期刊文献+
共找到1,000篇文章
< 1 2 50 >
每页显示 20 50 100
Plant Leaf Diseases Classification Using Improved K-Means Clustering and SVM Algorithm for Segmentation
1
作者 Mona Jamjoom Ahmed Elhadad +1 位作者 Hussein Abulkasim Safia Abbas 《Computers, Materials & Continua》 SCIE EI 2023年第7期367-382,共16页
Several pests feed on leaves,stems,bases,and the entire plant,causing plant illnesses.As a result,it is vital to identify and eliminate the disease before causing any damage to plants.Manually detecting plant disease ... Several pests feed on leaves,stems,bases,and the entire plant,causing plant illnesses.As a result,it is vital to identify and eliminate the disease before causing any damage to plants.Manually detecting plant disease and treating it is pretty challenging in this period.Image processing is employed to detect plant disease since it requires much effort and an extended processing period.The main goal of this study is to discover the disease that affects the plants by creating an image processing system that can recognize and classify four different forms of plant diseases,including Phytophthora infestans,Fusarium graminearum,Puccinia graminis,tomato yellow leaf curl.Therefore,this work uses the Support vector machine(SVM)classifier to detect and classify the plant disease using various steps like image acquisition,Pre-processing,Segmentation,feature extraction,and classification.The gray level co-occurrence matrix(GLCM)and the local binary pattern features(LBP)are used to identify the disease-affected portion of the plant leaf.According to experimental data,the proposed technology can correctly detect and diagnose plant sickness with a 97.2 percent accuracy. 展开更多
关键词 SVM machine learning GLCM algorithm k-means clustering LBP
下载PDF
Improved k-means clustering algorithm 被引量:16
2
作者 夏士雄 李文超 +2 位作者 周勇 张磊 牛强 《Journal of Southeast University(English Edition)》 EI CAS 2007年第3期435-438,共4页
In allusion to the disadvantage of having to obtain the number of clusters of data sets in advance and the sensitivity to selecting initial clustering centers in the k-means algorithm, an improved k-means clustering a... In allusion to the disadvantage of having to obtain the number of clusters of data sets in advance and the sensitivity to selecting initial clustering centers in the k-means algorithm, an improved k-means clustering algorithm is proposed. First, the concept of a silhouette coefficient is introduced, and the optimal clustering number Kopt of a data set with unknown class information is confirmed by calculating the silhouette coefficient of objects in clusters under different K values. Then the distribution of the data set is obtained through hierarchical clustering and the initial clustering-centers are confirmed. Finally, the clustering is completed by the traditional k-means clustering. By the theoretical analysis, it is proved that the improved k-means clustering algorithm has proper computational complexity. The experimental results of IRIS testing data set show that the algorithm can distinguish different clusters reasonably and recognize the outliers efficiently, and the entropy generated by the algorithm is lower. 展开更多
关键词 clustering k-means algorithm silhouette coefficient
下载PDF
Comprehensive K-Means Clustering
3
作者 Ethan Xiao 《Journal of Computer and Communications》 2024年第3期146-159,共14页
