With regard to brain acetylcholinesterase and acetylcholine and serum triiodothyronine(T_3) and thyroxine(T_4)profiles,a biphasic response pattern was elicited in Channa punctatus chroni- cally exposed to nonlethal do...With regard to brain acetylcholinesterase and acetylcholine and serum triiodothyronine(T_3) and thyroxine(T_4)profiles,a biphasic response pattern was elicited in Channa punctatus chroni- cally exposed to nonlethal doses of locally used pesticides,namely,Metacid-50 and Carbaryl. Data revealed that these xenobiotics caused significant inhibition of brain acetylcholinesterase activity and a decrease in thyroxine level accompanied by a concurrent increase in acetylcholine accumulation and T_3 level.It is surmised that Metacid-50 and Carbaryl influence both neural and hormonal functions.1989 Academic Press.Inc.展开更多
The torsional impact response of a penny-shaped crack in a nonhomogeneous strip is considered. The shear modulus is assumed to be functionally graded such that the mathematics is tractable. Laplace and Hankel transfor...The torsional impact response of a penny-shaped crack in a nonhomogeneous strip is considered. The shear modulus is assumed to be functionally graded such that the mathematics is tractable. Laplace and Hankel transforms were used to reduce the problem to solving a Fredholm integral equation. The crack tip stress field is obtained by considering the asymptotic behavior of Bessel function. Explicit expressions of both the dynamic stress intensity factor and the energy density factor were derived.And it is shown that, as crack driving force, they are equivalent for the present crack problem. Investigated are the effects of material nonhomogeneity and (strip's) highness on the dynamic fracture behavior. Numerical results reveal that the peak of the dynamic stress intensity factor can be suppressed by increasing the nonhomogeneity parameter of the shear modulus, and that the dynamic behavior varies little with the adjusting of the strip's highness.展开更多
The impact of climate change on agriculture has received wide attention by the scientific community. This paper studies how to assess the grain yield impact of climate change, according to the climate change over a lo...The impact of climate change on agriculture has received wide attention by the scientific community. This paper studies how to assess the grain yield impact of climate change, according to the climate change over a long time period in the future as predicted by a climate system model. The application of the concept of a traditional "yield impact of meteorological factor (YIMF)" or "yield impact of weather factor" to the grain yield assessment of a decadal or even a longer timescale would be suffocated at the outset because the YIMF is for studying the phenomenon on an interannual timescale, and it is difficult to distinguish between the trend caused by climate change and the one resulting from changes in non-climatic factors. Therefore, the concept of the yield impact of climatic change (YICC), which is defined as the difference in the per unit area yields (PUAY) of a grain crop under a changing and an envisaged invariant climate conditions, is presented in this paper to assess the impact of global climate change on grain yields. The climatic factor has been introduced into the renowned economic Cobb-Douglas model, yielding a quantitative assessment method of YICC using real data. The method has been tested using the historical data of Northeast China, and the results show that it has an encouraging application outlook.展开更多
Virtual testing of fabric armor provides an efficient and inexpensive means of systematically studying the influence of various architectural and material parameters on the ballistic impact behavior of woven fabrics, ...Virtual testing of fabric armor provides an efficient and inexpensive means of systematically studying the influence of various architectural and material parameters on the ballistic impact behavior of woven fabrics, before actual laboratory prototypes are woven and destructively tested. In this finite element study, the combined effects of individual ply orientations and material properties on the impact performance of multi-layered, non-stitched woven aramid fabrics are studied using 2-and 4-sided clamping configurations. Individual ply orientations of 0°, ±15°, ±30°, and ±45° are considered along with three levels of inter-yarn friction coefficient. Functionally graded fabric targets are also considered wherein the yarn stiffness progressively increases or decreases through the target thickness while keeping the yarn strain energy density constant and with all other material and architectural parameters unchanged for consistency. For each target configuration, one non-penetrating and one penetrating impact velocity is chosen. The impact performance is evaluated by the time taken to arrest the projectile and the backface deformation for the non-penetrating impacts, and by the residual velocity for the penetrating impact tests. All deterministic impact simulations are performed using LS-DYNA. 2-sided clamped targets and lower inter-yarn frictional levels generally resulted in better impact performance.The functionally graded targets generally showed either similar or inferior impact performance than the baseline fabric target configurations for the non-penetrating shots. Some performance improvements were observed for the penetrating shots when the yarn stiffness was progressively decreased through the layers in a direction away from the strike face, with additional performance enhancements achieved by simultaneously reducing the inter-yarn friction.展开更多
