An impact point prediction(IPP) guidance based on supervised learning is proposed to address the problem of precise guidance for the ballistic missile in high maneuver penetration condition.An accurate ballistic traje...An impact point prediction(IPP) guidance based on supervised learning is proposed to address the problem of precise guidance for the ballistic missile in high maneuver penetration condition.An accurate ballistic trajectory model is applied to generate training samples,and ablation experiments are conducted to determine the mapping relationship between the flight state and the impact point.At the same time,the impact point coordinates are decoupled to improve the prediction accuracy,and the sigmoid activation function is improved to ameliorate the prediction efficiency.Therefore,an IPP neural network model,which solves the contradiction between the accuracy and the speed of the IPP,is established.In view of the performance deviation of the divert control system,the mapping relationship between the guidance parameters and the impact deviation is analysed based on the variational principle.In addition,a fast iterative model of guidance parameters is designed for reference to the Newton iteration method,which solves the nonlinear strong coupling problem of the guidance parameter solution.Monte Carlo simulation results show that the prediction accuracy of the impact point is high,with a 3 σ prediction error of 4.5 m,and the guidance method is robust,with a 3 σ error of 7.5 m.On the STM32F407 singlechip microcomputer,a single IPP takes about 2.374 ms,and a single guidance solution takes about9.936 ms,which has a good real-time performance and a certain engineering application value.展开更多
In order to forecast projectile impact points quickly and accurately,aprojectile impact point prediction method based on generalized regression neural network(GRNN)is presented.Firstly,the model of GRNN forecasting ...In order to forecast projectile impact points quickly and accurately,aprojectile impact point prediction method based on generalized regression neural network(GRNN)is presented.Firstly,the model of GRNN forecasting impact point is established;secondly,the particle swarm algorithm(PSD)is used to optimize the smooth factor in the prediction model and then the optimal GRNN impact point prediction model is obtained.Finally,the numerical simulation of this prediction model is carried out.Simulation results show that the maximum range error is no more than 40 m,and the lateral deviation error is less than0.2m.The average time of impact point prediction is 6.645 ms,which is 1 300.623 ms less than that of numerical integration method.Therefore,it is feasible and effective for the proposed method to forecast projectile impact points,and thus it can provide a theoretical reference for practical engineering applications.展开更多
In order to measure the parameters of flight rocket by using radar,rocket impact point was estimated accurately for rocket trajectory correction.The Kalman filter with adaptive filter gain matrix was adopted.According...In order to measure the parameters of flight rocket by using radar,rocket impact point was estimated accurately for rocket trajectory correction.The Kalman filter with adaptive filter gain matrix was adopted.According to the particle trajectory model,the adaptive Kalman filter trajectory model was constructed for removing and filtering the outliers of the parameters during a section of flight detected by three-dimensional data radar and the rocket impact point was extrapolated.The results of numerical simulation show that the outliers and noise in trajectory measurement signal can be removed effectively by using the adaptive Kalman filter and the filter variance can converge in a short period of time.Based on the relation of filtering time and impact point estimation error,choosing the filtering time of 8-10 scan get the minimum estimation error of impact point.展开更多
Compared with the one-dimensional trajectory correction technology which adjusts longitudinal range, not only does the two-dimensional trajectory correction technology adjust the force in velocity direction, but also ...Compared with the one-dimensional trajectory correction technology which adjusts longitudinal range, not only does the two-dimensional trajectory correction technology adjust the force in velocity direction, but also need to modulate the lateral force or trajectory (perpendicular to the vertical plane of fire direction). Therefore, the structure of control cabin of two-dimensional trajectory correction projectile (TDTCP) is more complicated than that of one-dimensional trajectory correction projectile (ODTCP). To simplify the structure of control cabin of TDTCP and reduce the cost, a scheme of adding a damping disk to the control cabin of ODTCP has been developed recently. The damping disk is unfolded at the right moment during its flight to change the ballistic drift of spin stabilized projectile. For this technical scheme of TDTCP, a fast and accurate impact point prediction method based on extended Kalman filter is presented. An approximate formula for predicting the ballistic drift and trajectory correction quantity is deduced. And the lateral correction capability for different fire angles and its influencing factors are analyzed. All the work is valuable for further research.展开更多
A highway in the floodplain of the Abandoned Yellow River in the north of Jiangsu Province is recently remediated to reduce liquefaction potential using the dynamic compaction(DC)method of densification of in-place so...A highway in the floodplain of the Abandoned Yellow River in the north of Jiangsu Province is recently remediated to reduce liquefaction potential using the dynamic compaction(DC)method of densification of in-place soils.Firstly,the liquefaction potential of the soil at the project site is analysed according to the code of seismic design.Then the in-situ single point impact tests are performed on the liquefiable soil.Settlement of crater,excess pore pressure,ground heave and lateral deformation under DC impact are measured and analyzed.Subsequently, the standard penetration test(SPT)and cone penetration test(CPT)are used for investigating the compaction effectiveness.At last,the improvement effect of DC is discussed according to the technical specification of dynamic consolidation to ground treatment.The investigation results indicate that the DC technique is an effective way for remediating liquefiable soil in highway engineering practice.展开更多
