The static flow resistivity is a fundamental parameter for measuring and classifying the sound absorption behavior of various types of materials. Several methods have been developed for measuring the static flow resis...The static flow resistivity is a fundamental parameter for measuring and classifying the sound absorption behavior of various types of materials. Several methods have been developed for measuring the static flow resistivity acoustically. Most of these methods cannot be implemented directly in the standard tubes which are widely used for measurements of sound absorption coefficients and impedance as defined in ISO 10534.2. The accuracy of the proposed method and the tube is verified through finite element analysis and the feasibility to determine the static flow resistivity is validated through experiments. It is validated that the accuracy of the proposed method is highly dependent on the position of the acoustic center of the measurement microphones and the accuracy can be enhanced by increasing the back cavity depth and/or decreasing the measurement frequency.展开更多
This paper proposed a T- Y tube model to simulate foe input impedance of arterial system. It improves and extends the asymmetric T-tube model which was firstproposed by O' Rourke[1] and developed laier by Liu et a...This paper proposed a T- Y tube model to simulate foe input impedance of arterial system. It improves and extends the asymmetric T-tube model which was firstproposed by O' Rourke[1] and developed laier by Liu et al.[2]. Based on foe asymmetricT-tube model. a T-Y tube model was proposed by adding branching tubes whichrepresem the iliac arteries.All the tubes are considered to be uniform,viscoelasticlongitudinally tethered cylindrical tubes.The upper tube terminates with a windkesselmodel, while the terminal arterioles of the lowr tube are expressed as a resistance.After proper eraluation of the parameters.the impedance of the arterial system iscalculated under normal physiological and hypertensive condition.The model canpredict impedance in good agreement with the experimentally obtained data no matterin normal physiological condition or in pathological condition In comparison with theasymmeric T-tube model,T- Y tube model is closer to anatomy structure of the human arlerial system and at the sametime much simpler than the extremely complex multiplebranching tube model Therefore it will be a valuable model in studying the influencesof various parameters on aorta impedance and ventricular-vascular coupling.展开更多
This paper presents a study on sound absorption property of aluminum foam by evaluating its sound absorption coefficients using standing wave tube method. Experimental results showed that the average values of sound a...This paper presents a study on sound absorption property of aluminum foam by evaluating its sound absorption coefficients using standing wave tube method. Experimental results showed that the average values of sound absorption coefficients (over the test frequency range) are all above 0.4, which indicate very good sound absorption property of the aluminum foams. The sound absorption coefficient is affected by frequency and pore structure, and reaches its maximum value at around 1 000 Hz. With the increase of porosity and decrease of cell diameter, the sound absorption coefficient values increase.展开更多
This paper presents the development and performance of micro-perforated panels(MPP)from natural fiber reinforced composites.The MPP is made of Polylactic Acid(PLA)reinforced with Oil Palm Empty Fruit Bunch Fiber(OPEFB...This paper presents the development and performance of micro-perforated panels(MPP)from natural fiber reinforced composites.The MPP is made of Polylactic Acid(PLA)reinforced with Oil Palm Empty Fruit Bunch Fiber(OPEFBF).The investigation was made by varying the fiber density,air gap,and perforation ratio to observe the effect on the Sound Absorption Coefficient(SAC)through the experiment in an impedance tube.It is found that the peak level of SAC is not affected,but the peak frequency shifts to lower frequency when the fiber density is increased.This phenomenon might be due to the presence of porosity in the inner wall of the holes.Increasing or decreasing the air gap and perforation ratio shifts the peaks of acoustic absorption either way.展开更多
This research aimed to study the sound absorption properties of natural fibers and their reinforced composites.Sound absorption coefficients of three types of natural fibers,i.e.,ramie,flax and jute fibers and their c...This research aimed to study the sound absorption properties of natural fibers and their reinforced composites.Sound absorption coefficients of three types of natural fibers,i.e.,ramie,flax and jute fibers and their composites were measured by the two-microphone transfer function technique in the impedance tube.The results were compared with synthetic fibers and their composites.It was found that both natural fibers and their composites had superior capability of noise reduction.The multi-scale and hollow lumen structures of natural fibers contributed to the high sound absorption performance.Moreover,the sound absorption properties of these natural fibers were also calculated by the Delany-Bazley and Garai-Pompoli models.They showed good agreement with the experimental data.It was concluded that multi-functional composite materials can be made by natural fibers so that both the mechanical and acoustical functions can be achieved.展开更多
