The detrimental effect of imprint,which can cause misreading problem,has hindered the application of ferroelectric HfO_(2).In this work,we present results of a comprehensive reliability evaluation of Hf_(0.5)Zr_(0.5)O...The detrimental effect of imprint,which can cause misreading problem,has hindered the application of ferroelectric HfO_(2).In this work,we present results of a comprehensive reliability evaluation of Hf_(0.5)Zr_(0.5)O_(2)-based ferroelectric random access memory.The influence of imprint on the retention and endurance is demonstrated.Furthermore,a solution in circuity is pro-posed to effectively solve the misreading problem caused by imprint.展开更多
Background The primary differentially methylated regions(DMRs) which are maternally hypermethylated serve as imprinting control regions(ICRs) that drive monoallelic gene expression, and these ICRs have been investigat...Background The primary differentially methylated regions(DMRs) which are maternally hypermethylated serve as imprinting control regions(ICRs) that drive monoallelic gene expression, and these ICRs have been investigated due to their implications in mammalian development. Although a subset of genes has been identified as imprinted, in-depth comparative approach needs to be developed for identification of species-specific imprinted genes. Here, we examined DNA methylation status and allelic expression at the KBTBD6 locus across species and tissues and explored potential mechanisms of imprinting.Results Using whole-genome bisulfite sequencing and RNA-sequencing on parthenogenetic and normal porcine embryos, we identified a maternally hypermethylated DMR between the embryos at the KBTBD6 promoter Cp G island and paternal monoallelic expression of KBTBD6. Also, in analyzed domesticated mammals but not in humans, non-human primates and mice, the KBTBD6 promoter Cp G islands were methylated in oocytes and/or allelically methyl-ated in tissues, and monoallelic KBTBD6 expression was observed, indicating livestock-specific imprinting. Further analysis revealed that these Cp G islands were embedded within transcripts in porcine and bovine oocytes which coexisted with an active transcription mark and DNA methylation, implying the presence of transcription-dependent imprinting.Conclusions In this study, our comparative approach revealed an imprinted expression of the KBTBD6 gene in domesticated mammals, but not in humans, non-human primates, and mice which implicates species-specific evolution of genomic imprinting.展开更多
Transparent photoresists with a high refractive index(RI)and high transmittance in visible wavelengths have promising functionalities in optical fields.This work reports a kind of tunable optical material composed of ...Transparent photoresists with a high refractive index(RI)and high transmittance in visible wavelengths have promising functionalities in optical fields.This work reports a kind of tunable optical material composed of titanium dioxide nanoparticles embedded in acrylic resin with a high RI for ultraviolet(UV)-imprint lithography.The hybrid film exhibits a tunable RI of up to 1.67(589 nm)after being cured by UV light,while maintaining both a high transparency of over 98%in the visible light range and a low haze of less than 0.05%.The precision machining of optical microstructures can be imprinted easily and efficiently using the hybrid resin,which acts as a light guide plate(LGP)to guide the light from the side to the top in order to conserve the energy of the display device.These preliminary studies based on both laboratory and commercial experiments pave the way for exploiting the unparalleled optical properties of nanocomposite resins and promoting their industrial application.展开更多
Copper is a microelement with important physiological functions in the body.However,the excess copper ion(Cu^(2+))may cause severe health problems,such as hair cell apoptosis and the resultant hearing loss.Therefore,t...Copper is a microelement with important physiological functions in the body.However,the excess copper ion(Cu^(2+))may cause severe health problems,such as hair cell apoptosis and the resultant hearing loss.Therefore,the assay of Cu^(2+)is important.We integrate ionic imprinting technology(IIT)and structurally colored hydrogel beads to prepare chitosan-based ionically imprinted hydrogel beads(IIHBs)as a low-cost and high-specificity platform for Cu^(2+)detection.The IIHBs have a macroporous microstructure,uniform size,vivid structural color,and magnetic responsiveness.When incubated in solution,IIHBs recognize Cu^(2+)and exhibit a reflective peak change,thereby achieving label-free detection.In addition,benefiting from the IIT,the IIHBs display good specificity and selectivity and have an imprinting factor of 19.14 at 100μmol·L^(-1).These features indicated that the developed IIHBs are promising candidates for Cu^(2+)detection,particularly for the prevention of hearing loss.展开更多
In this research,we present the pure open multi-processing(OpenMP),pure message passing interface(MPI),and hybrid MPI/OpenMP parallel solvers within the dynamic explicit central difference algorithm for the coining pr...In this research,we present the pure open multi-processing(OpenMP),pure message passing interface(MPI),and hybrid MPI/OpenMP parallel solvers within the dynamic explicit central difference algorithm for the coining process to address the challenge of capturing fine relief features of approximately 50 microns.Achieving such precision demands the utilization of at least 7 million tetrahedron elements,surpassing the capabilities of traditional serial programs previously developed.To mitigate data races when calculating internal forces,intermediate arrays are introduced within the OpenMP directive.This helps ensure proper synchronization and avoid conflicts during parallel execution.Additionally,in the MPI implementation,the coins are partitioned into the desired number of regions.This division allows for efficient distribution of computational tasks across multiple processes.Numerical simulation examples are conducted to compare the three solvers with serial programs,evaluating correctness,acceleration ratio,and parallel efficiency.The results reveal a relative error of approximately 0.3%in forming force among the parallel and serial solvers,while the predicted insufficient material zones align with experimental observations.Additionally,speedup ratio and parallel efficiency are assessed for the coining process simulation.The pureMPI parallel solver achieves a maximum acceleration of 9.5 on a single computer(utilizing 12 cores)and the hybrid solver exhibits a speedup ratio of 136 in a cluster(using 6 compute nodes and 12 cores per compute node),showing the strong scalability of the hybrid MPI/OpenMP programming model.This approach effectively meets the simulation requirements for commemorative coins with intricate relief patterns.展开更多
