Piles in a group experience additional displacements in soil due to pile-to-pile interactions apart from those resulting from the external loading.The effect of these interactions determined assuming soil as an elasti...Piles in a group experience additional displacements in soil due to pile-to-pile interactions apart from those resulting from the external loading.The effect of these interactions determined assuming soil as an elastic and/or viscoelastic material on pile head impedance functions of the pile group is studied by relating the group stiffness to the static stiffness of a single pile.However,the prevailing elastic solutions may misestimate the resulting pile group response due to the lack of consideration for either soil(material)and/or soil-pile interface nonlinearities.It is well established that soil behaves nonlinearly under moderate-to-high loading amplitudes,and besides,the soil-pile interface nonlinearity can exist even at small loading amplitudes.This study addresses the effects of these nonlinearities on the vertical impedance functions of a 3×3-pile group using numerical methods by direct analyses and superposition using pile-to-pile interaction factors.The numerical results are validated using scaled model tests under 1 g conditions.The results highlight the overestimation of pile-to-pile interactions in the pile group when assuming elastic soil conditions.The cases either by direct analyses or superposition approach involving soil and soil-pile interface nonlinearities agree well with the experimental pile group responses under close-to-elastic and nonlinear conditions.展开更多
Horizontal impedance functions of inclined single piles are measured experimentally for model soil-pile systems with both the effects of local soil nonlinearity and resonant characteristics.Two practical pile inclinat...Horizontal impedance functions of inclined single piles are measured experimentally for model soil-pile systems with both the effects of local soil nonlinearity and resonant characteristics.Two practical pile inclinations of 5掳 and 10掳 in addition to a vertical pile embedded in cohesionless soil and subjected to lateral harmonic pile head loadings for a wide range of frequencies are considered.Results obtained with low-to-high amplitude of lateral loadings on model soil-pile systems encased in a laminar shear box show that the local nonlinearities have a profound impact on the horizontal impedance functions of piles.Horizontal impedance functions of inclined piles are found to be smaller than the vertical pile and the values decrease as the angle of pile inclination increases.Distinct values of horizontal impedance functions are obtained for the 'positive' and 'negative' cycles of harmonic loadings,leading to asymmetric force-displacement relationships for the inclined piles.Validation of these experimental results is carried out through three-dimensional nonlinear finite element analyses,and the results from the numerical models are in good agreement with the experimental data.Sensitivity analyses conducted on the numerical models suggest that the consideration of local nonlinearity at the vicinity of the soil-pile interface influence the response of the soil-pile systems.展开更多
This paper presents an identification approach to time delays in single-degree-of-freedom (SDOF) and multiple-degree-of-freedom (MDOF) systems. In an SDOF system, the impedance function of the delayed system is expres...This paper presents an identification approach to time delays in single-degree-of-freedom (SDOF) and multiple-degree-of-freedom (MDOF) systems. In an SDOF system, the impedance function of the delayed system is expressed by the system parameters, the feedback gain, and the time delay. The time delay can be treated as the 'frequency' of the difference between the impedance function of the delayed system and that of the corresponding uncontrolled system. Thus, it can be identified from the Fourier transform of the difference between the two impedance functions. In an MDOF system, the pseudo-impedance functions are defined. The relationships between the time delay and the pseudo-impedance functions of the delayed system and uncontrolled system are deduced. Similarly, the time delay can be identified from the Fourier transform of the difference between the two pseudo-impedance functions. The results of numerical examples and experimental tests show that the identification approach to keeps a relatively high accuracy.展开更多
Prom investigation of the advantages and disadvantages of conventional tri-voltage method,a method for the measurement of the transmitting transducer's impedance was presented to solve the difficult problem of examin...Prom investigation of the advantages and disadvantages of conventional tri-voltage method,a method for the measurement of the transmitting transducer's impedance was presented to solve the difficult problem of examining the consistency of the transmitting phased array on the single-mode excitation sea spot.In the method based on the system function, the circuit structure of tri-voltage method was used but new parameters were measured.The principle of the method was given first.Then when resistors with different nominal values were used in the circuit,the measured results for the impedance of transducers were reported.The results were compared with the higher precision impedance analyzer.Finally,the error analysis was performed according to the impedance formula and the equivalent circuit parameters were fitted.Under the condition of guaranteeing the sampling precision,by performance analyzing, the resistor value in series was chosen relatively smaller than the impedance of transducer,the measurement of impedance could achieve the same precision as the higher precision impedance analyzer.Finally,the least squares curve-fitting of measured curves indicated that the transducer equivalent electrical parameters could be extracted accurately and used to design the matching network.展开更多