In [1], the dynamic response of an impacted elastic plate is analysed. Using the method in [1] is on condition that impacting body is rigid and the relation between impact reacting .force and partial deformation is kn...In [1], the dynamic response of an impacted elastic plate is analysed. Using the method in [1] is on condition that impacting body is rigid and the relation between impact reacting .force and partial deformation is known In this paper. Simulate formula of impact reacting force. function is presented. Without assumption of impacting body, dynamic response in impact procedure is considered avoiding the problem of partial deformation. Because of analysis by law of momentum conservation. impulse theorem, dynamic differential equation and numerical method the method in this paper is more suitable for application. Examples of the application are given. In precision, solution in this paper is identical with known correct solution展开更多
The problem of a Griffith crack in an unbounded orthotropic functionally graded material subjected to antipole shear impact was studied. The shear moduli in two directions of the functionally graded material were assu...The problem of a Griffith crack in an unbounded orthotropic functionally graded material subjected to antipole shear impact was studied. The shear moduli in two directions of the functionally graded material were assumed to vary proportionately as definite gradient. By using integral transforms and dual integral equations, the local dynamic stress field was obtained. The results of dynamic stress intensity factor show that increasing shear moduli's gradient of FGM or increasing the shear modulus in direction perpendicular to crack surface can restrain the magnitude of dynamic stress intensity factor.展开更多
Traumatic brain injury(TBI) is a major contributor of long-term disability and a leading cause of death worldwide. A series of secondary injury cascades can contribute to cell death, tissue loss, and ultimately to the...Traumatic brain injury(TBI) is a major contributor of long-term disability and a leading cause of death worldwide. A series of secondary injury cascades can contribute to cell death, tissue loss, and ultimately to the development of functional impairments. However, there are currently no effective therapeutic interventions that improve brain outcomes following TBI. As a result, a number of experimental TBI models have been developed to recapitulate TBI injury mechanisms and to test the efficacy of potential therapeutics. The pig model has recently come to the forefront as the pig brain is closer in size, structure, and composition to the human brain compared to traditional rodent models, making it an ideal large animal model to study TBI pathophysiology and functional outcomes. This review will focus on the shared characteristics between humans and pigs that make them ideal for modeling TBI and will review the three most common pig TBI models–the diffuse axonal injury, the controlled cortical impact, and the fluid percussion models. It will also review current advances in functional outcome assessment measures and other non-invasive, translational TBI detection and measurement tools like biomarker analysis and magnetic resonance imaging. The use of pigs as TBI models and the continued development and improvement of translational assessment modalities have made significant contributions to unraveling the complex cascade of TBI sequela and provide an important means to study potential clinically relevant therapeutic interventions.展开更多
文摘With regard to brain acetylcholinesterase and acetylcholine and serum triiodothyronine(T_3) and thyroxine(T_4)profiles,a biphasic response pattern was elicited in Channa punctatus chroni- cally exposed to nonlethal doses of locally used pesticides,namely,Metacid-50 and Carbaryl. Data revealed that these xenobiotics caused significant inhibition of brain acetylcholinesterase activity and a decrease in thyroxine level accompanied by a concurrent increase in acetylcholine accumulation and T_3 level.It is surmised that Metacid-50 and Carbaryl influence both neural and hormonal functions.1989 Academic Press.Inc.
文摘The torsional impact response of a penny-shaped crack in a nonhomogeneous strip is considered. The shear modulus is assumed to be functionally graded such that the mathematics is tractable. Laplace and Hankel transforms were used to reduce the problem to solving a Fredholm integral equation. The crack tip stress field is obtained by considering the asymptotic behavior of Bessel function. Explicit expressions of both the dynamic stress intensity factor and the energy density factor were derived.And it is shown that, as crack driving force, they are equivalent for the present crack problem. Investigated are the effects of material nonhomogeneity and (strip's) highness on the dynamic fracture behavior. Numerical results reveal that the peak of the dynamic stress intensity factor can be suppressed by increasing the nonhomogeneity parameter of the shear modulus, and that the dynamic behavior varies little with the adjusting of the strip's highness.
基金This work was supported by the National Natural Science Foundation of China under Grant No. 40231006 the National Key Program for Developing Basic Sciences under Grant No. 2006CB400503the Knowledge Innovation Project of the Chinese Academy of Science under Grant No. KZCX- SW-218.