The characterization of these molecularly imprinted polymers is essential to understanding their binding dynamics and structural properties. Through the analysis of the current research, it is found that there are ove...The characterization of these molecularly imprinted polymers is essential to understanding their binding dynamics and structural properties. Through the analysis of the current research, it is found that there are overlaps in the methods used by scholars. The Langmuir equation is frequently applied to model the adsorption isotherms of MIPs, providing critical insight into the capacity and affinity of the binding sites. Infrared Spectroscopy (IR) plays a crucial role in identifying the functional groups involved in the imprinting process and confirming the successful formation of specific binding sites. UV-visible spectrophotometry is employed to monitor the absorption characteristics of the polymers, offering data on the interactions between the template molecules and the polymer matrix. Transmission Electron Microscopy (TEM) provides detailed visualization of the internal structure of MIPs at the nanoscale, revealing the morphology and size of the imprinted cavities. Thermogravimetric Analysis (TGA) assesses the thermal stability and composition of the polymers, identifying decomposition patterns that are indicative of the material’s robustness under different conditions. Finally, the Laser Particle Size Analyzer is used to measure the size distribution of the polymer particles, which is critical for determining the uniformity and efficiency of the imprinting process. The six characterization methods discussed in this paper provide a comprehensive understanding of MIP, and it is hoped that in the future, more optimized design solutions will emerge and their applications in various fields will be enhanced.展开更多
Although two-dimensional perovskite devices are highly stable,they also lead to a number of challenges.For instance,the introduction of large organic amines makes crystallization process complicated,causing problems s...Although two-dimensional perovskite devices are highly stable,they also lead to a number of challenges.For instance,the introduction of large organic amines makes crystallization process complicated,causing problems such as generally small grain size and blocked charge transfer.In this work,imprint assisted with methylamine acetate were used to improve the morphology of the film,optimize the internal phase distribution,and enhance the charge transfer of the perovskite film.Specifically,imprint promoted the dispersion of spacer cations in the recrystallization process with the assistance of methylamine acetate,thus inhibited the formation of low-n phase induced by the aggregation of spacer cations and facilitated the formation of 3D-like phase.In this case,the corresponding quasi-2D perovskite solar cells delivered improved efficiency and exhibited superior stability.Our work provides an effective strategy to obtain uniform phase distribution for quasi-2D perovskite.展开更多
Molecularly imprinted polymers (MIPs) have great potential as adsorbents for selective adsorption and separation of nucleoside compounds,but effectively enhancing the affinity of recognition sites by adjusting the for...Molecularly imprinted polymers (MIPs) have great potential as adsorbents for selective adsorption and separation of nucleoside compounds,but effectively enhancing the affinity of recognition sites by adjusting the forces between template molecules and functional monomers remains an important challenge.In this work,a surface imprinting strategy was used to construct bowl-shaped molecularly imprinted composite sorbents (BHPN@MIPs) based on polydopamine (PDA) particles and have achieved selective separation and purification of 2'-deoxyadenosine (dA).Where by the base complementary pairing interaction of the combined template molecule d A and the pyrimidine functional monomer can enhance the preassembly force,and the hydrophilic bowl-shaped PDA can provide a larger storage space contact efficiency of d A in the test solution,causing the site utilization much higher and improving the kinetic adsorption performance.The equilibrium adsorption time and maximum adsorption capacity of60 min and 328.45μmol·g^(-1)were observed by static adsorption experiments,and the selectivity experimental results showed an imprinting factor IF of 1.30.After four adsorption–desorption cycles,the initial adsorption equilibrium adsorption capacity of BHPN@MIPs still retained 91.14%.By evaluating the selective adsorption of d A in spiked human serum solutions,BHPN@MIPs can be used to selectively enrich and analyze target d A in complex biological samples.展开更多
Genomic imprinting is the epigenetic phenomenon by which certain genes are expressed in a parent-of-origin-specific manner, and was first discovered in mammalian embryos. Recent studies have shown that it also occurs ...Genomic imprinting is the epigenetic phenomenon by which certain genes are expressed in a parent-of-origin-specific manner, and was first discovered in mammalian embryos. Recent studies have shown that it also occurs in developing plant seeds, and is now becoming a hot topic of biology of plant seed development. According to the previous studies on imprinted genes, imprinting mechanism and their roles in plant seed development, the current progress of genomic imprinting in plant seed development was summarized and possible strategies were proposed to deal with the problems, which could provide helpful information for further research.展开更多