Light polymeric soundproofing materials (density = 63 kg/m3) of interest for the transportation industry were fabricated through electrospinning. Blankets of electrospun polyvinylpyrrolidone (average fiber diameter...Light polymeric soundproofing materials (density = 63 kg/m3) of interest for the transportation industry were fabricated through electrospinning. Blankets of electrospun polyvinylpyrrolidone (average fiber diameter = (1.6 ± 0.5) or (2.8 ± 0.5) μm) were obtained by stacking disks of electrospun mats. The sound absorption coefficients were measured using the impedance tube instrument based on ASTM E1050 and ISO 10534-2. For a given set of disks (from a minimum of 6) the sound absorption coefficient changed with the frequency (in the range 200-1600 Hz) following a bell shape curve with a maximum (where the coefficient is greater than 0.9) that shifts to lower frequencies at higher piled disks number and greater fiber diameter. This work showed that electrospinning produced sound absorbers with reduced thickness (2-3 cm) and excellent sound-absorption properties in the low and medium frequency range.展开更多
Porous fiber materials are the most widely used acoustic absorption materials at present,and they have excellent acoustic absorption performance.This paper uses the finite element method to explore the factors affecti...Porous fiber materials are the most widely used acoustic absorption materials at present,and they have excellent acoustic absorption performance.This paper uses the finite element method to explore the factors affecting the acoustic absorption performance of porous fiber materials,including flow resistance,thickness of the porous fiber material,incidence angle,and back cavity thickness.Due to the complex acoustic absorption mechanism of porous fiber materials,an equivalent fluid model is used to simulate the acoustic absorption properties of the porous fiber materials.The correlation of acoustic absorption performance and the model of the back cavity was analyzed.An impedance tube test was implemented to verify the simulation results.展开更多
The present study focuses on the prediction of acoustic absorption performance of a perforated plate with air jets by theoretical calculations. In addition, we experimentally measured the flow rate, internal pressure,...The present study focuses on the prediction of acoustic absorption performance of a perforated plate with air jets by theoretical calculations. In addition, we experimentally measured the flow rate, internal pressure, acoustic pressure, and transfer function using an acoustic impedance tube. The normal incidence absorption coefficient was calculated from the measured transfer function using transfer function methods. We investigated the influences of background air space, flow velocity, thickness, aperture rate, and aperture diameter of a perforated plate on the acoustic absorption characteristics. The frequency characteristics of the acoustic absorption coefficient showed a maximum value at a local frequency. As the background air space increased, the peak frequency of acoustic absorption characteristics decreased. As the flow velocity passing through the apertures increased, the peak level of the acoustic absorption coefficient also increased. The theoretical results agreed well with the experimental ones qualitatively.展开更多
文摘The static flow resistivity is a fundamental parameter for measuring and classifying the sound absorption behavior of various types of materials. Several methods have been developed for measuring the static flow resistivity acoustically. Most of these methods cannot be implemented directly in the standard tubes which are widely used for measurements of sound absorption coefficients and impedance as defined in ISO 10534.2. The accuracy of the proposed method and the tube is verified through finite element analysis and the feasibility to determine the static flow resistivity is validated through experiments. It is validated that the accuracy of the proposed method is highly dependent on the position of the acoustic center of the measurement microphones and the accuracy can be enhanced by increasing the back cavity depth and/or decreasing the measurement frequency.
文摘This paper proposed a T- Y tube model to simulate foe input impedance of arterial system. It improves and extends the asymmetric T-tube model which was firstproposed by O' Rourke[1] and developed laier by Liu et al.[2]. Based on foe asymmetricT-tube model. a T-Y tube model was proposed by adding branching tubes whichrepresem the iliac arteries.All the tubes are considered to be uniform,viscoelasticlongitudinally tethered cylindrical tubes.The upper tube terminates with a windkesselmodel, while the terminal arterioles of the lowr tube are expressed as a resistance.After proper eraluation of the parameters.the impedance of the arterial system iscalculated under normal physiological and hypertensive condition.The model canpredict impedance in good agreement with the experimentally obtained data no matterin normal physiological condition or in pathological condition In comparison with theasymmeric T-tube model,T- Y tube model is closer to anatomy structure of the human arlerial system and at the sametime much simpler than the extremely complex multiplebranching tube model Therefore it will be a valuable model in studying the influencesof various parameters on aorta impedance and ventricular-vascular coupling.
