetes mellitus(P=0.015),among other factors,independently affected CONCLUSION Postoperative anastomotic fistulas significantly affect prognosis and survival rates.Therefore,focusing on the clinical characteristics and risk factors and immediately implementing individualized preventive measures are important to minimize their occurrence.展开更多
The effects of projectile/target impedance matching and projectile shape on energy,momentum transfer and projectile melting during collisions are investigated by numerical simulation.By comparing the computation resul...The effects of projectile/target impedance matching and projectile shape on energy,momentum transfer and projectile melting during collisions are investigated by numerical simulation.By comparing the computation results with the experimental results,the correctness of the calculation and the statistical method of momentum transfer coefficient is verified.Different shapes of aluminum,copper and heavy tungsten alloy projectiles striking aluminum,basalt,and pumice target for impacts up to 10 km/s are simulated.The influence mechanism of the shape of the projectile and projectile/target density on the momentum transfer was obtained.With an increase in projectile density and length-diameter ratio,the energy transfer time between the projectile and targets is prolonged.The projectile decelerates slowly,resulting in a larger cratering depth.The energy consumed by the projectile in the excavation stage increased,resulting in lower mass-velocity of ejecta and momentum transfer coefficient.The numerical simulation results demonstrated that for different projectile/target combinations,the higher the wave impedance of the projectile,the higher the initial phase transition velocity and the smaller the mass of phase transition.The results can provide theoretical guidance for kinetic impactor design and material selection.展开更多
With increasing population and changing demographics,food consumption has experienced a significant transition in quantity and quality.However,a dearth of knowledge remains regarding its environmental impacts and how ...With increasing population and changing demographics,food consumption has experienced a significant transition in quantity and quality.However,a dearth of knowledge remains regarding its environmental impacts and how it responds to demographic dynamics,particularly in emerging economies like China.Using the two-stage Quadratic Almost Demand System(QUAIDS)model,this study empirically examines the impact of demographic dynamics on food consumption and its environmental outcomes based on the provincial data from 2000 to 2020 in China.Under various scenarios,according to changes in demographics,we extend our analysis to project the long-term trend of food consumption and its environmental impacts,including greenhouse gas(GHG)emissions,water footprint(WF),and land appropriation(LA).The results reveal that an increase in the proportion of senior people significantly decreases the consumption of grain and livestock meat and increases the consumption of poultry,egg,and aquatic products,particularly for urban residents.Moreover,an increase in the proportion of males in the population leads to higher consumption of poultry and aquatic products.Correspondingly,in the current scenario of an increased aging population and sex ratio,it is anticipated that GHG emissions,WF,and LA are likely to decrease by 1.37,2.52,and 3.56%,respectively.More importantly,in the scenario adhering to the standards of nutritional intake according to the Dietary Guidelines for Chinese Residents in 2022,GHG emissions,WF,and LA in urban areas would increase by 12.78,20.94,and 18.32%,respectively.Our findings suggest that changing demographics should be considered when designing policies to mitigate the diet-environment-health trilemma and achieve sustainable food consumption.展开更多
A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solu...A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solution of bridge vibrations induced by vehicle deceleration are realized using this method.The method’s validity and reliability are substantiated through numerical examples.A simply supported beam bridge with a corrugated steel web is taken as an example and the effects of parameters such as the initial vehicle speed,braking acceleration,braking location,and road surface roughness on the mid-span displacement and impact factor of the bridge are analyzed.The results show that vehicle braking significantly amplifies mid-span displacement and impact factor responses in comparison to uniform vehicular motion across the bridge.Notably,the influence of wheelto-bridge friction forces is of particular significance and cannot be overlooked.When the vehicle initiates braking near the middle of the span,both the mid-span displacement and impact factor of the bridge exhibit substantial increases,further escalating with higher braking acceleration.Under favorable road surface conditions,the midspan displacement and the impact factor during vehicle braking may exceed the design values stipulated by codes.It is important to note that road surface roughness exerts a more pronounced effect on the impact factor of the bridge in comparison to the effects of vehicle braking.展开更多