Epigenetic dysregulation comprising DNA hypermethylation and hypomethylation, enhancer of zeste homologue 2 (EZH2) overexpression and altered patterns of histone modifications is associated with the progression of p...Epigenetic dysregulation comprising DNA hypermethylation and hypomethylation, enhancer of zeste homologue 2 (EZH2) overexpression and altered patterns of histone modifications is associated with the progression of prostate cancer. DNA methylation, EZH2 and histone modifications also ensure the parental-specific monoallelic expression of at least 62 imprinted genes. Although it is therefore tempting to speculate that epigenetic dysregulation may extend to imprinted genes, expression changes in cancerous prostates are only well documented for insulin-like growth factor 2 (IGF2). A literature and database survey on imprinted genes in prostate cancer suggests that the expression of most imprinted genes remains unchanged despite global disturbances in epigenetic mechanisms. Instead, selective genetic and epigenetic changes appear to lead to the inactivation of a sub-network of imprinted genes, which might function in the prostate to limit cell growth induced via the PI3K/Akt pathway, modulate androgen responses and regulate differentiation. Whereas dysregulation of IGF2 may constitute an early change in prostate carcinogenesis, inactivation of this imprinted gene network is rather associated with cancer progression.展开更多
DEAR EDITOR,Genomic imprinting often results in parent-of-origin specific differential expression of maternally and paternally inherited alleles and plays an essential role in mammalian development and growth.Mammalia...DEAR EDITOR,Genomic imprinting often results in parent-of-origin specific differential expression of maternally and paternally inherited alleles and plays an essential role in mammalian development and growth.Mammalian genomic imprinting has primarily been studied in mice and humans,with only limited information available for pigs.To systematically characterize this phenomenon and evaluate imprinting status between different species,we investigated imprinted genes on a genome-wide scale in pig brain tissues.展开更多
Neural stem cells(NSCs) and imprinted genes play an important role in brain development. On historical grounds, these two determinants have been largely studied independently of each other. Recent evidence suggests, h...Neural stem cells(NSCs) and imprinted genes play an important role in brain development. On historical grounds, these two determinants have been largely studied independently of each other. Recent evidence suggests, however, that NSCs can reset select genomic imprints to prevent precocious depletion of the stem cell reservoir. Moreover, imprinted genes like the transcriptional regulator Zac1 can fine tune neuronal vs astroglial differentiation of NSCs. Zac1 binds in a sequence-specific manner to pro-neuronal and imprinted genes to confer transcriptional regulation and furthermore coregulates members of the p53-family in NSCs. At the genome scale, Zac1 is a central hub of an imprinted gene network comprising genes with animportant role for NSC quiescence, proliferation and differentiation. Overall, transcriptional, epigenomic, and genomic mechanisms seem to coordinate the functional relationships of NSCs and imprinted genes from development to maturation, and possibly aging.展开更多
As a novel technique, molecular imprinting technique are attracting more and more attention in recent years, due to its specific recognition function to im- printed molecules. This paper firstly introduced this techni...As a novel technique, molecular imprinting technique are attracting more and more attention in recent years, due to its specific recognition function to im- printed molecules. This paper firstly introduced this technique from its history, princi- ple, classification and methods, and then reviewed the application in food industry, and presented possible future research orientations.展开更多
The uniform surface ion-imprinted resins for Zn2+ as the imprinting guest were prepared by emulsifier-free emulsion polymerization utilizing ally phenyl hydrogenphosphate as a functional comonomer. The Zn2+-imprinted ...The uniform surface ion-imprinted resins for Zn2+ as the imprinting guest were prepared by emulsifier-free emulsion polymerization utilizing ally phenyl hydrogenphosphate as a functional comonomer. The Zn2+-imprinted resin adsorbed Zn2+ much more effectively than did the unimprinted one. The selective feature of the surface imprinted resins to the template ions was demonstrated.展开更多
Heavy metal ion is one of the major environmental pollutants.In this study,a Cu(Ⅱ)ions imprinted magnetic chitosan beads are prepared to use chitosan as functional monomer,Cu(Ⅱ)ions as template,Fe_(3)O_(4) as magnet...Heavy metal ion is one of the major environmental pollutants.In this study,a Cu(Ⅱ)ions imprinted magnetic chitosan beads are prepared to use chitosan as functional monomer,Cu(Ⅱ)ions as template,Fe_(3)O_(4) as magnetic core and epichlorohydrin and glutaraldehyde as crosslinker,which can be used for removal Cu(Ⅱ)ions from wastewater.The kinetic study shows that the adsorption process follows the pseudosecond-order kinetic equations.The adsorption isotherm study shows that the Langmuir isotherm equation best fits for the monolayer adsorption processes.The selective adsorption properties are performed in Cu(Ⅱ)/Zn(Ⅱ),Cu(Ⅱ)/Ni(Ⅱ),and Cu(Ⅱ)/Co(Ⅱ)binary systems.The results shows that the ⅡMCD has a high selectivity for Cu(Ⅱ)ions in binary systems.The mechanism of ⅡMCD recognition Cu(Ⅱ)ions is also discussed.The results show that the ⅡMCD adsorption Cu(Ⅱ)ions is an enthalpy controlled process.The absolute value of DH(Cu(Ⅱ))and DS(Cu(Ⅱ))is greater than DH(Zn(Ⅱ),Ni(Ⅱ),Co(Ⅱ))and DS(Zn(Ⅱ),Ni(Ⅱ),Co(Ⅱ)),respectively,this indicates that the Cu(Ⅱ)ions have a good spatial matching with imprinted holes on ⅡMCD.The FTIR and XPS also demonstrates the strongly combination of function groups on imprinted holes in the suitable space position.Finally,the ⅡMCD can be regenerated and reused for 10 times without a significantly decreasing in adsorption capacity.This information can be used for further application in the selective removal of Cu(Ⅱ)ions from industrial wastewater.展开更多