文摘Piles in a group experience additional displacements in soil due to pile-to-pile interactions apart from those resulting from the external loading.The effect of these interactions determined assuming soil as an elastic and/or viscoelastic material on pile head impedance functions of the pile group is studied by relating the group stiffness to the static stiffness of a single pile.However,the prevailing elastic solutions may misestimate the resulting pile group response due to the lack of consideration for either soil(material)and/or soil-pile interface nonlinearities.It is well established that soil behaves nonlinearly under moderate-to-high loading amplitudes,and besides,the soil-pile interface nonlinearity can exist even at small loading amplitudes.This study addresses the effects of these nonlinearities on the vertical impedance functions of a 3×3-pile group using numerical methods by direct analyses and superposition using pile-to-pile interaction factors.The numerical results are validated using scaled model tests under 1 g conditions.The results highlight the overestimation of pile-to-pile interactions in the pile group when assuming elastic soil conditions.The cases either by direct analyses or superposition approach involving soil and soil-pile interface nonlinearities agree well with the experimental pile group responses under close-to-elastic and nonlinear conditions.
文摘Horizontal impedance functions of inclined single piles are measured experimentally for model soil-pile systems with both the effects of local soil nonlinearity and resonant characteristics.Two practical pile inclinations of 5掳 and 10掳 in addition to a vertical pile embedded in cohesionless soil and subjected to lateral harmonic pile head loadings for a wide range of frequencies are considered.Results obtained with low-to-high amplitude of lateral loadings on model soil-pile systems encased in a laminar shear box show that the local nonlinearities have a profound impact on the horizontal impedance functions of piles.Horizontal impedance functions of inclined piles are found to be smaller than the vertical pile and the values decrease as the angle of pile inclination increases.Distinct values of horizontal impedance functions are obtained for the 'positive' and 'negative' cycles of harmonic loadings,leading to asymmetric force-displacement relationships for the inclined piles.Validation of these experimental results is carried out through three-dimensional nonlinear finite element analyses,and the results from the numerical models are in good agreement with the experimental data.Sensitivity analyses conducted on the numerical models suggest that the consideration of local nonlinearity at the vicinity of the soil-pile interface influence the response of the soil-pile systems.
基金supported by the National Natural Science Foundation of China (Grant 11272235)
文摘This paper presents an identification approach to time delays in single-degree-of-freedom (SDOF) and multiple-degree-of-freedom (MDOF) systems. In an SDOF system, the impedance function of the delayed system is expressed by the system parameters, the feedback gain, and the time delay. The time delay can be treated as the 'frequency' of the difference between the impedance function of the delayed system and that of the corresponding uncontrolled system. Thus, it can be identified from the Fourier transform of the difference between the two impedance functions. In an MDOF system, the pseudo-impedance functions are defined. The relationships between the time delay and the pseudo-impedance functions of the delayed system and uncontrolled system are deduced. Similarly, the time delay can be identified from the Fourier transform of the difference between the two pseudo-impedance functions. The results of numerical examples and experimental tests show that the identification approach to keeps a relatively high accuracy.
基金supported by the National Natural Science Foundation of China(11004214,10574137)
文摘Prom investigation of the advantages and disadvantages of conventional tri-voltage method,a method for the measurement of the transmitting transducer's impedance was presented to solve the difficult problem of examining the consistency of the transmitting phased array on the single-mode excitation sea spot.In the method based on the system function, the circuit structure of tri-voltage method was used but new parameters were measured.The principle of the method was given first.Then when resistors with different nominal values were used in the circuit,the measured results for the impedance of transducers were reported.The results were compared with the higher precision impedance analyzer.Finally,the error analysis was performed according to the impedance formula and the equivalent circuit parameters were fitted.Under the condition of guaranteeing the sampling precision,by performance analyzing, the resistor value in series was chosen relatively smaller than the impedance of transducer,the measurement of impedance could achieve the same precision as the higher precision impedance analyzer.Finally,the least squares curve-fitting of measured curves indicated that the transducer equivalent electrical parameters could be extracted accurately and used to design the matching network.