The k-means algorithm is a popular data clustering technique due to its speed and simplicity. However, it is susceptible to issues such as sensitivity to the chosen seeds, and inaccurate clusters due to poor initial s... The k-means algorithm is a popular data clustering technique due to its speed and simplicity. However, it is susceptible to issues such as sensitivity to the chosen seeds, and inaccurate clusters due to poor initial seeds, particularly in complex datasets or datasets with non-spherical clusters. In this paper, a Comprehensive K-Means Clustering algorithm is presented, in which multiple trials of k-means are performed on a given dataset. The clustering results from each trial are transformed into a five-dimensional data point, containing the scope values of the x and y coordinates of the clusters along with the number of points within that cluster. A graph is then generated displaying the configuration of these points using Principal Component Analysis (PCA), from which we can observe and determine the common clustering patterns in the dataset. The robustness and strength of these patterns are then examined by observing the variance of the results of each trial, wherein a different subset of the data keeping a certain percentage of original data points is clustered. By aggregating information from multiple trials, we can distinguish clusters that consistently emerge across different runs from those that are more sensitive or unlikely, hence deriving more reliable conclusions about the underlying structure of complex datasets. Our experiments show that our algorithm is able to find the most common associations between different dimensions of data over multiple trials, often more accurately than other algorithms, as well as measure stability of these clusters, an ability that other k-means algorithms lack. 展开更多
关键词 k-means clustering
下载PDF
Optimization of jamming formation of USV offboard active decoy clusters based on an improved PSO algorithm
4
作者 Zhaodong Wu Yasong Luo Shengliang Hu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期529-540,共12页
Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for t... Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for timing and deployment.To improve the response speed and jamming effect,a cluster of OADs based on an unmanned surface vehicle(USV)is proposed.The formation of the cluster determines the effectiveness of jamming.First,based on the mechanism of OAD jamming,critical conditions are identified,and a method for assessing the jamming effect is proposed.Then,for the optimization of the cluster formation,a mathematical model is built,and a multi-tribe adaptive particle swarm optimization algorithm based on mutation strategy and Metropolis criterion(3M-APSO)is designed.Finally,the formation optimization problem is solved and analyzed using the 3M-APSO algorithm under specific scenarios.The results show that the improved algorithm has a faster convergence rate and superior performance as compared to the standard Adaptive-PSO algorithm.Compared with a single OAD,the optimal formation of USV-OAD cluster effectively fills the blind area and maximizes the use of jamming resources. 展开更多
关键词 Electronic countermeasure Offboard active decoy USV cluster Jamming formation optimization improved PSO algorithm
下载PDF
Investigation of the J-TEXT plasma events by k-means clustering algorithm 被引量:1
5
作者 李建超 张晓卿 +11 位作者 张昱 Abba Alhaji BALA 柳惠平 周帼红 王能超 李达 陈忠勇 杨州军 陈志鹏 董蛟龙 丁永华 the J-TEXT Team 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第8期38-43,共6页