Dummy molecularly imprinted polymers (DMIPs) for 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) were produced using three structural analogues as dummy template molecules. The chosen analogues were 4-(a...Dummy molecularly imprinted polymers (DMIPs) for 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) were produced using three structural analogues as dummy template molecules. The chosen analogues were 4-(acetymethylamino)-1-(3-pyridyl)-butanol, 4- (methylamino)-1-(3-pyridyl)-1-butanol, and 1-(3-pyridyl)-1,4,-butanediol. The molecular recognition characteristics of the produced polymers were evaluated by X-ray photoelec- tron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). Interactions between NNAL and methacrylic acid should be cooperative hydrogen bonds while the ni- trogen atom of the pyridine ring and the oxygen atom of the nitroso group in NNAL are two of the hydrogen-bond acceptors. It was further demonstrated that DMIP synthesized by 4-(acetymethylamino)-1-(3-pyridyl)-butanol had the best binding performance by XPS and FT-IR. Then dummy molecularly imprinted solid phase extraction (DMISPE) was developed for the determination of the analyte using the hit polymer as the sorbing material. Under optimal conditions, the recovery of NNAL dissolved in standard solution reached 93%. And the investigated polymer exhibited much higher binding of NNAL when nicotine was acted as the competitive molecule. Also the proposed method was applied to the measurement of NNAL spiked in blank urine samples with recoveries ranging from 87.2% to 101.2%.展开更多
Molecular imprinting technique is a simple and efficient method for the preparation of polymer materials (i.e., molecularly imprinted polymers, MIPs) with tailor-made recognition sites for certain target molecules. Th...Molecular imprinting technique is a simple and efficient method for the preparation of polymer materials (i.e., molecularly imprinted polymers, MIPs) with tailor-made recognition sites for certain target molecules. The resulting MIPs have proven to be versatile synthetic receptors due to their high specific recognition ability, favorable mechanical, thermal and chemical stability, and ease of preparation. Recent years have witnessed significant progress in the synthesis and applications of MIPs. This review focus on the recent developments and advances in the preparation of MIPs via various controlled radical polymerization techniques.展开更多
A new bovine serum albumin (BSA) surface imprinting method was developed by the incorporation of quantum dots (QDs) into molecularly imprinted polymers (MIP), which can offer shape selectivity. Preparation and a...A new bovine serum albumin (BSA) surface imprinting method was developed by the incorporation of quantum dots (QDs) into molecularly imprinted polymers (MIP), which can offer shape selectivity. Preparation and adsorption conditions were optimized. Physical appearance of the QDs and QDs-MIP particles was illustrated by scanning electron microscope images. Photoluminescence emission of CdS was quenched when rebinding of the template.The quenching of photoluminescence emissions is presumably due to the fluorescence resonance energy transfer between quantum dots and BSA template molecules. The adsorption is compiled with Langmuir isotherm, and chemical adsorption is the rate-controlling step.The maximum adsorption capacity could reach 226.0 mg/g, which is 142.4 mg/g larger than that of undoped BSA MIP. This study demonstrates the validity of QDs coupled with MIP technology for analyzing BSA.展开更多
Neodymium ion imprinted polymer(Nd^3+-IIP) particles for selective solid-phase extraction of Nd^3+ were prepared and determined with inductively coupled plasma atomic emission spectrometry(ICP-AES).The unleached...Neodymium ion imprinted polymer(Nd^3+-IIP) particles for selective solid-phase extraction of Nd^3+ were prepared and determined with inductively coupled plasma atomic emission spectrometry(ICP-AES).The unleached Nd^3+-IIP particles were prepared by the copoly-merization of Nd^3+-5,7-dichloroquinoline-8-ol-4-vinylpyridine ternary complex with styrene and divinyl benzene, then Nd^3+ was leached to obtain Nd^3+-IIP particles.The adsorption capacity of the Nd3+-IIP was 35.18 mg/g.The largest selectivity coefficient for Nd3+ in the presence of competitive ions such as La^3+, Ce^3+, Pr^3+ and Sm^3+ was over 110.The proposed method was validated by analyzing two certified reference materials(GBW07301a sediment and GBW07401 soil) and the determined values were in a good agreement with standard values.The method was convenient, selective, sensitive and applicable to the determination of trace Nd^3+ in environmental samples with complicated matrix.展开更多
Early colonization of intestinal microbiota during the neonatal stage plays an important role on the development of intestinal immune system and nutrients absorption of the host.Compared to the normal birth weight(NBW...Early colonization of intestinal microbiota during the neonatal stage plays an important role on the development of intestinal immune system and nutrients absorption of the host.Compared to the normal birth weight(NBW)piglets,intrauterine growth restricted(IUGR)piglets have a different intestinal microbiota during their early life,which is related to maternal imprinting on intestinal microbial succession during gestation,at birth and via suckling.Imbalanced allocation of limited nutrients among fetuses during gestation could be one of the main causes for impaired intestinal development and microbiota colonization in neonatal IUGR piglets.In this review,we summarized the potential impact of maternal imprinting on the colonization of the intestinal microbiota in IUGR piglets,including maternal undernutrition,imbalanced allocation of nutrients among fetuses,as well as vertical microbial transmission from mother to offspring during gestation and lactation.At the same time,we give information about the current maternal nutritional strategies(mainly breastfeeding,probiotics and prebiotics)to help colonization of the advantageous intestinal microbiota for IUGR piglets.展开更多
基金This research was supported by the National Key R&D Program of China(Grant No.2022YFB3606900)in part by the National Natural Science of China(Grant No.62004217).