Rock sheds are widely used to prevent rockfall disasters along roads in mountainous areas.To improve the capacity of rock sheds for resisting rockfall impact,a sand and expandable polyethylene(EPE)composite cushion wa...Rock sheds are widely used to prevent rockfall disasters along roads in mountainous areas.To improve the capacity of rock sheds for resisting rockfall impact,a sand and expandable polyethylene(EPE)composite cushion was proposed.A series of model experiments of rockfall impact on rock sheds were conducted,and the buried depth of the EPE foam board in the sand layer was considered.The impact load and dynamic response of the rock shed were investigated.The results show that the maximum impact load and dynamic response of the rock shed roof are all significantly less than those of the sand cushion.Moreover,as the distance between the EPE foam board and rock shed roof decreases,the maximum rockfall impact force and impact pressure gradually decrease,and the maximum displacement,acceleration and strain of the rock shed first decrease and then change little.In addition,the vibration acceleration and vertical displacement of the rock shed roof decrease from the centre to the edge and decrease faster along the longitudinal direction than that along the transverse direction.In conclusion,the buffering effect of the sand-EPE composite cushion is better than that of the pure sand cushion,and the EPE foam board at a depth of 1/3 the thickness of the sand layer is appropriate.展开更多
This work presents a novel approach to the dynamic response analysis of a Euler-Bernoulli beam resting on a Winkler soil model and subjected to an impact loading.The approach considers that damping has much less impor...This work presents a novel approach to the dynamic response analysis of a Euler-Bernoulli beam resting on a Winkler soil model and subjected to an impact loading.The approach considers that damping has much less importance in controlling the maximum response to impulsive loadings because the maximum response is reached in a very short time,before the damping forces can dissipate a significant portion of the energy input into the system.The development of two sine series solutions,relating to different types of impulsive loadings,one involving a single concentrated force and the other a distributed line load,are presented.This study revealed that when a simply supported Euler-Bernoulli beam,resting on a Winkler soil model,is subject to an impact load,the resulting vertical displacements,bending moments and shear forces produced along the span of the beam are considerably affected.In particular,the quantification of this effect is best observed,relative to the corresponding static solution,via an amplification factor.The computed impact amplification factors,for the sub-grade moduli used in this study,were in magnitude greater than 2,thus confirming the multiple-degree-of-freedom nature of the problem.展开更多
Following publication of the original article[1],the authors reported that the author Hun-Gi Jung should be affiliated as 3,4 and 5 instead of 4 and 5.The author’s name“A.-Yeon Kim”needed to be updated to“A-Yeon ...Following publication of the original article[1],the authors reported that the author Hun-Gi Jung should be affiliated as 3,4 and 5 instead of 4 and 5.The author’s name“A.-Yeon Kim”needed to be updated to“A-Yeon Kim”,removing the period.The correct author’s name and affiliation have been provided in this Correction.The original article[1]has been corrected.展开更多
BACKGROUND Intensive care unit-acquired weakness(ICU-AW)is a common complication that significantly impacts the patient's recovery process,even leading to adverse outcomes.Currently,there is a lack of effective pr...BACKGROUND Intensive care unit-acquired weakness(ICU-AW)is a common complication that significantly impacts the patient's recovery process,even leading to adverse outcomes.Currently,there is a lack of effective preventive measures.AIM To identify significant risk factors for ICU-AW through iterative machine learning techniques and offer recommendations for its prevention and treatment.METHODS Patients were categorized into ICU-AW and non-ICU-AW groups on the 14th day post-ICU admission.Relevant data from the initial 14 d of ICU stay,such as age,comorbidities,sedative dosage,vasopressor dosage,duration of mechanical ventilation,length of ICU stay,and rehabilitation therapy,were gathered.The relationships between these variables and ICU-AW were examined.Utilizing iterative machine learning techniques,a multilayer perceptron neural network model was developed,and its predictive performance for ICU-AW was assessed using the receiver operating characteristic curve.RESULTS Within the ICU-AW group,age,duration of mechanical ventilation,lorazepam dosage,adrenaline dosage,and length of ICU stay were significantly higher than in the non-ICU-AW group.Additionally,sepsis,multiple organ dysfunction syndrome,hypoalbuminemia,acute heart failure,respiratory failure,acute kidney injury,anemia,stress-related gastrointestinal bleeding,shock,hypertension,coronary artery disease,malignant tumors,and rehabilitation therapy ratios were significantly higher in the ICU-AW group,demonstrating statistical significance.The most influential factors contributing to ICU-AW were identified as the length of ICU stay(100.0%)and the duration of mechanical ventilation(54.9%).The neural network model predicted ICU-AW with an area under the curve of 0.941,sensitivity of 92.2%,and specificity of 82.7%.CONCLUSION The main factors influencing ICU-AW are the length of ICU stay and the duration of mechanical ventilation.A primary preventive strategy,when feasible,involves minimizing both ICU stay and mechanical ventilation duration.展开更多
