期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Novel algorithm of gait planning of hydraulic quadruped robot to avoid foot slidingand reduce impingement 被引量:1
1
作者 马立玲 杨超峰 +1 位作者 王立鹏 王军政 《Journal of Beijing Institute of Technology》 EI CAS 2016年第1期91-99,共9页
In order to solve kinematic redundancy problems of a hydraulic quadruped walking robot,which include leg dragging,sliding,impingement against the ground,an improved gait planning algorithm for this robot is proposed i... In order to solve kinematic redundancy problems of a hydraulic quadruped walking robot,which include leg dragging,sliding,impingement against the ground,an improved gait planning algorithm for this robot is proposed in this paper.First,the foot trajectory is designated as the improved composite cycloid foot trajectory.Second,the landing angle of each leg of the robot is controlled to satisfy friction cone to improve the stability performance of the robot.Then with the controllable landing angle of quadruped robot and a geometry method,the kinematic equation is derived in this paper.Finally,agait planning method of quadruped robot is proposed,a dynamic co-simulation is done with ADAMS and MATLAB,and practical experiments are conducted.The validity of the proposed algorithm is confirmed through the co-simulation and experimentation.The results show that the robot can avoid sliding,reduce impingement,and trot stably in trot gait. 展开更多
关键词 landing angle gait planning foot trajectory friction cone sliding impingement
下载PDF
Experimental study of entrainment behavior of debris flow over channel inflexion points 被引量:1
2
作者 HU Kai-heng FU Li WANG Xie-kang 《Journal of Mountain Science》 SCIE CSCD 2016年第6期971-984,共14页
On-spot observation and field reconnaissance of debris flows have revealed that inflexion points in the longitudinal profile of a movable channel may easily become unstable points that significantly affect their entra... On-spot observation and field reconnaissance of debris flows have revealed that inflexion points in the longitudinal profile of a movable channel may easily become unstable points that significantly affect their entrainment behavior.In this study,small-scale flume experiments were performed to investigate the entrainment characteristics of debris flows over two types of inflexion points,namely,a convex point,which has an upslope gradient that is less than the downslope gradient,and a concave point,which has an upslope gradient that is greater than the downslope gradient.It was observed that when debris flowed over a convex point,the entrainment developed gradually and progressively from the convex point in the downstream direction,and the primary control factors were the slope gradient and friction angle.Conversely,when debris flowed over a concave point,the entrainment was characterized by impacting and impinging erosion rather than traditional hydraulic erosion,and the impingement angle of the flow significantly determined the maximum erosion depth and outflow exit angle.An empirical relationship between the topography change and the control factors was obtained from the experimental data. 展开更多
关键词 Debris flow ENTRAINMENT Inflexionpoints EROSION impingement angle
下载PDF
Oblique Drop Impact on Deep and Shallow Liquid 被引量:3
3
作者 B.Ray G.Biswas A.Sharma 《Communications in Computational Physics》 SCIE 2012年第4期1386-1396,共11页
Numerical simulations using CLSVOF(coupled level set and volume of fluid)method are performed to investigate the coalescence and splashing regimes when a spherical water drop hits on the water surface with an impingem... Numerical simulations using CLSVOF(coupled level set and volume of fluid)method are performed to investigate the coalescence and splashing regimes when a spherical water drop hits on the water surface with an impingement angle.Impingement angle is the angle between the velocity vector of primary drop and the normal vector to water surface.The effect of impingement angle,impact velocity and the height of target liquid are carried out.The impingement angle is varied from 0o to 90o showing the gradual change in phenomena.The formation of ship pro like shape,liquid sheet,secondary drops and crater are seen.Crater height,crater displacement,crown height and crown angle are calculated and the change in the parameters with change in impingement angle is noted. 展开更多
关键词 Coupled level set and volume of fluid method drop impact impingement angle Weber number
原文传递
Modeling study of solid-particle erosion with consideration of particle velocity dependent model parameters
4
作者 Shijie Qian Kuiying Chen +1 位作者 Rong Liu Ming Liang 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2016年第3期243-262,共20页
An advanced erosion model that correlates two model parameters—the energies required to remove unit mass of target material during cutting wear and deformation wear,respectively,with particle velocity,particle size a... An advanced erosion model that correlates two model parameters—the energies required to remove unit mass of target material during cutting wear and deformation wear,respectively,with particle velocity,particle size and density,as well as target material properties,is proposed.This model is capable of predicting the erosion rates for a material under solid-particle impact over a specific range of particle velocity at the impingement angle between 0◦and 90◦,provided that the experimental data of erosion rate for the material at a particle velocity within this range and at impingement angles between 0◦and 90◦are available.The proposed model is applied on three distinct types of materials:aluminum,perspex and graphite,to investigate the dependence behavior of the model parameters on particle velocity for ductile and brittle materials.The predicted model parameters obtained from the model are validated by the experimental data of aluminum plate under Al2O3 particle impact.The significance and limitation of the model are discussed;possible improvements on the model are suggested. 展开更多
关键词 Solid-particle erosion particle impact velocity particle impingement angle cutting wear deformation wear erosion rate
原文传递
Analytical modeling of oxide thickness variation of metals under high temperature solid-particle erosion 被引量:1
5
作者 Ju Chen Kuiying Chen +1 位作者 Rong Liu Ming Liang 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2014年第3期1-16,共16页
The paper presents a study of model development for predicting the oxide thickness on metals under high temperature solid-particle erosion.The model is created based on the theory of solid-particle erosion that charac... The paper presents a study of model development for predicting the oxide thickness on metals under high temperature solid-particle erosion.The model is created based on the theory of solid-particle erosion that characterizes the erosion damage as deformation wear and cutting wear,incorporating the effect of the oxide scale on the eroded surface under high temperature erosion.Then the instantaneous oxide thickness is the result of the synergetic effect of erosion and oxidation.The developed model is applied on a Ni-based Al-containing(Ni–Al)alloy to investigate the oxide thickness variation with erosion duration of the alloy at high temperatures.The results show that the thickness of the oxide scale on the alloy surface increases with the exposure time and temperature when the surface is not attacked by particles.However,when particles impact on the alloy surface,the oxide thickness is reduced,although oxidation is continuing.This indicates that oxidation does not benefit the erosion resistance of this alloy at high temperatures due to the low growth rate of the oxide. 展开更多
关键词 EROSION oxidation high temperature oxide scale thickness particle impact velocity particle impinging angle
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部