Various types of plasma events emerge in specific parameter ranges and exhibit similar characteristics in diagnostic signals,which can be applied to identify these events.A semisupervised machine learning algorithm,th... Various types of plasma events emerge in specific parameter ranges and exhibit similar characteristics in diagnostic signals,which can be applied to identify these events.A semisupervised machine learning algorithm,the k-means clustering algorithm,is utilized to investigate and identify plasma events in the J-TEXT plasma.This method can cluster diverse plasma events with homogeneous features,and then these events can be identified if given few manually labeled examples based on physical understanding.A survey of clustered events reveals that the k-means algorithm can make plasma events(rotating tearing mode,sawtooth oscillations,and locked mode)gathering in Euclidean space composed of multi-dimensional diagnostic data,like soft x-ray emission intensity,edge toroidal rotation velocity,the Mirnov signal amplitude and so on.Based on the cluster analysis results,an approximate analytical model is proposed to rapidly identify plasma events in the J-TEXT plasma.The cluster analysis method is conducive to data markers of massive diagnostic data. 展开更多
关键词 k-means cluster analysis plasma event machine learning
下载PDF
Dynamic grouping control of electric vehicles based on improved k-means algorithm for wind power fluctuations suppression 被引量:1
6
作者 Yang Yu Mai Liu +2 位作者 Dongyang Chen Yuhang Huo Wentao Lu 《Global Energy Interconnection》 EI CSCD 2023年第5期542-553,共12页
To address the significant lifecycle degradation and inadequate state of charge(SOC)balance of electric vehicles(EVs)when mitigating wind power fluctuations,a dynamic grouping control strategy is proposed for EVs base... To address the significant lifecycle degradation and inadequate state of charge(SOC)balance of electric vehicles(EVs)when mitigating wind power fluctuations,a dynamic grouping control strategy is proposed for EVs based on an improved k-means algorithm.First,a swing door trending(SDT)algorithm based on compression result feedback was designed to extract the feature data points of wind power.The gating coefficient of the SDT was adjusted based on the compression ratio and deviation,enabling the acquisition of grid-connected wind power signals through linear interpolation.Second,a novel algorithm called IDOA-KM is proposed,which utilizes the Improved Dingo Optimization Algorithm(IDOA)to optimize the clustering centers of the k-means algorithm,aiming to address its dependence and sensitivity on the initial centers.The EVs were categorized into priority charging,standby,and priority discharging groups using the IDOA-KM.Finally,an two-layer power distribution scheme for EVs was devised.The upper layer determines the charging/discharging sequences of the three EV groups and their corresponding power signals.The lower layer allocates power signals to each EV based on the maximum charging/discharging power or SOC equalization principles.The simulation results demonstrate the effectiveness of the proposed control strategy in accurately tracking grid power signals,smoothing wind power fluctuations,mitigating EV degradation,and enhancing the SOC balance. 展开更多
关键词 Electric vehicles Wind power fluctuation smoothing improved k-means Power allocation Swing door trending
下载PDF
An Improved K-Means Algorithm Based on Initial Clustering Center Optimization
7
作者 LI Taihao NAREN Tuya +2 位作者 ZHOU Jianshe REN Fuji LIU Shupeng 《ZTE Communications》 2017年第B12期43-46,共4页
The K-means algorithm is widely known for its simplicity and fastness in text clustering.However,the selection of the initial clus?tering center with the traditional K-means algorithm is some random,and therefore,the ... The K-means algorithm is widely known for its simplicity and fastness in text clustering.However,the selection of the initial clus?tering center with the traditional K-means algorithm is some random,and therefore,the fluctuations and instability of the clustering results are strongly affected by the initial clustering center.This paper proposed an algorithm to select the initial clustering center to eliminate the uncertainty of central point selection.The experiment results show that the improved K-means clustering algorithm is superior to the traditional algorithm. 展开更多