Polypropylene(PP)fiber-reinforced cement-based tailings backfill(FRCTB)is a green compound material with superior crack resistance and has good prospects for application in underground mining.However,FRCTB exhibits su...Polypropylene(PP)fiber-reinforced cement-based tailings backfill(FRCTB)is a green compound material with superior crack resistance and has good prospects for application in underground mining.However,FRCTB exhibits susceptibility to dynamic events,such as impact ground pressure and blast vibrations.This paper investigates the energy and crack distribution behavior of FRCTB under dynamic impact,considering the height/diameter(H/D)effect.Split Hopkinson pressure bar,industrial computed tomography scan,and scanning electron microscopy(SEM)experiments were carried out on six types of FRCTB.Laboratory outcomes confirmed fiber aggregation at the bottom of specimens.When H/D was less than 0.8,the proportion of PP fibers distributed along theθangle direction of80°-90°increased.For the total energy,all samples presented similar energy absorption,reflectance,and transmittance.However,a rise in H/D may cause a rise in the energy absorption rate of FRCTB during the peak phase.A positive correlation existed between the average strain rate and absorbed energy per unit volume.The increase in H/D resulted in a decreased crack volume fraction of FRCTB.When the H/D was greater than or equal to 0.7,the maximum crack volume fraction of FRCTB was observed close to the incidence plane.Radial cracks were present only in the FRCTB with an H/D ratio of 0.5.Samples with H/D ratios of 0.5 and 0.6 showed similar distributions of weakly and heavily damaged areas.PP fibers can limit the emergence and expansion of cracks by influencing their path.SEM observations revealed considerable differences in the bonding strengths between fibers and the FRCTB.Fibers that adhered particularly well to the substrate were attracted together with the hydration products adhering to surfaces.These results show that FRCTB is promising as a sustainable and green backfill for determining the design properties of mining with backfill.展开更多
Heavy precipitation and extreme drought have caused severe economic losses over South China and Indochina(INCSC)in recent decades.Given the areas with large gross domestic product(GDP)in the INCSC region are distribut...Heavy precipitation and extreme drought have caused severe economic losses over South China and Indochina(INCSC)in recent decades.Given the areas with large gross domestic product(GDP)in the INCSC region are distributed along the coastline and greatly affected by global warming,understanding the possible economic impacts induced by future changes in the maximum consecutive 5-day precipitation(RX5day)and the maximum consecutive dry days(CDD)is critical for adaptation planning in this region.Based on the latest data released by phase 6 of the Coupled Model Intercomparison Project(CMIP6),future projections of precipitation extremes with bias correction and their impacts on GDP over the INCSC region under the fossil-fueled development Shared Socioeconomic Pathway(SSP5-8.5)are investigated.Results indicate that RX5day will intensify robustly throughout the INCSC region,while CDD will lengthen in most regions under global warming.The changes in climate consistently dominate the effect on GDP over the INCSC region,rather than the change of GDP.If only considering the effect of climate change on GDP,the changes in precipitation extremes bring a larger impact on the economy in the future to the provinces of Hunan,Jiangxi,Fujian,Guangdong,and Hainan in South China,as well as the Malay Peninsula and southern Cambodia in Indochina.Thus,timely regional adaptation strategies are urgent for these regions.Moreover,from the sub-regional average viewpoint,over two thirds of CMIP6 models agree that maintaining a lower global warming level will reduce the economic impacts from heavy precipitation over the INCSC region.展开更多
The outbreak of COVID-19 in December 2019 has exerted a wide and everlasting impact on the world,which has also influenced education enormously.The adjustment of objective learning environment during the COVID-19 pand...The outbreak of COVID-19 in December 2019 has exerted a wide and everlasting impact on the world,which has also influenced education enormously.The adjustment of objective learning environment during the COVID-19 pandemic makes the influence of non-intellectual factors on college students worthy of investigation,research and analysis.Based on this,we have launched a questionnaire survey on 500 college students who have witnessed the pandemic,and referred to related literature,network documents,news reports,contrast and analysis of college students’non-intelligence factors before and after the outbreak of the different levels of change,summing up some new measures to promote the development of college students’non-intelligence factors under the COVID-19 outbreak for online learning and autonomous learning.展开更多
A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was s...A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was studied in detail.PTFE/Al/W RMPs with steel-like and aluminum-like densities were prepared by a pressing/sintering process.The projectiles impacted a liquid-filled steel tank with front aluminum panel at approximately 1250 m/s.The corresponding cavity evolution characteristics and HRAM pressure were recorded by high-speed camera and pressure acquisition system,and further compared to those of steel and aluminum projectiles.Significantly different from the conical cavity formed by the inert metal projectile,the cavity formed by the RMP appeared as an ellipsoid with a conical front.The RMPs were demonstrated to enhance the radial growth velocity of cavity,the global HRAM pressure amplitude and the front panel damage,indicating the enhanced HRAM and structural damage behavior.Furthermore,combining the impact-induced fragmentation and deflagration characteristics,the cavity evolution of RMPs under the combined effect of kinetic energy impact and chemical energy release was analyzed.The mechanism of enhanced HRAM pressure induced by the RMPs was further revealed based on the theoretical model of the initial impact wave and the impulse analysis.Finally,the linear correlation between the deformation-thickness ratio and the non-dimensional impulse for the front panel was obtained and analyzed.It was determined that the enhanced near-field impulse induced by the RMPs was the dominant reason for the enhanced structural damage behavior.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.51975526,51505425)National Key R&D Program of China(Grant No.2018YFC0808800)+1 种基金Open Project of Key Laboratory of MEM of China(Grant No.2020XFZB10)Technical Service Projects(Grant Nos.HZFS-XZ-2022-07-02,XJBY-20211221).
