Electroelastic behavior of a cracked piezoelectric ceramics plate subjected to four Cases of combined mechanical-electrical loads is analyzed. The integral transform method is applied to convert the problem involving ...Electroelastic behavior of a cracked piezoelectric ceramics plate subjected to four Cases of combined mechanical-electrical loads is analyzed. The integral transform method is applied to convert the problem involving an impermeable anti-plane crack to dual integral equations. Solving the resulting equations, the explicit analytic expressions for electroelastic field along the crack line and the intensity factors of relevant quantities near the crack tip and the mechanical strain energy release rate we obtained, The known results for an infinite piezoelectric ceramics plane containing an impermeable anti-plane crack are recovered from the present results only if the thickness of the plate h --> infinity.展开更多
Wave propagation in an infinite elastic piezoelectric medium with a circular cavity and an impermeable crack subjected to steady-state anti-plane shearing was studied based on Green's function and the crack-divisi...Wave propagation in an infinite elastic piezoelectric medium with a circular cavity and an impermeable crack subjected to steady-state anti-plane shearing was studied based on Green's function and the crack-division technique.Theoretical solutions were derived for the whole elastic displacement and electric potential field in the interaction between the circular cavity and the impermeable crack.Expressions were obtained on the dynamic stress concentration factor(DSCF) at the cavity's edge,the dynamic stress intensity factor(DSIF) and the dynamic electric displacement intensity factor(DEDIF) at the crack tip.Numerical solutions were performed and plotted with different incident wave numbers,parameters of piezoelectric materials and geometries of the structure.Finally,some of the calculation results were compared with the case of dynamic anti-plane interaction of a permeable crack and a circular cavity in an infinite piezoelectric medium.This paper can provide a valuable reference for the design of piezoelectric actuators and sensors widely used in marine structures.展开更多
It is widely accepted that the singular term plays a leading role in driving domain switching around the crack tip of ferroelectric ceramics.When an applied electric field approaches or even exceeds the coercive one,h...It is widely accepted that the singular term plays a leading role in driving domain switching around the crack tip of ferroelectric ceramics.When an applied electric field approaches or even exceeds the coercive one,however,non-singular terms are no longer negligible and the switching of a large or global scale takes place.To analyze the large scale switching,one has to get a full asymptotic solution to the electric field in the vicinity of the crack tip.Take a double cantilever beam specimen as an example.The derivation of the full electric field is simplified as a mixed boundary value problem of an infinite strip containing a semi-infinite impermeable crack.The boundary value problem is solved by an analytic function and a conformal mapping to yield a full electric field solution in a closed form.Based on the full field solution,the large scale domain switching is examined.The switching zones predicted by the large and small scale switching models are illustrated and compared with each other near the tip of a stationary crack.展开更多
Domain switching around electrically permeable and impermeable cracks in ferro-electric single crystals subjected to a mechanical load is investigated by using a phase field model.It is found that the electrical bound...Domain switching around electrically permeable and impermeable cracks in ferro-electric single crystals subjected to a mechanical load is investigated by using a phase field model.It is found that the electrical boundary conditions have little effect on the polarization distribution without any external load when the initial polarization is parallel to the crack,which is totally different from previous studies where the initial polarization is perpendicular to the crack.How-ever,the simulation results show that the electrical boundary conditions have great influence on the polarization distribution as well as the domain switching behavior when a mechanical load is applied.The critical mechanical load of domain switching with a permeable crack is much smaller than that in the case of an impermeable crack.展开更多
文摘Electroelastic behavior of a cracked piezoelectric ceramics plate subjected to four Cases of combined mechanical-electrical loads is analyzed. The integral transform method is applied to convert the problem involving an impermeable anti-plane crack to dual integral equations. Solving the resulting equations, the explicit analytic expressions for electroelastic field along the crack line and the intensity factors of relevant quantities near the crack tip and the mechanical strain energy release rate we obtained, The known results for an infinite piezoelectric ceramics plane containing an impermeable anti-plane crack are recovered from the present results only if the thickness of the plate h --> infinity.
基金Supported by the Natural Science Foundation of Heilongjiang Province of China (A00-10)the Basis Research Foundation of Harbin Engineering University (HEUF04008)
文摘Wave propagation in an infinite elastic piezoelectric medium with a circular cavity and an impermeable crack subjected to steady-state anti-plane shearing was studied based on Green's function and the crack-division technique.Theoretical solutions were derived for the whole elastic displacement and electric potential field in the interaction between the circular cavity and the impermeable crack.Expressions were obtained on the dynamic stress concentration factor(DSCF) at the cavity's edge,the dynamic stress intensity factor(DSIF) and the dynamic electric displacement intensity factor(DEDIF) at the crack tip.Numerical solutions were performed and plotted with different incident wave numbers,parameters of piezoelectric materials and geometries of the structure.Finally,some of the calculation results were compared with the case of dynamic anti-plane interaction of a permeable crack and a circular cavity in an infinite piezoelectric medium.This paper can provide a valuable reference for the design of piezoelectric actuators and sensors widely used in marine structures.
基金sponsored by the National Natural Science Foundation of China (Grant No.10702071)the China Postdoctoral Science Foundation+1 种基金the Shanghai Postdoctoral Scientific Program (Grant No.10R21415800)the Shanghai Leading Academic Discipline Project (Grant No.B302)
文摘It is widely accepted that the singular term plays a leading role in driving domain switching around the crack tip of ferroelectric ceramics.When an applied electric field approaches or even exceeds the coercive one,however,non-singular terms are no longer negligible and the switching of a large or global scale takes place.To analyze the large scale switching,one has to get a full asymptotic solution to the electric field in the vicinity of the crack tip.Take a double cantilever beam specimen as an example.The derivation of the full electric field is simplified as a mixed boundary value problem of an infinite strip containing a semi-infinite impermeable crack.The boundary value problem is solved by an analytic function and a conformal mapping to yield a full electric field solution in a closed form.Based on the full field solution,the large scale domain switching is examined.The switching zones predicted by the large and small scale switching models are illustrated and compared with each other near the tip of a stationary crack.
基金supported by the National Natural Science Foundation of China (Nos. 10832009,11002123 and 11090333)the Zhejiang Provincial Natural Science Foundation under grant R6110115+1 种基金the Chinese Universities Scientific Fund under grant 2009QNA4035the program of Key Team of Technological Innovation of Zhejiang Province under grant2011R09025-07
文摘Domain switching around electrically permeable and impermeable cracks in ferro-electric single crystals subjected to a mechanical load is investigated by using a phase field model.It is found that the electrical boundary conditions have little effect on the polarization distribution without any external load when the initial polarization is parallel to the crack,which is totally different from previous studies where the initial polarization is perpendicular to the crack.How-ever,the simulation results show that the electrical boundary conditions have great influence on the polarization distribution as well as the domain switching behavior when a mechanical load is applied.The critical mechanical load of domain switching with a permeable crack is much smaller than that in the case of an impermeable crack.