关键词 clustering k-means algorithm initial clustering center
下载PDF
Quantitative Method of Classification and Discrimination of a Porous Carbonate Reservoir Integrating K-means Clustering and Bayesian Theory
8
作者 FANG Xinxin ZHU Guotao +2 位作者 YANG Yiming LI Fengling FENG Hong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第1期176-189,共14页
Reservoir classification is a key link in reservoir evaluation.However,traditional manual means are inefficient,subjective,and classification standards are not uniform.Therefore,taking the Mishrif Formation of the Wes... Reservoir classification is a key link in reservoir evaluation.However,traditional manual means are inefficient,subjective,and classification standards are not uniform.Therefore,taking the Mishrif Formation of the Western Iraq as an example,a new reservoir classification and discrimination method is established by using the K-means clustering method and the Bayesian discrimination method.These methods are applied to non-cored wells to calculate the discrimination accuracy of the reservoir type,and thus the main reasons for low accuracy of reservoir discrimination are clarified.The results show that the discrimination accuracy of reservoir type based on K-means clustering and Bayesian stepwise discrimination is strongly related to the accuracy of the core data.The discrimination accuracy rate of TypeⅠ,TypeⅡ,and TypeⅤreservoirs is found to be significantly higher than that of TypeⅢand TypeⅣreservoirs using the method of combining K-means clustering and Bayesian theory based on logging data.Although the recognition accuracy of the new methodology for the TypeⅣreservoir is low,with average accuracy the new method has reached more than 82%in the entire study area,which lays a good foundation for rapid and accurate discrimination of reservoir types and the fine evaluation of a reservoir. 展开更多
关键词 UPSTREAM resource exploration reservoir classification CARBONATE k-means clustering Bayesian discrimination CENOMANIAN-TURONIAN Iraq
下载PDF
Clustering Countries on COVID-19 Data among Different Waves Using K-Means Clustering
9
作者 Muhtasim   Md. Abdul Masud 《Journal of Computer and Communications》 2023年第7期1-14,共14页
The COVID-19 pandemic has caused an unprecedented spike in confirmed cases in 230 countries globally. In this work, a set of data from the COVID-19 coronavirus outbreak has been subjected to two well-known unsupervise... The COVID-19 pandemic has caused an unprecedented spike in confirmed cases in 230 countries globally. In this work, a set of data from the COVID-19 coronavirus outbreak has been subjected to two well-known unsupervised learning techniques: K-means clustering and correlation. The COVID-19 virus has infected several nations, and K-means automatically looks for undiscovered clusters of those infections. To examine the spread of COVID-19 before a vaccine becomes widely available, this work has used unsupervised approaches to identify the crucial county-level confirmed cases, death cases, recover cases, total_cases_per_million, and total_deaths_per_million aspects of county-level variables. We combined countries into significant clusters using this feature subspace to assist more in-depth disease analysis efforts. As a result, we used a clustering technique to examine various trends in COVID-19 incidence and mortality across nations. This technique took the key components of a trajectory and incorporates them into a K-means clustering process. We separated the trend lines into measures that characterize various features of a trend. The measurements were first reduced in dimension, then clustered using a K-means algorithm. This method was used to individually calculate the incidence and death rates and then compare them. 展开更多