文摘The detrimental effect of imprint,which can cause misreading problem,has hindered the application of ferroelectric HfO_(2).In this work,we present results of a comprehensive reliability evaluation of Hf_(0.5)Zr_(0.5)O_(2)-based ferroelectric random access memory.The influence of imprint on the retention and endurance is demonstrated.Furthermore,a solution in circuity is pro-posed to effectively solve the misreading problem caused by imprint.
基金partially supported by the United States Department of Agriculture National Institute of Food and Agriculture Hatch Grant (Project No.OHO01304)。
文摘Background The primary differentially methylated regions(DMRs) which are maternally hypermethylated serve as imprinting control regions(ICRs) that drive monoallelic gene expression, and these ICRs have been investigated due to their implications in mammalian development. Although a subset of genes has been identified as imprinted, in-depth comparative approach needs to be developed for identification of species-specific imprinted genes. Here, we examined DNA methylation status and allelic expression at the KBTBD6 locus across species and tissues and explored potential mechanisms of imprinting.Results Using whole-genome bisulfite sequencing and RNA-sequencing on parthenogenetic and normal porcine embryos, we identified a maternally hypermethylated DMR between the embryos at the KBTBD6 promoter Cp G island and paternal monoallelic expression of KBTBD6. Also, in analyzed domesticated mammals but not in humans, non-human primates and mice, the KBTBD6 promoter Cp G islands were methylated in oocytes and/or allelically methyl-ated in tissues, and monoallelic KBTBD6 expression was observed, indicating livestock-specific imprinting. Further analysis revealed that these Cp G islands were embedded within transcripts in porcine and bovine oocytes which coexisted with an active transcription mark and DNA methylation, implying the presence of transcription-dependent imprinting.Conclusions In this study, our comparative approach revealed an imprinted expression of the KBTBD6 gene in domesticated mammals, but not in humans, non-human primates, and mice which implicates species-specific evolution of genomic imprinting.
基金supported by the National Natural Science Foundation of China(22288102 and 22278027).
文摘Transparent photoresists with a high refractive index(RI)and high transmittance in visible wavelengths have promising functionalities in optical fields.This work reports a kind of tunable optical material composed of titanium dioxide nanoparticles embedded in acrylic resin with a high RI for ultraviolet(UV)-imprint lithography.The hybrid film exhibits a tunable RI of up to 1.67(589 nm)after being cured by UV light,while maintaining both a high transparency of over 98%in the visible light range and a low haze of less than 0.05%.The precision machining of optical microstructures can be imprinted easily and efficiently using the hybrid resin,which acts as a light guide plate(LGP)to guide the light from the side to the top in order to conserve the energy of the display device.These preliminary studies based on both laboratory and commercial experiments pave the way for exploiting the unparalleled optical properties of nanocomposite resins and promoting their industrial application.
基金supported by grants from the National Key Research and Development Program of China(2021YFA1101300,2021YFA1101800,and 2020YFA0112503)the National Natural Science Foundation of China(82030029,81970882,92149304,and 22302231)+5 种基金the Science and Technology Department of Sichuan Province(2021YFS0371)the Guangdong Basic and Applied Basic Research Foundation(2023A1515011986)the Shenzhen Fundamental Research Program(JCYJ20190814093401920,JCYJ20210324125608022,JCYJ20190813152616459,and JCYJ20190808120405672)the Futian Healthcare Research Project(FTWS2022013 and FTWS2023080)the Open Research Fund of State Key Laboratory of Genetic Engineering,Fudan University(SKLGE-2104)the Fundamental Research Funds for the Central Universities,Sun Yat-sen University(23qnpy153)。
文摘Copper is a microelement with important physiological functions in the body.However,the excess copper ion(Cu^(2+))may cause severe health problems,such as hair cell apoptosis and the resultant hearing loss.Therefore,the assay of Cu^(2+)is important.We integrate ionic imprinting technology(IIT)and structurally colored hydrogel beads to prepare chitosan-based ionically imprinted hydrogel beads(IIHBs)as a low-cost and high-specificity platform for Cu^(2+)detection.The IIHBs have a macroporous microstructure,uniform size,vivid structural color,and magnetic responsiveness.When incubated in solution,IIHBs recognize Cu^(2+)and exhibit a reflective peak change,thereby achieving label-free detection.In addition,benefiting from the IIT,the IIHBs display good specificity and selectivity and have an imprinting factor of 19.14 at 100μmol·L^(-1).These features indicated that the developed IIHBs are promising candidates for Cu^(2+)detection,particularly for the prevention of hearing loss.
基金supported by the fund from ShenyangMint Company Limited(No.20220056)Senior Talent Foundation of Jiangsu University(No.19JDG022)Taizhou City Double Innovation and Entrepreneurship Talent Program(No.Taizhou Human Resources Office[2022]No.22).