文摘The current research of Charpy impact mainly focuses on obtaining the ductile brittle transition temperature of materials by experiments.Compared with experiments,numerical simulation can study many problems with harsh conditions.However,there are still few studies on the influence of geometric factors such as side grooves.In this paper,the geometry of standard Charpy impact test is designed.Specimens with different widths and side grooves are tested.The finite element model of Charpy impact was established by ABAQUS software.Use test results and simulation results to verify each other.The effects of sample width,side groove depth and side groove bottom fillet on the impact fracture resistance of the sample were studied.The results show that the specimen width is positively correlated with the impact toughness of the specimen.The side groove greatly reduces the impact toughness of the material;the toughness of side groove decreases with the increase of depth;the fracture toughness of side groove decreases with the increase of fillet at the bottom of side groove.The proportion of toughness energy to impact energy of samples was analyzed.The results show that the toughness energy accounts for about 70%of the impact energy of the sample,which has little to do with the geometric characteristics of the sample.This study presents a reliable method for studying Charpy impact tests.The influence of geometric parameters is obtained,which provides a reference method for the study of impact toughness of high toughness materials.
文摘Objective: This systematic review examines the impact of lifestyle factors on migraine frequency and severity through a comprehensive analysis of lifestyle factors such as diet, physical activity, sleep patterns, stress, mental health, and environmental influences. Methods: We thoroughly searched Google Scholar, PUBMED, Scopus, and Web of Science databases using keywords related to migraines and lifestyle factors. Keywords incorporated the Boolean operator “and” to narrow search results. Following the PRISMA guidelines, we identified, screened, and evaluated studies for inclusion, resulting in nine studies meeting the eligibility criteria. Results: A total of 4917 records were initially identified from Scopus (2786), PubMed (854), and Web of Science (1277). Following deduplication, 3657 records underwent title screening, with 382 additionally screened by abstract. Ultimately, 88 full-text articles were assessed, resulting in 9 studies meeting eligibility for qualitative synthesis: 7 prospective and 2 retrospective studies. Our findings highlight the multifaceted role of lifestyle factors in migraine pathophysiology and management. Dietary habits, such as high-calorie, high-fat, and gluten-containing diets were linked to migraine triggers. Moderate physical activity showed beneficial effects on migraine management, while intense exercise could exacerbate symptoms. Poor sleep hygiene and insomnia were strongly associated with increased migraine frequency and severity. Chronic stress and poor mental health significantly contributed to migraine exacerbation, with stress management techniques proving beneficial. Environmental factors, including light, sound, weather changes, and allergens, were also identified as significant migraine triggers. Conclusions: Personalized lifestyle modifications, tailored to individual patient profiles, are crucial in managing migraines. Evidence-based recommendations include balanced diets, moderate physical activity, improved sleep hygiene, stress management techniques, and environmental adaptations.
文摘Objective:To elucidate the characteristics,management strategies,risk factors,and clinical impacts associated with adverse drug reactions(ADRs)induced by first-line antitubercular drugs to enhance tuberculosis(TB)management.Methods:A retrospective cohort study was conducted by retrieving drug-susceptible TB records among adult patients who received TB treatment from 2018 to 2021 at 10 public health clinics in Sarawak,Malaysia.Only the initial TB treatment and occurrence of specific ADRs within the study period were considered.Regression analysis was performed to identify the risk factors associated with both overall ADRs and individual types of ADRs.Results:Among 2953 cases,705(23.9%)developed ADRs.Cutaneous reactions were the most prevalent(47.1%),followed by hepatotoxicity(32.8%)and gastrointestinal disturbances(29.8%).Six out of seven types of ADRs investigated occurred within the intensive phase,mostly manifesting at approximately 2 weeks of initiation.Hepatotoxicity resulted in the majority(85.3%)of treatment discontinuations,while vision problems led to treatment modifications in half of the cases.Risk factors for all ADRs included age≥60 years,females,illicit drug use,and comorbidities such as HIV-positive,diabetes,and chronic liver disease.Alcohol consumption was independently associated with hepatotoxicity.ADRs caused around one-third of interruptions exceeding 2 weeks(33.0%)and subsequently necessitated treatment restarts(34.5%).Conclusions:Understanding these various aspects contributes to improving the overall management of ADRs in TB treatment.Close ADR monitoring and reporting are essential to strengthen ADR management.
基金supported by the opening fund of State Key Laboratory of Coastal and Offshore Engineering at Dalian University of Technology(No.LP2310)the opening fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection at Chengdu University of Technology(No.SKLGP2023K001)+2 种基金the Shandong Provincial Key Laboratory of Ocean Engineering with grant at Ocean University of China(No.kloe200301)the National Natural Science Foundation of China(Nos.42022052,42077272 and 52108337)the Science and Technology Innovation Serve Project of Wenzhou Association for Science and Technology(No.KJFW65).
