期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
MUTS-Based Cooperative Target Stalking for A Multi-USV System
1
作者 Chengcheng Wang Yulong Wang +1 位作者 Qing-Long Han Yunkai Wu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第7期1582-1592,共11页
This paper is concerned with the cooperative target stalking for a multi-unmanned surface vehicle(multi-USV)system.Based on the multi-agent deep deterministic policy gradient(MADDPG)algorithm,a multi-USV target stalki... This paper is concerned with the cooperative target stalking for a multi-unmanned surface vehicle(multi-USV)system.Based on the multi-agent deep deterministic policy gradient(MADDPG)algorithm,a multi-USV target stalking(MUTS)algorithm is proposed.Firstly,a V-type probabilistic data extraction method is proposed for the first time to overcome shortcomings of the MADDPG algorithm.The advantages of the proposed method are twofold:1)it can reduce the amount of data and shorten training time;2)it can filter out more important data in the experience buffer for training.Secondly,in order to avoid the collisions of USVs during the stalking process,an action constraint method called Safe DDPG is introduced.Finally,the MUTS algorithm and some existing algorithms are compared in cooperative target stalking scenarios.In order to demonstrate the effectiveness of the proposed MUTS algorithm in stalking tasks,mission operating scenarios and reward functions are well designed in this paper.The proposed MUTS algorithm can help the multi-USV system avoid internal collisions during the mission execution.Moreover,compared with some existing algorithms,the newly proposed one can provide a higher convergence speed and a narrower convergence domain. 展开更多
关键词 Cooperative target stalking improved deep reinforcement learning multi-unmanned surface vehicle(multi-USV)systems V-type probabilistic data extraction
下载PDF
A novel approach for flip chip inspection based on improved SDELM and vibration signals 被引量:2
2
作者 SU Lei ZHANG SiYu +5 位作者 JI Yong WANG Gang MING XueFei GU JieFei LI Ke PECHT Michael 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第5期1087-1097,共11页
This paper proposes a novel nondestructive diagnostic method for flip chips based on an improved semi-supervised deep extreme learning machine(ISDELM)and vibration signals.First,an ultrasonic transducer is used to gen... This paper proposes a novel nondestructive diagnostic method for flip chips based on an improved semi-supervised deep extreme learning machine(ISDELM)and vibration signals.First,an ultrasonic transducer is used to generate and focus ultrasounds on the surface of the flip chip to excite it,and a laser scanning vibrometer is applied to acquire the chip’s vibration signals.Then,an extreme learning machine-autoencoder(ELM-AE)structure is adopted to extract features from the original vibration signals layer by layer.Finally,the study proposes integrating the ELM with sparsity neighboring reconstruction to diagnose defects based on unlabeled and labeled data.The ISDELM algorithm is applied to experimental vibration data of flip chips and compared with several other algorithms,such as semi-supervised ELM(SS-ELM),deep ELM,stacked autoencoder,convolutional neural network,and ordinary SDELM.The results show that the proposed method is superior to the several currently available algorithms in terms of accuracy and stability. 展开更多
关键词 flip chip nondestructive diagnosis improved semi-supervised deep extreme learning machine vibration signal
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部