文摘In this research,we present the pure open multi-processing(OpenMP),pure message passing interface(MPI),and hybrid MPI/OpenMP parallel solvers within the dynamic explicit central difference algorithm for the coining process to address the challenge of capturing fine relief features of approximately 50 microns.Achieving such precision demands the utilization of at least 7 million tetrahedron elements,surpassing the capabilities of traditional serial programs previously developed.To mitigate data races when calculating internal forces,intermediate arrays are introduced within the OpenMP directive.This helps ensure proper synchronization and avoid conflicts during parallel execution.Additionally,in the MPI implementation,the coins are partitioned into the desired number of regions.This division allows for efficient distribution of computational tasks across multiple processes.Numerical simulation examples are conducted to compare the three solvers with serial programs,evaluating correctness,acceleration ratio,and parallel efficiency.The results reveal a relative error of approximately 0.3%in forming force among the parallel and serial solvers,while the predicted insufficient material zones align with experimental observations.Additionally,speedup ratio and parallel efficiency are assessed for the coining process simulation.The pureMPI parallel solver achieves a maximum acceleration of 9.5 on a single computer(utilizing 12 cores)and the hybrid solver exhibits a speedup ratio of 136 in a cluster(using 6 compute nodes and 12 cores per compute node),showing the strong scalability of the hybrid MPI/OpenMP programming model.This approach effectively meets the simulation requirements for commemorative coins with intricate relief patterns.
文摘The characterization of these molecularly imprinted polymers is essential to understanding their binding dynamics and structural properties. Through the analysis of the current research, it is found that there are overlaps in the methods used by scholars. The Langmuir equation is frequently applied to model the adsorption isotherms of MIPs, providing critical insight into the capacity and affinity of the binding sites. Infrared Spectroscopy (IR) plays a crucial role in identifying the functional groups involved in the imprinting process and confirming the successful formation of specific binding sites. UV-visible spectrophotometry is employed to monitor the absorption characteristics of the polymers, offering data on the interactions between the template molecules and the polymer matrix. Transmission Electron Microscopy (TEM) provides detailed visualization of the internal structure of MIPs at the nanoscale, revealing the morphology and size of the imprinted cavities. Thermogravimetric Analysis (TGA) assesses the thermal stability and composition of the polymers, identifying decomposition patterns that are indicative of the material’s robustness under different conditions. Finally, the Laser Particle Size Analyzer is used to measure the size distribution of the polymer particles, which is critical for determining the uniformity and efficiency of the imprinting process. The six characterization methods discussed in this paper provide a comprehensive understanding of MIP, and it is hoped that in the future, more optimized design solutions will emerge and their applications in various fields will be enhanced.
基金support from the National Natural Science Foundation of China(NSFC)(52163019,22005131,52173169 and U20A20128)support from the Natural Science Foundation of Jiangxi Province(20224ACB214006)。
文摘Although two-dimensional perovskite devices are highly stable,they also lead to a number of challenges.For instance,the introduction of large organic amines makes crystallization process complicated,causing problems such as generally small grain size and blocked charge transfer.In this work,imprint assisted with methylamine acetate were used to improve the morphology of the film,optimize the internal phase distribution,and enhance the charge transfer of the perovskite film.Specifically,imprint promoted the dispersion of spacer cations in the recrystallization process with the assistance of methylamine acetate,thus inhibited the formation of low-n phase induced by the aggregation of spacer cations and facilitated the formation of 3D-like phase.In this case,the corresponding quasi-2D perovskite solar cells delivered improved efficiency and exhibited superior stability.Our work provides an effective strategy to obtain uniform phase distribution for quasi-2D perovskite.
基金financially supported by the National Natural Science Foundation of China (22078132 and 22108103)Open Funding Project of the National Key Laboratory of Biochemical Engineering (2021KF-02)+3 种基金China Postdoctoral Science Foundation (2021M691301)Jiangsu Agricultural Independent Innovation Fund Project (CX(21)3079)Graduate Research Innovation Program of Jiangsu Province (KYCX20-3040)China Postdoctoral Science Foundation (2021M691301)。
文摘Molecularly imprinted polymers (MIPs) have great potential as adsorbents for selective adsorption and separation of nucleoside compounds,but effectively enhancing the affinity of recognition sites by adjusting the forces between template molecules and functional monomers remains an important challenge.In this work,a surface imprinting strategy was used to construct bowl-shaped molecularly imprinted composite sorbents (BHPN@MIPs) based on polydopamine (PDA) particles and have achieved selective separation and purification of 2'-deoxyadenosine (dA).Where by the base complementary pairing interaction of the combined template molecule d A and the pyrimidine functional monomer can enhance the preassembly force,and the hydrophilic bowl-shaped PDA can provide a larger storage space contact efficiency of d A in the test solution,causing the site utilization much higher and improving the kinetic adsorption performance.The equilibrium adsorption time and maximum adsorption capacity of60 min and 328.45μmol·g^(-1)were observed by static adsorption experiments,and the selectivity experimental results showed an imprinting factor IF of 1.30.After four adsorption–desorption cycles,the initial adsorption equilibrium adsorption capacity of BHPN@MIPs still retained 91.14%.By evaluating the selective adsorption of d A in spiked human serum solutions,BHPN@MIPs can be used to selectively enrich and analyze target d A in complex biological samples.