文摘Deep-sea pipelines play a pivotal role in seabed mineral resource development,global energy and resource supply provision,network communication,and environmental protection.However,the placement of these pipelines on the seabed surface exposes them to potential risks arising from the complex deep-sea hydrodynamic and geological environment,particularly submarine slides.Historical incidents have highlighted the substantial damage to pipelines due to slides.Specifically,deep-sea fluidized slides(in a debris/mud flow or turbidity current physical state),characterized by high speed,pose a significant threat.Accurately assessing the impact forces exerted on pipelines by fluidized submarine slides is crucial for ensuring pipeline safety.This study aimed to provide a comprehensive overview of recent advancements in understanding pipeline impact forces caused by fluidized deep-sea slides,thereby identifying key factors and corresponding mechanisms that influence pipeline impact forces.These factors include the velocity,density,and shear behavior of deep-sea fluidized slides,as well as the geometry,stiffness,self-weight,and mechanical model of pipelines.Additionally,the interface contact conditions and spatial relations were examined within the context of deep-sea slides and their interactions with pipelines.Building upon a thorough review of these achievements,future directions were proposed for assessing and characterizing the key factors affecting slide impact loading on pipelines.A comprehensive understanding of these results is essential for the sustainable development of deep-sea pipeline projects associated with seabed resource development and the implementation of disaster prevention measures.
基金supported by the Hubei Provincial Engineering Research Center of Slope Habitat Construction Technique Using Cement-based Materials Open Research Program (Grant No. 2022SNJ112022SNJ12)+4 种基金National Natural Science Foundation of China (Grant No. 42371014)Hubei Key Laboratory of Disaster Prevention and Mitigation (China Three Gorges University) Open Research Program (Grant No. 2022KJZ122023KJZ19)CRSRI Open Research Program (Grant No. CKWV2021888/KY)the Key Laboratory of Mountain Hazards and Earth Surface Processes, Chinese Academy of Sciences (Grant No. KLMHESP20-0)。
文摘Understanding the spatial heterogeneity of debris-flow-prone areas holds significant implications for regional risk management, particularly in seismically active regions with geological faults. Despite the significance of this knowledge, a comprehensive quantification of the influence of regional topographical and geological factors on the spatial heterogeneity of debris-flow-prone areas has been lacking. This study selected the Hengduan Mountains, an earthquake-prone region characterized by diverse surface conditions and complex landforms, as a representative study area. An improved units zoning and objective factors identification methodology was employed in earthquake and fault analysis to assess the impact of seismic activity and geological factors on spatial heterogeneity of debrisflow prone areas. Results showed that the application of GIS technology with hydrodynamic intensity and geographical units analysis can effectively analyze debris-flow prone areas. Meanwhile, earthquake and fault zones obviously increase the density of debrisflow prone catchments and make them unevenly distributed. The number of debris-flow prone areas shows a nonlinear variation with the gradual increase of geomorphic factor value. Specifically, the area with 1000 m-2500 m elevation difference, 25°-30° average slope, and 0.13-0.15 land use index is the most favorable conditions for debris-flow occurrence;The average annual rainfall from 600 to 1150 mm and landslides gradient from 16° to 35° are the main causal factors to trigger debris flow. Our study sheds light on the quantification of spatial heterogeneity in debris flow-prone areas in earthquake-prone regions, which can offer crucial support for post-debris flow risk management strategies.
文摘Objective:To study the efficacy of treating pediatric bronchial asthma with a modified Dingchuan Decoction and its effect on inflammatory factors and lung function levels.Methods:Sixty cases of bronchial asthma admitted to the hospital between January and December 2023 were divided into two groups using a computerized randomization method.One group of 30 cases received basic treatment with a salmeterol ticarcoson powder inhaler(control group),while the observation group received the same treatment plus a modified Dingchuan Decoction.The disappearance time of symptoms,levels of inflammatory factors,lung function indexes,and clinical efficacy were compared between the two groups.Results:The disappearance time of symptoms in the observation group was shorter than that in the control group.The levels of inflammatory factors after treatment were lower,and lung function indexes were higher in the observation group compared to the control group.Additionally,the total effective rate of treatment in the observation group was higher than that in the control group(P<0.05).Conclusion:In the clinical treatment of pediatric bronchial asthma,supplementing conventional Western medicine with a modified Dingchuan Decoction is effective,as it actively reduces inflammatory factor levels and improves lung function.
文摘BACKGROUND Colon cancer is a common malignant tumor in the gastrointestinal tract that is typically treated surgically.However,postradical surgery is prone to complic-ations such as anastomotic fistulas.AIM To investigate the risk factors for postoperative anastomotic fistulas and their impact on the prognosis of patients with colon cancer.METHODS We conducted a retrospective analysis of 488 patients with colon cancer who underwent radical surgery.This study was performed between April 2016 and April 2019 at a tertiary hospital in Wuxi,Jiangsu Province,China.A t-test was used to compare laboratory indicators between patients with and those without postoperative anastomotic fistulas.Multiple logistic regression analysis was performed to identify independent risk factors for postoperative anastomotic fistulas.The Functional Assessment of Cancer Therapy-Colorectal Cancer was also used to assess postoperative recovery.RESULTS Binary logistic regression analysis revealed that age[odds ratio(OR)=1.043,P=0.015],tumor,node,metastasis stage(OR=2.337,P=0.041),and surgical procedure were independent risk factors for postoperative anastomotic fistulas.Multiple linear regression analysis showed that the development of postoperative anastomotic fistula(P=0.000),advanced age(P=0.003),and the presence of diabetes mellitus(P=0.015),among other factors,independently affected CONCLUSION Postoperative anastomotic fistulas significantly affect prognosis and survival rates.Therefore,focusing on the clinical characteristics and risk factors and immediately implementing individualized preventive measures are important to minimize their occurrence.