文摘This paper presents a study on sound absorption property of aluminum foam by evaluating its sound absorption coefficients using standing wave tube method. Experimental results showed that the average values of sound absorption coefficients (over the test frequency range) are all above 0.4, which indicate very good sound absorption property of the aluminum foams. The sound absorption coefficient is affected by frequency and pore structure, and reaches its maximum value at around 1 000 Hz. With the increase of porosity and decrease of cell diameter, the sound absorption coefficient values increase.
基金sponsored by Taylor’s University Flagship Research Grant TUFR/2017/001/05。
文摘This paper presents the development and performance of micro-perforated panels(MPP)from natural fiber reinforced composites.The MPP is made of Polylactic Acid(PLA)reinforced with Oil Palm Empty Fruit Bunch Fiber(OPEFBF).The investigation was made by varying the fiber density,air gap,and perforation ratio to observe the effect on the Sound Absorption Coefficient(SAC)through the experiment in an impedance tube.It is found that the peak level of SAC is not affected,but the peak frequency shifts to lower frequency when the fiber density is increased.This phenomenon might be due to the presence of porosity in the inner wall of the holes.Increasing or decreasing the air gap and perforation ratio shifts the peaks of acoustic absorption either way.
基金supported by the National Basic Research Program of China ("973" Program) (Grant No. 2010CB631105)
文摘This research aimed to study the sound absorption properties of natural fibers and their reinforced composites.Sound absorption coefficients of three types of natural fibers,i.e.,ramie,flax and jute fibers and their composites were measured by the two-microphone transfer function technique in the impedance tube.The results were compared with synthetic fibers and their composites.It was found that both natural fibers and their composites had superior capability of noise reduction.The multi-scale and hollow lumen structures of natural fibers contributed to the high sound absorption performance.Moreover,the sound absorption properties of these natural fibers were also calculated by the Delany-Bazley and Garai-Pompoli models.They showed good agreement with the experimental data.It was concluded that multi-functional composite materials can be made by natural fibers so that both the mechanical and acoustical functions can be achieved.
基金partially supported and funded by the Department of Education, Research, Labour, of the Cultural Politics and Social Politics of Campania Region under the research program“MITO-Improvement and Innovation of “Thermoacoustical Material for Aeronautical Applications” PO FESR Campania 2007/2013, OO 2.1 CUP: B68C12000640007, Code SMILE: 150
文摘Light polymeric soundproofing materials (density = 63 kg/m3) of interest for the transportation industry were fabricated through electrospinning. Blankets of electrospun polyvinylpyrrolidone (average fiber diameter = (1.6 ± 0.5) or (2.8 ± 0.5) μm) were obtained by stacking disks of electrospun mats. The sound absorption coefficients were measured using the impedance tube instrument based on ASTM E1050 and ISO 10534-2. For a given set of disks (from a minimum of 6) the sound absorption coefficient changed with the frequency (in the range 200-1600 Hz) following a bell shape curve with a maximum (where the coefficient is greater than 0.9) that shifts to lower frequencies at higher piled disks number and greater fiber diameter. This work showed that electrospinning produced sound absorbers with reduced thickness (2-3 cm) and excellent sound-absorption properties in the low and medium frequency range.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.51505261 and 11672167)the Natural Science Foundation of Shan-dong Province,China(Grant No.ZR2015AM013).
文摘Porous fiber materials are the most widely used acoustic absorption materials at present,and they have excellent acoustic absorption performance.This paper uses the finite element method to explore the factors affecting the acoustic absorption performance of porous fiber materials,including flow resistance,thickness of the porous fiber material,incidence angle,and back cavity thickness.Due to the complex acoustic absorption mechanism of porous fiber materials,an equivalent fluid model is used to simulate the acoustic absorption properties of the porous fiber materials.The correlation of acoustic absorption performance and the model of the back cavity was analyzed.An impedance tube test was implemented to verify the simulation results.
基金supported by JSPS KAKENHI Grant Numbers JP17K06232
文摘The present study focuses on the prediction of acoustic absorption performance of a perforated plate with air jets by theoretical calculations. In addition, we experimentally measured the flow rate, internal pressure, acoustic pressure, and transfer function using an acoustic impedance tube. The normal incidence absorption coefficient was calculated from the measured transfer function using transfer function methods. We investigated the influences of background air space, flow velocity, thickness, aperture rate, and aperture diameter of a perforated plate on the acoustic absorption characteristics. The frequency characteristics of the acoustic absorption coefficient showed a maximum value at a local frequency. As the background air space increased, the peak frequency of acoustic absorption characteristics decreased. As the flow velocity passing through the apertures increased, the peak level of the acoustic absorption coefficient also increased. The theoretical results agreed well with the experimental ones qualitatively.