基金Supported by National Natural Science Foundation of China(31660402)Industry Technological System Construction Project of Department of Agriculture of Yunnan ProvinceFund for Workstation of Academician Guan Chunyun from Department of Science and Technology of Yunnan Province~~
文摘Genomic imprinting is the epigenetic phenomenon by which certain genes are expressed in a parent-of-origin-specific manner, and was first discovered in mammalian embryos. Recent studies have shown that it also occurs in developing plant seeds, and is now becoming a hot topic of biology of plant seed development. According to the previous studies on imprinted genes, imprinting mechanism and their roles in plant seed development, the current progress of genomic imprinting in plant seed development was summarized and possible strategies were proposed to deal with the problems, which could provide helpful information for further research.
文摘Epigenetic dysregulation comprising DNA hypermethylation and hypomethylation, enhancer of zeste homologue 2 (EZH2) overexpression and altered patterns of histone modifications is associated with the progression of prostate cancer. DNA methylation, EZH2 and histone modifications also ensure the parental-specific monoallelic expression of at least 62 imprinted genes. Although it is therefore tempting to speculate that epigenetic dysregulation may extend to imprinted genes, expression changes in cancerous prostates are only well documented for insulin-like growth factor 2 (IGF2). A literature and database survey on imprinted genes in prostate cancer suggests that the expression of most imprinted genes remains unchanged despite global disturbances in epigenetic mechanisms. Instead, selective genetic and epigenetic changes appear to lead to the inactivation of a sub-network of imprinted genes, which might function in the prostate to limit cell growth induced via the PI3K/Akt pathway, modulate androgen responses and regulate differentiation. Whereas dysregulation of IGF2 may constitute an early change in prostate carcinogenesis, inactivation of this imprinted gene network is rather associated with cancer progression.
基金supported by the Ministry of Agriculture of China(2016ZX08009003-006)National Key R&D Program of China(2019YFA0110700)+1 种基金Science&Technology Department of Yunnan Province(2019HA003)Animal Branch of the Germplasm Bank of Wild Species,Chinese Academy of Sciences(Large Research Infrastructure Funding)。
文摘DEAR EDITOR,Genomic imprinting often results in parent-of-origin specific differential expression of maternally and paternally inherited alleles and plays an essential role in mammalian development and growth.Mammalian genomic imprinting has primarily been studied in mice and humans,with only limited information available for pigs.To systematically characterize this phenomenon and evaluate imprinting status between different species,we investigated imprinted genes on a genome-wide scale in pig brain tissues.
文摘Neural stem cells(NSCs) and imprinted genes play an important role in brain development. On historical grounds, these two determinants have been largely studied independently of each other. Recent evidence suggests, however, that NSCs can reset select genomic imprints to prevent precocious depletion of the stem cell reservoir. Moreover, imprinted genes like the transcriptional regulator Zac1 can fine tune neuronal vs astroglial differentiation of NSCs. Zac1 binds in a sequence-specific manner to pro-neuronal and imprinted genes to confer transcriptional regulation and furthermore coregulates members of the p53-family in NSCs. At the genome scale, Zac1 is a central hub of an imprinted gene network comprising genes with animportant role for NSC quiescence, proliferation and differentiation. Overall, transcriptional, epigenomic, and genomic mechanisms seem to coordinate the functional relationships of NSCs and imprinted genes from development to maturation, and possibly aging.
文摘As a novel technique, molecular imprinting technique are attracting more and more attention in recent years, due to its specific recognition function to im- printed molecules. This paper firstly introduced this technique from its history, princi- ple, classification and methods, and then reviewed the application in food industry, and presented possible future research orientations.
基金Financial supported by the Natural Science Foundation of China (No: 50003006)
文摘The uniform surface ion-imprinted resins for Zn2+ as the imprinting guest were prepared by emulsifier-free emulsion polymerization utilizing ally phenyl hydrogenphosphate as a functional comonomer. The Zn2+-imprinted resin adsorbed Zn2+ much more effectively than did the unimprinted one. The selective feature of the surface imprinted resins to the template ions was demonstrated.
文摘Heavy metal ion is one of the major environmental pollutants.In this study,a Cu(Ⅱ)ions imprinted magnetic chitosan beads are prepared to use chitosan as functional monomer,Cu(Ⅱ)ions as template,Fe_(3)O_(4) as magnetic core and epichlorohydrin and glutaraldehyde as crosslinker,which can be used for removal Cu(Ⅱ)ions from wastewater.The kinetic study shows that the adsorption process follows the pseudosecond-order kinetic equations.The adsorption isotherm study shows that the Langmuir isotherm equation best fits for the monolayer adsorption processes.The selective adsorption properties are performed in Cu(Ⅱ)/Zn(Ⅱ),Cu(Ⅱ)/Ni(Ⅱ),and Cu(Ⅱ)/Co(Ⅱ)binary systems.The results shows that the ⅡMCD has a high selectivity for Cu(Ⅱ)ions in binary systems.The mechanism of ⅡMCD recognition Cu(Ⅱ)ions is also discussed.The results show that the ⅡMCD adsorption Cu(Ⅱ)ions is an enthalpy controlled process.The absolute value of DH(Cu(Ⅱ))and DS(Cu(Ⅱ))is greater than DH(Zn(Ⅱ),Ni(Ⅱ),Co(Ⅱ))and DS(Zn(Ⅱ),Ni(Ⅱ),Co(Ⅱ)),respectively,this indicates that the Cu(Ⅱ)ions have a good spatial matching with imprinted holes on ⅡMCD.The FTIR and XPS also demonstrates the strongly combination of function groups on imprinted holes in the suitable space position.Finally,the ⅡMCD can be regenerated and reused for 10 times without a significantly decreasing in adsorption capacity.This information can be used for further application in the selective removal of Cu(Ⅱ)ions from industrial wastewater.