基金the National Natural Science Foundation of China(Grant Nos.62227901,12202068)the Civil Aerospace Pre-research Project(Grant No.D020304).
文摘The effects of projectile/target impedance matching and projectile shape on energy,momentum transfer and projectile melting during collisions are investigated by numerical simulation.By comparing the computation results with the experimental results,the correctness of the calculation and the statistical method of momentum transfer coefficient is verified.Different shapes of aluminum,copper and heavy tungsten alloy projectiles striking aluminum,basalt,and pumice target for impacts up to 10 km/s are simulated.The influence mechanism of the shape of the projectile and projectile/target density on the momentum transfer was obtained.With an increase in projectile density and length-diameter ratio,the energy transfer time between the projectile and targets is prolonged.The projectile decelerates slowly,resulting in a larger cratering depth.The energy consumed by the projectile in the excavation stage increased,resulting in lower mass-velocity of ejecta and momentum transfer coefficient.The numerical simulation results demonstrated that for different projectile/target combinations,the higher the wave impedance of the projectile,the higher the initial phase transition velocity and the smaller the mass of phase transition.The results can provide theoretical guidance for kinetic impactor design and material selection.
基金This work was supported by the Qinchuangyuan Project of Shaanxi Province,China(QCYRCXM-2022-145)the Major Project of the Key Research Base of Humanities and Social Sciences of the Ministry of Education,China(22JJD790052)+1 种基金the Chinese Universities Scientific Fund(Z1010422003)the National Natural Science Foundation of China(72373117).
文摘With increasing population and changing demographics,food consumption has experienced a significant transition in quantity and quality.However,a dearth of knowledge remains regarding its environmental impacts and how it responds to demographic dynamics,particularly in emerging economies like China.Using the two-stage Quadratic Almost Demand System(QUAIDS)model,this study empirically examines the impact of demographic dynamics on food consumption and its environmental outcomes based on the provincial data from 2000 to 2020 in China.Under various scenarios,according to changes in demographics,we extend our analysis to project the long-term trend of food consumption and its environmental impacts,including greenhouse gas(GHG)emissions,water footprint(WF),and land appropriation(LA).The results reveal that an increase in the proportion of senior people significantly decreases the consumption of grain and livestock meat and increases the consumption of poultry,egg,and aquatic products,particularly for urban residents.Moreover,an increase in the proportion of males in the population leads to higher consumption of poultry and aquatic products.Correspondingly,in the current scenario of an increased aging population and sex ratio,it is anticipated that GHG emissions,WF,and LA are likely to decrease by 1.37,2.52,and 3.56%,respectively.More importantly,in the scenario adhering to the standards of nutritional intake according to the Dietary Guidelines for Chinese Residents in 2022,GHG emissions,WF,and LA in urban areas would increase by 12.78,20.94,and 18.32%,respectively.Our findings suggest that changing demographics should be considered when designing policies to mitigate the diet-environment-health trilemma and achieve sustainable food consumption.
基金supported by the Henan Provincial Science and Technology Research Project under Grant(152102310295).
文摘A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solution of bridge vibrations induced by vehicle deceleration are realized using this method.The method’s validity and reliability are substantiated through numerical examples.A simply supported beam bridge with a corrugated steel web is taken as an example and the effects of parameters such as the initial vehicle speed,braking acceleration,braking location,and road surface roughness on the mid-span displacement and impact factor of the bridge are analyzed.The results show that vehicle braking significantly amplifies mid-span displacement and impact factor responses in comparison to uniform vehicular motion across the bridge.Notably,the influence of wheelto-bridge friction forces is of particular significance and cannot be overlooked.When the vehicle initiates braking near the middle of the span,both the mid-span displacement and impact factor of the bridge exhibit substantial increases,further escalating with higher braking acceleration.Under favorable road surface conditions,the midspan displacement and the impact factor during vehicle braking may exceed the design values stipulated by codes.It is important to note that road surface roughness exerts a more pronounced effect on the impact factor of the bridge in comparison to the effects of vehicle braking.
基金supported by the Natural Science Foundation of Sichuan Province(No.2022NSFSC1127)the Fundamental Research Funds for the Central Universities(No.2682023CX075).