To better simulate multi-phase interactions involving failure evolution, the material point method (MPM) has evolved for almost twenty years. Recently, a particle-based multiscale simulation procedure is being devel...To better simulate multi-phase interactions involving failure evolution, the material point method (MPM) has evolved for almost twenty years. Recently, a particle-based multiscale simulation procedure is being developed, within the framework of the MPM, to describe the detonation process of energetic nano-composites from molecular to continuum level so that a multiscale equation of state could be formulated. In this letter, a multiscale MPM is proposed via both hierarchical and concurrent schemes to simulate the impact response between two microrods with different nanostructures. Preliminary results are presented to illustrate that a transition region is not required between different spatial scales with the proposed approach.展开更多
According to the World Health Organization, approximately 3 million deaths are prevented each year in the world thanks to vaccination and then, in addition, each year, it makes it possible to avoid nearly 750,000 chil...According to the World Health Organization, approximately 3 million deaths are prevented each year in the world thanks to vaccination and then, in addition, each year, it makes it possible to avoid nearly 750,000 children suffering from serious physical, mental or neurological handicaps and 1.5 million other deaths could be avoided if the vaccination coverage is improved. However, vaccination coverage is often not achieved due to various difficulties encountered by health providers in the expanded program on vaccination activities. Yet, it is important to strengthen the program. This research paper aimed to assess health providers’ points of view on the impact of the project to strengthen the routine expanded program on vaccination in the Barumbu health zone in Kinshasa, Democratic Republic of Congo (RDC). To do so, we surveyed a convenience sample of 234 health providers involved in the implementation of the project, including 210 community relays, 9 permanent nurses, 9 health committee chairpersons and 6 health authorities. A questionnaire related to the objective of the research was submitted to them. After analyzing the data, we found that the points of view of health providers are negative. The performance of the vaccination program was not great. Several reasons were given for this, including the non-involvement of the political and administrative authorities, the failure to respect the funds disbursement circuit and the non-effective financing of vaccination activities in the Barumbu health zone in Kinshasa, DRC.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.62103432)supported by Young Talent fund of University Association for Science and Technology in Shaanxi, China(Grant No.20210108)。
文摘An impact point prediction(IPP) guidance based on supervised learning is proposed to address the problem of precise guidance for the ballistic missile in high maneuver penetration condition.An accurate ballistic trajectory model is applied to generate training samples,and ablation experiments are conducted to determine the mapping relationship between the flight state and the impact point.At the same time,the impact point coordinates are decoupled to improve the prediction accuracy,and the sigmoid activation function is improved to ameliorate the prediction efficiency.Therefore,an IPP neural network model,which solves the contradiction between the accuracy and the speed of the IPP,is established.In view of the performance deviation of the divert control system,the mapping relationship between the guidance parameters and the impact deviation is analysed based on the variational principle.In addition,a fast iterative model of guidance parameters is designed for reference to the Newton iteration method,which solves the nonlinear strong coupling problem of the guidance parameter solution.Monte Carlo simulation results show that the prediction accuracy of the impact point is high,with a 3 σ prediction error of 4.5 m,and the guidance method is robust,with a 3 σ error of 7.5 m.On the STM32F407 singlechip microcomputer,a single IPP takes about 2.374 ms,and a single guidance solution takes about9.936 ms,which has a good real-time performance and a certain engineering application value.
基金Project Funded by Chongqing Changjiang Electrical Appliances Industries Group Co.,Ltd
文摘In order to forecast projectile impact points quickly and accurately,aprojectile impact point prediction method based on generalized regression neural network(GRNN)is presented.Firstly,the model of GRNN forecasting impact point is established;secondly,the particle swarm algorithm(PSD)is used to optimize the smooth factor in the prediction model and then the optimal GRNN impact point prediction model is obtained.Finally,the numerical simulation of this prediction model is carried out.Simulation results show that the maximum range error is no more than 40 m,and the lateral deviation error is less than0.2m.The average time of impact point prediction is 6.645 ms,which is 1 300.623 ms less than that of numerical integration method.Therefore,it is feasible and effective for the proposed method to forecast projectile impact points,and thus it can provide a theoretical reference for practical engineering applications.