文摘The impact of climate change on agriculture has received wide attention by the scientific community. This paper studies how to assess the grain yield impact of climate change, according to the climate change over a long time period in the future as predicted by a climate system model. The application of the concept of a traditional "yield impact of meteorological factor (YIMF)" or "yield impact of weather factor" to the grain yield assessment of a decadal or even a longer timescale would be suffocated at the outset because the YIMF is for studying the phenomenon on an interannual timescale, and it is difficult to distinguish between the trend caused by climate change and the one resulting from changes in non-climatic factors. Therefore, the concept of the yield impact of climatic change (YICC), which is defined as the difference in the per unit area yields (PUAY) of a grain crop under a changing and an envisaged invariant climate conditions, is presented in this paper to assess the impact of global climate change on grain yields. The climatic factor has been introduced into the renowned economic Cobb-Douglas model, yielding a quantitative assessment method of YICC using real data. The method has been tested using the historical data of Northeast China, and the results show that it has an encouraging application outlook.
基金support from the M.C.Gill Composites Center at the University of Southern California(USC)supported by the USC Center for High-Performance Computing(hpcc.usc.edu)
文摘Virtual testing of fabric armor provides an efficient and inexpensive means of systematically studying the influence of various architectural and material parameters on the ballistic impact behavior of woven fabrics, before actual laboratory prototypes are woven and destructively tested. In this finite element study, the combined effects of individual ply orientations and material properties on the impact performance of multi-layered, non-stitched woven aramid fabrics are studied using 2-and 4-sided clamping configurations. Individual ply orientations of 0°, ±15°, ±30°, and ±45° are considered along with three levels of inter-yarn friction coefficient. Functionally graded fabric targets are also considered wherein the yarn stiffness progressively increases or decreases through the target thickness while keeping the yarn strain energy density constant and with all other material and architectural parameters unchanged for consistency. For each target configuration, one non-penetrating and one penetrating impact velocity is chosen. The impact performance is evaluated by the time taken to arrest the projectile and the backface deformation for the non-penetrating impacts, and by the residual velocity for the penetrating impact tests. All deterministic impact simulations are performed using LS-DYNA. 2-sided clamped targets and lower inter-yarn frictional levels generally resulted in better impact performance.The functionally graded targets generally showed either similar or inferior impact performance than the baseline fabric target configurations for the non-penetrating shots. Some performance improvements were observed for the penetrating shots when the yarn stiffness was progressively decreased through the layers in a direction away from the strike face, with additional performance enhancements achieved by simultaneously reducing the inter-yarn friction.
文摘In [1], the dynamic response of an impacted elastic plate is analysed. Using the method in [1] is on condition that impacting body is rigid and the relation between impact reacting .force and partial deformation is known In this paper. Simulate formula of impact reacting force. function is presented. Without assumption of impacting body, dynamic response in impact procedure is considered avoiding the problem of partial deformation. Because of analysis by law of momentum conservation. impulse theorem, dynamic differential equation and numerical method the method in this paper is more suitable for application. Examples of the application are given. In precision, solution in this paper is identical with known correct solution
文摘The problem of a Griffith crack in an unbounded orthotropic functionally graded material subjected to antipole shear impact was studied. The shear moduli in two directions of the functionally graded material were assumed to vary proportionately as definite gradient. By using integral transforms and dual integral equations, the local dynamic stress field was obtained. The results of dynamic stress intensity factor show that increasing shear moduli's gradient of FGM or increasing the shear modulus in direction perpendicular to crack surface can restrain the magnitude of dynamic stress intensity factor.
文摘Traumatic brain injury(TBI) is a major contributor of long-term disability and a leading cause of death worldwide. A series of secondary injury cascades can contribute to cell death, tissue loss, and ultimately to the development of functional impairments. However, there are currently no effective therapeutic interventions that improve brain outcomes following TBI. As a result, a number of experimental TBI models have been developed to recapitulate TBI injury mechanisms and to test the efficacy of potential therapeutics. The pig model has recently come to the forefront as the pig brain is closer in size, structure, and composition to the human brain compared to traditional rodent models, making it an ideal large animal model to study TBI pathophysiology and functional outcomes. This review will focus on the shared characteristics between humans and pigs that make them ideal for modeling TBI and will review the three most common pig TBI models–the diffuse axonal injury, the controlled cortical impact, and the fluid percussion models. It will also review current advances in functional outcome assessment measures and other non-invasive, translational TBI detection and measurement tools like biomarker analysis and magnetic resonance imaging. The use of pigs as TBI models and the continued development and improvement of translational assessment modalities have made significant contributions to unraveling the complex cascade of TBI sequela and provide an important means to study potential clinically relevant therapeutic interventions.