文摘Rock sheds are widely used to prevent rockfall disasters along roads in mountainous areas.To improve the capacity of rock sheds for resisting rockfall impact,a sand and expandable polyethylene(EPE)composite cushion was proposed.A series of model experiments of rockfall impact on rock sheds were conducted,and the buried depth of the EPE foam board in the sand layer was considered.The impact load and dynamic response of the rock shed were investigated.The results show that the maximum impact load and dynamic response of the rock shed roof are all significantly less than those of the sand cushion.Moreover,as the distance between the EPE foam board and rock shed roof decreases,the maximum rockfall impact force and impact pressure gradually decrease,and the maximum displacement,acceleration and strain of the rock shed first decrease and then change little.In addition,the vibration acceleration and vertical displacement of the rock shed roof decrease from the centre to the edge and decrease faster along the longitudinal direction than that along the transverse direction.In conclusion,the buffering effect of the sand-EPE composite cushion is better than that of the pure sand cushion,and the EPE foam board at a depth of 1/3 the thickness of the sand layer is appropriate.
基金l’UniversitéLaval for the financial support of his sabbatical year at Dipartimento di Bioscienze e Territorio,Universitàdegli Studi del Molise in Campobasso,Italy。
文摘This work presents a novel approach to the dynamic response analysis of a Euler-Bernoulli beam resting on a Winkler soil model and subjected to an impact loading.The approach considers that damping has much less importance in controlling the maximum response to impulsive loadings because the maximum response is reached in a very short time,before the damping forces can dissipate a significant portion of the energy input into the system.The development of two sine series solutions,relating to different types of impulsive loadings,one involving a single concentrated force and the other a distributed line load,are presented.This study revealed that when a simply supported Euler-Bernoulli beam,resting on a Winkler soil model,is subject to an impact load,the resulting vertical displacements,bending moments and shear forces produced along the span of the beam are considerably affected.In particular,the quantification of this effect is best observed,relative to the corresponding static solution,via an amplification factor.The computed impact amplification factors,for the sub-grade moduli used in this study,were in magnitude greater than 2,thus confirming the multiple-degree-of-freedom nature of the problem.
文摘Following publication of the original article[1],the authors reported that the author Hun-Gi Jung should be affiliated as 3,4 and 5 instead of 4 and 5.The author’s name“A.-Yeon Kim”needed to be updated to“A-Yeon Kim”,removing the period.The correct author’s name and affiliation have been provided in this Correction.The original article[1]has been corrected.
基金Supported by Science and Technology Support Program of Qiandongnan Prefecture,No.Qiandongnan Sci-Tech Support[2021]12Guizhou Province High-Level Innovative Talent Training Program,No.Qiannan Thousand Talents[2022]201701.
文摘BACKGROUND Intensive care unit-acquired weakness(ICU-AW)is a common complication that significantly impacts the patient's recovery process,even leading to adverse outcomes.Currently,there is a lack of effective preventive measures.AIM To identify significant risk factors for ICU-AW through iterative machine learning techniques and offer recommendations for its prevention and treatment.METHODS Patients were categorized into ICU-AW and non-ICU-AW groups on the 14th day post-ICU admission.Relevant data from the initial 14 d of ICU stay,such as age,comorbidities,sedative dosage,vasopressor dosage,duration of mechanical ventilation,length of ICU stay,and rehabilitation therapy,were gathered.The relationships between these variables and ICU-AW were examined.Utilizing iterative machine learning techniques,a multilayer perceptron neural network model was developed,and its predictive performance for ICU-AW was assessed using the receiver operating characteristic curve.RESULTS Within the ICU-AW group,age,duration of mechanical ventilation,lorazepam dosage,adrenaline dosage,and length of ICU stay were significantly higher than in the non-ICU-AW group.Additionally,sepsis,multiple organ dysfunction syndrome,hypoalbuminemia,acute heart failure,respiratory failure,acute kidney injury,anemia,stress-related gastrointestinal bleeding,shock,hypertension,coronary artery disease,malignant tumors,and rehabilitation therapy ratios were significantly higher in the ICU-AW group,demonstrating statistical significance.The most influential factors contributing to ICU-AW were identified as the length of ICU stay(100.0%)and the duration of mechanical ventilation(54.9%).The neural network model predicted ICU-AW with an area under the curve of 0.941,sensitivity of 92.2%,and specificity of 82.7%.CONCLUSION The main factors influencing ICU-AW are the length of ICU stay and the duration of mechanical ventilation.A primary preventive strategy,when feasible,involves minimizing both ICU stay and mechanical ventilation duration.