文摘Dummy molecularly imprinted polymers (DMIPs) for 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) were produced using three structural analogues as dummy template molecules. The chosen analogues were 4-(acetymethylamino)-1-(3-pyridyl)-butanol, 4- (methylamino)-1-(3-pyridyl)-1-butanol, and 1-(3-pyridyl)-1,4,-butanediol. The molecular recognition characteristics of the produced polymers were evaluated by X-ray photoelec- tron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). Interactions between NNAL and methacrylic acid should be cooperative hydrogen bonds while the ni- trogen atom of the pyridine ring and the oxygen atom of the nitroso group in NNAL are two of the hydrogen-bond acceptors. It was further demonstrated that DMIP synthesized by 4-(acetymethylamino)-1-(3-pyridyl)-butanol had the best binding performance by XPS and FT-IR. Then dummy molecularly imprinted solid phase extraction (DMISPE) was developed for the determination of the analyte using the hit polymer as the sorbing material. Under optimal conditions, the recovery of NNAL dissolved in standard solution reached 93%. And the investigated polymer exhibited much higher binding of NNAL when nicotine was acted as the competitive molecule. Also the proposed method was applied to the measurement of NNAL spiked in blank urine samples with recoveries ranging from 87.2% to 101.2%.
基金National Natural Science Foundation of China (20744003, 20774044)Natural Science Foundation of Tianjin (06YFJMJC15100)A supporting program for New Century Excellent Talents (Ministry of Education) (NCET-07-0462).
文摘Molecular imprinting technique is a simple and efficient method for the preparation of polymer materials (i.e., molecularly imprinted polymers, MIPs) with tailor-made recognition sites for certain target molecules. The resulting MIPs have proven to be versatile synthetic receptors due to their high specific recognition ability, favorable mechanical, thermal and chemical stability, and ease of preparation. Recent years have witnessed significant progress in the synthesis and applications of MIPs. This review focus on the recent developments and advances in the preparation of MIPs via various controlled radical polymerization techniques.
基金This work was supported by the National Natural Science Foundation of China (No.20405013).
文摘A new bovine serum albumin (BSA) surface imprinting method was developed by the incorporation of quantum dots (QDs) into molecularly imprinted polymers (MIP), which can offer shape selectivity. Preparation and adsorption conditions were optimized. Physical appearance of the QDs and QDs-MIP particles was illustrated by scanning electron microscope images. Photoluminescence emission of CdS was quenched when rebinding of the template.The quenching of photoluminescence emissions is presumably due to the fluorescence resonance energy transfer between quantum dots and BSA template molecules. The adsorption is compiled with Langmuir isotherm, and chemical adsorption is the rate-controlling step.The maximum adsorption capacity could reach 226.0 mg/g, which is 142.4 mg/g larger than that of undoped BSA MIP. This study demonstrates the validity of QDs coupled with MIP technology for analyzing BSA.
文摘Neodymium ion imprinted polymer(Nd^3+-IIP) particles for selective solid-phase extraction of Nd^3+ were prepared and determined with inductively coupled plasma atomic emission spectrometry(ICP-AES).The unleached Nd^3+-IIP particles were prepared by the copoly-merization of Nd^3+-5,7-dichloroquinoline-8-ol-4-vinylpyridine ternary complex with styrene and divinyl benzene, then Nd^3+ was leached to obtain Nd^3+-IIP particles.The adsorption capacity of the Nd3+-IIP was 35.18 mg/g.The largest selectivity coefficient for Nd3+ in the presence of competitive ions such as La^3+, Ce^3+, Pr^3+ and Sm^3+ was over 110.The proposed method was validated by analyzing two certified reference materials(GBW07301a sediment and GBW07401 soil) and the determined values were in a good agreement with standard values.The method was convenient, selective, sensitive and applicable to the determination of trace Nd^3+ in environmental samples with complicated matrix.
基金supported by the Beijing Municipal Natural Science Foundation(S170001)the National Natural Science Foundation of China(31630074,31272449 and 31902170)+2 种基金the National Key Research and Development Program of China(2016YFD0500506 and 2018YDF0501002)the 111 Project(B16044)the Jinxinnong Animal Science Developmental Foundation.
文摘Early colonization of intestinal microbiota during the neonatal stage plays an important role on the development of intestinal immune system and nutrients absorption of the host.Compared to the normal birth weight(NBW)piglets,intrauterine growth restricted(IUGR)piglets have a different intestinal microbiota during their early life,which is related to maternal imprinting on intestinal microbial succession during gestation,at birth and via suckling.Imbalanced allocation of limited nutrients among fetuses during gestation could be one of the main causes for impaired intestinal development and microbiota colonization in neonatal IUGR piglets.In this review,we summarized the potential impact of maternal imprinting on the colonization of the intestinal microbiota in IUGR piglets,including maternal undernutrition,imbalanced allocation of nutrients among fetuses,as well as vertical microbial transmission from mother to offspring during gestation and lactation.At the same time,we give information about the current maternal nutritional strategies(mainly breastfeeding,probiotics and prebiotics)to help colonization of the advantageous intestinal microbiota for IUGR piglets.