文摘In order to measure the parameters of flight rocket by using radar,rocket impact point was estimated accurately for rocket trajectory correction.The Kalman filter with adaptive filter gain matrix was adopted.According to the particle trajectory model,the adaptive Kalman filter trajectory model was constructed for removing and filtering the outliers of the parameters during a section of flight detected by three-dimensional data radar and the rocket impact point was extrapolated.The results of numerical simulation show that the outliers and noise in trajectory measurement signal can be removed effectively by using the adaptive Kalman filter and the filter variance can converge in a short period of time.Based on the relation of filtering time and impact point estimation error,choosing the filtering time of 8-10 scan get the minimum estimation error of impact point.
文摘Compared with the one-dimensional trajectory correction technology which adjusts longitudinal range, not only does the two-dimensional trajectory correction technology adjust the force in velocity direction, but also need to modulate the lateral force or trajectory (perpendicular to the vertical plane of fire direction). Therefore, the structure of control cabin of two-dimensional trajectory correction projectile (TDTCP) is more complicated than that of one-dimensional trajectory correction projectile (ODTCP). To simplify the structure of control cabin of TDTCP and reduce the cost, a scheme of adding a damping disk to the control cabin of ODTCP has been developed recently. The damping disk is unfolded at the right moment during its flight to change the ballistic drift of spin stabilized projectile. For this technical scheme of TDTCP, a fast and accurate impact point prediction method based on extended Kalman filter is presented. An approximate formula for predicting the ballistic drift and trajectory correction quantity is deduced. And the lateral correction capability for different fire angles and its influencing factors are analyzed. All the work is valuable for further research.
基金Supported by the National Youth Science Foundation of China(40802065)the Jiangsu Province Ed-ucation Science Foundation(08KJD580004)the Innovation Research Foundation of Nanjing Institute of Technology(CKJ2011010)
文摘A highway in the floodplain of the Abandoned Yellow River in the north of Jiangsu Province is recently remediated to reduce liquefaction potential using the dynamic compaction(DC)method of densification of in-place soils.Firstly,the liquefaction potential of the soil at the project site is analysed according to the code of seismic design.Then the in-situ single point impact tests are performed on the liquefiable soil.Settlement of crater,excess pore pressure,ground heave and lateral deformation under DC impact are measured and analyzed.Subsequently, the standard penetration test(SPT)and cone penetration test(CPT)are used for investigating the compaction effectiveness.At last,the improvement effect of DC is discussed according to the technical specification of dynamic consolidation to ground treatment.The investigation results indicate that the DC technique is an effective way for remediating liquefiable soil in highway engineering practice.
基金supported in part by the U.S.Defense Threat Reduction Agency(HDTRA1-10-1-0022)the National Basic Research Program of China(2010CB832704)+2 种基金the National Natural Science Foundation of China(10721062)the 111 Joint Program by the Chinese Ministry of EducationState Administration of Foreign Experts Affairs(B08014)
文摘To better simulate multi-phase interactions involving failure evolution, the material point method (MPM) has evolved for almost twenty years. Recently, a particle-based multiscale simulation procedure is being developed, within the framework of the MPM, to describe the detonation process of energetic nano-composites from molecular to continuum level so that a multiscale equation of state could be formulated. In this letter, a multiscale MPM is proposed via both hierarchical and concurrent schemes to simulate the impact response between two microrods with different nanostructures. Preliminary results are presented to illustrate that a transition region is not required between different spatial scales with the proposed approach.
文摘According to the World Health Organization, approximately 3 million deaths are prevented each year in the world thanks to vaccination and then, in addition, each year, it makes it possible to avoid nearly 750,000 children suffering from serious physical, mental or neurological handicaps and 1.5 million other deaths could be avoided if the vaccination coverage is improved. However, vaccination coverage is often not achieved due to various difficulties encountered by health providers in the expanded program on vaccination activities. Yet, it is important to strengthen the program. This research paper aimed to assess health providers’ points of view on the impact of the project to strengthen the routine expanded program on vaccination in the Barumbu health zone in Kinshasa, Democratic Republic of Congo (RDC). To do so, we surveyed a convenience sample of 234 health providers involved in the implementation of the project, including 210 community relays, 9 permanent nurses, 9 health committee chairpersons and 6 health authorities. A questionnaire related to the objective of the research was submitted to them. After analyzing the data, we found that the points of view of health providers are negative. The performance of the vaccination program was not great. Several reasons were given for this, including the non-involvement of the political and administrative authorities, the failure to respect the funds disbursement circuit and the non-effective financing of vaccination activities in the Barumbu health zone in Kinshasa, DRC.