基金financially supported by the National Key Research and Development Program of China(No.2022YFC2905004)the China Postdoctoral Science Foundation(No.2023M742134)。
文摘Polypropylene(PP)fiber-reinforced cement-based tailings backfill(FRCTB)is a green compound material with superior crack resistance and has good prospects for application in underground mining.However,FRCTB exhibits susceptibility to dynamic events,such as impact ground pressure and blast vibrations.This paper investigates the energy and crack distribution behavior of FRCTB under dynamic impact,considering the height/diameter(H/D)effect.Split Hopkinson pressure bar,industrial computed tomography scan,and scanning electron microscopy(SEM)experiments were carried out on six types of FRCTB.Laboratory outcomes confirmed fiber aggregation at the bottom of specimens.When H/D was less than 0.8,the proportion of PP fibers distributed along theθangle direction of80°-90°increased.For the total energy,all samples presented similar energy absorption,reflectance,and transmittance.However,a rise in H/D may cause a rise in the energy absorption rate of FRCTB during the peak phase.A positive correlation existed between the average strain rate and absorbed energy per unit volume.The increase in H/D resulted in a decreased crack volume fraction of FRCTB.When the H/D was greater than or equal to 0.7,the maximum crack volume fraction of FRCTB was observed close to the incidence plane.Radial cracks were present only in the FRCTB with an H/D ratio of 0.5.Samples with H/D ratios of 0.5 and 0.6 showed similar distributions of weakly and heavily damaged areas.PP fibers can limit the emergence and expansion of cracks by influencing their path.SEM observations revealed considerable differences in the bonding strengths between fibers and the FRCTB.Fibers that adhered particularly well to the substrate were attracted together with the hydration products adhering to surfaces.These results show that FRCTB is promising as a sustainable and green backfill for determining the design properties of mining with backfill.
文摘Heavy precipitation and extreme drought have caused severe economic losses over South China and Indochina(INCSC)in recent decades.Given the areas with large gross domestic product(GDP)in the INCSC region are distributed along the coastline and greatly affected by global warming,understanding the possible economic impacts induced by future changes in the maximum consecutive 5-day precipitation(RX5day)and the maximum consecutive dry days(CDD)is critical for adaptation planning in this region.Based on the latest data released by phase 6 of the Coupled Model Intercomparison Project(CMIP6),future projections of precipitation extremes with bias correction and their impacts on GDP over the INCSC region under the fossil-fueled development Shared Socioeconomic Pathway(SSP5-8.5)are investigated.Results indicate that RX5day will intensify robustly throughout the INCSC region,while CDD will lengthen in most regions under global warming.The changes in climate consistently dominate the effect on GDP over the INCSC region,rather than the change of GDP.If only considering the effect of climate change on GDP,the changes in precipitation extremes bring a larger impact on the economy in the future to the provinces of Hunan,Jiangxi,Fujian,Guangdong,and Hainan in South China,as well as the Malay Peninsula and southern Cambodia in Indochina.Thus,timely regional adaptation strategies are urgent for these regions.Moreover,from the sub-regional average viewpoint,over two thirds of CMIP6 models agree that maintaining a lower global warming level will reduce the economic impacts from heavy precipitation over the INCSC region.
基金This paper is part of the achievements of the CFL’s Undergraduate Project:An Investigation on the Influence of COVID-19 on Non intellectual Factors of College Students at USST in 2022.
文摘The outbreak of COVID-19 in December 2019 has exerted a wide and everlasting impact on the world,which has also influenced education enormously.The adjustment of objective learning environment during the COVID-19 pandemic makes the influence of non-intellectual factors on college students worthy of investigation,research and analysis.Based on this,we have launched a questionnaire survey on 500 college students who have witnessed the pandemic,and referred to related literature,network documents,news reports,contrast and analysis of college students’non-intelligence factors before and after the outbreak of the different levels of change,summing up some new measures to promote the development of college students’non-intelligence factors under the COVID-19 outbreak for online learning and autonomous learning.
基金supported by the Youth Foundation of State Key Laboratory of Explosion Science and Technology (Grant No.QNKT22-12)the State Key Program of National Natural Science Foundation of China (Grant No.12132003)。
文摘A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was studied in detail.PTFE/Al/W RMPs with steel-like and aluminum-like densities were prepared by a pressing/sintering process.The projectiles impacted a liquid-filled steel tank with front aluminum panel at approximately 1250 m/s.The corresponding cavity evolution characteristics and HRAM pressure were recorded by high-speed camera and pressure acquisition system,and further compared to those of steel and aluminum projectiles.Significantly different from the conical cavity formed by the inert metal projectile,the cavity formed by the RMP appeared as an ellipsoid with a conical front.The RMPs were demonstrated to enhance the radial growth velocity of cavity,the global HRAM pressure amplitude and the front panel damage,indicating the enhanced HRAM and structural damage behavior.Furthermore,combining the impact-induced fragmentation and deflagration characteristics,the cavity evolution of RMPs under the combined effect of kinetic energy impact and chemical energy release was analyzed.The mechanism of enhanced HRAM pressure induced by the RMPs was further revealed based on the theoretical model of the initial impact wave and the impulse analysis.Finally,the linear correlation between the deformation-thickness ratio and the non-dimensional impulse for the front panel was obtained and analyzed.It was determined that the enhanced near-field impulse induced by the RMPs was the dominant reason for the enhanced structural damage behavior.