关键词 COVID-19 Epidemic k-means clustering CORRELATIONS Infection Control SARS-CoV-2 Time Series
下载PDF
光伏波动平抑下改进K-means的电池储能动态分组控制策略 被引量:1
10
作者 余洋 陆文韬 +3 位作者 陈东阳 刘霡 夏雨星 郑晓明 《电力系统保护与控制》 EI CSCD 北大核心 2024年第7期1-11,共11页
针对电池储能系统(battery energy storage system,BESS)进行光伏波动平抑时寿命损耗高及荷电状态(state of charge,SOC)一致性差的问题,提出了光伏波动平抑下改进K-means的BESS动态分组控制策略。首先,采用最小最大调度方法获取光伏并... 针对电池储能系统(battery energy storage system,BESS)进行光伏波动平抑时寿命损耗高及荷电状态(state of charge,SOC)一致性差的问题,提出了光伏波动平抑下改进K-means的BESS动态分组控制策略。首先,采用最小最大调度方法获取光伏并网指令。其次,设计了改进侏儒猫鼬优化算法(improved dwarf mongoose optimizer,IDMO),并利用它对传统K-means聚类算法进行改进,加快了聚类速度。接着,制定了电池单元动态分组原则,并根据电池单元SOC利用改进K-means将其分为3个电池组。然后,设计了基于充放电函数的电池单元SOC一致性功率分配方法,并据此提出BESS双层功率分配策略,上层确定电池组充放电顺序及指令,下层计算电池单元充放电指令。对所提策略进行仿真验证,结果表明,所设计的IDMO具有更高的寻优精度及更快的寻优速度。所提BESS平抑光伏波动策略在有效平抑波动的同时,降低了BESS运行寿命损耗并提高了电池单元SOC的均衡性。 展开更多
关键词 电池储能系统 波动平抑 功率分配 改进侏儒猫鼬优化算法 改进k-means聚类算法
下载PDF
基于改进K-means聚类和遗传算法的混合算法求解异构车辆路径问题
11
作者 吴麟麟 吕一鸣 +1 位作者 何美玲 韩珣 《物流技术》 2024年第7期48-62,共15页
由于目前单一车型配送存在资源浪费和效率低下等问题,选取确定数量的不同车型对各客户点进行配送服务往往可以得到更优的配送路径方案。针对这一点,描述了一种异构车辆路径问题,并建立了具有固定车辆数且考虑固定成本、可变成本以及时... 由于目前单一车型配送存在资源浪费和效率低下等问题,选取确定数量的不同车型对各客户点进行配送服务往往可以得到更优的配送路径方案。针对这一点,描述了一种异构车辆路径问题,并建立了具有固定车辆数且考虑固定成本、可变成本以及时间窗惩罚成本的混合整数规划模型。同时,提出了一种基于改进K-means聚类和遗传算法的混合算法对模型进行求解。实验仿真先求解不考虑时间窗的问题初步证明混合算法的有效性,再在带时间窗的问题中求解不同规模算例的单一及异构车型结果,以证明异构车型配送更优。最后,对该混合算法的求解结果与其他混合算法的求解结果进行对比分析,证明了混合算法的优越性。研究结果表明:该混合算法求解的异构车型结果优于单一车型,并且比其他混合算法求解的异构车型结果更优,异构车辆配送使用的配送车辆数更少,总成本也更低,该混合算法具有更好的效率和性能。 展开更多
关键词 异构车辆路径问题 改进k-means聚类算法 遗传算法 混合算法
下载PDF
基于改进K-means聚类的轨道交通基础设施分布式光伏发电典型场景生成及出力特性分析
12
作者 陈凯 雷琪 李豆萌 《电气工程学报》 CSCD 北大核心 2024年第2期364-372,共9页
受限于自然条件,光伏出力具有很强的随机性。为准确评估轨道交通基础设施分布式光伏发电的光伏出力特性,提出一种基于改进K-means聚类算法的轨道交通基础设施分布式光伏发电典型场景生成方法,并基于此进行光伏出力特性分析。首先,基于... 受限于自然条件,光伏出力具有很强的随机性。为准确评估轨道交通基础设施分布式光伏发电的光伏出力特性,提出一种基于改进K-means聚类算法的轨道交通基础设施分布式光伏发电典型场景生成方法,并基于此进行光伏出力特性分析。首先,基于分布式光伏发电设施以及气象数据,利用PVsyst软件模拟光伏发电出力数据。然后,针对基本K-means聚类算法聚类参数和初始聚类中心盲目性高的问题,结合聚类有效性指标(Density based index,DBI)和层次聚类对其进行改进并利用改进K-means聚类算法生成光伏典型日出力场景。最后,基于华中地区某地轨道交通基础设施分布式光伏系统对所提方法的有效性和优越性进行验证,并通过定性和定量分析各典型场景的出力特性揭示轨道交通基础设施分布式光伏出力的规律和特点。 展开更多
关键词 分布式光伏出力 改进k-means聚类算法 典型出力场景 出力特性分析
下载PDF
基于改进K-means数据聚类算法的网络入侵检测
13
作者 黄俊萍 《成都工业学院学报》 2024年第2期58-62,97,共6页
随着入侵手段的不断更新和升级,传统入侵检测方法准确率下降、检测时间延长,无法满足网络防御要求。为此,提出一种经过改进K均值(K-means)数据聚类算法,以应对不断升级的网络入侵行为。先以防火墙日志为基础转换数值,然后基于粒子群算... 随着入侵手段的不断更新和升级,传统入侵检测方法准确率下降、检测时间延长,无法满足网络防御要求。为此,提出一种经过改进K均值(K-means)数据聚类算法,以应对不断升级的网络入侵行为。先以防火墙日志为基础转换数值,然后基于粒子群算法求取最优初始聚类中心,实现K-means数据聚类算法的改进;最后以计算得出的特征值为输入项,实现对网络入侵行为的精准检测。结果表明:K-means算法改进后较改进前的戴维森堡丁指数更小,均低于0.6,达到了改进目的。改进K-means算法各样本的准确率均高于90%,相对更高,检测时间均低于10 s,相对更少,说明该方法能够以高效率完成更准确的网络入侵检测。 展开更多
关键词 改进k-means数据聚类算法 防火墙日志 入侵检测特征 粒子群算法 网络入侵检测
下载PDF
基于改进K-means聚类和皮尔逊相关系数户变关系异常诊断 被引量:4
14
作者 周纲 黄瑞 +3 位作者 刘度度 张芝敏 胡军华 高云鹏 《电测与仪表》 北大核心 2024年第3期76-82,152,共8页
用电信息采集系统易出现台区户变关系错误问题,传统诊断技术主要针对少用户台区出现异常用户情况,但对于多达数百用户台区,存在多相邻台区异常用户特征提取难题。文中首先通过主成分分析对GIS系统获取台区总表和用户电表电压数据实现降... 用电信息采集系统易出现台区户变关系错误问题,传统诊断技术主要针对少用户台区出现异常用户情况,但对于多达数百用户台区,存在多相邻台区异常用户特征提取难题。文中首先通过主成分分析对GIS系统获取台区总表和用户电表电压数据实现降维,建立改进K-means聚类提取电压数据特征,提出改进皮尔逊相关系数算法分析待检测用户,据此建立基于改进K-means聚类和改进皮尔逊相关系数的户变关系异常诊断方法,实现多异常用户所属正确台区诊断。实际算例分析结果表明,文中提出算法在识别同一台区一个及多个异常用户、不同台区多个异常用户情况下均能有效实现异常用户的准确检测与分析,相比传统检测方法,实现简单且准确性更高。 展开更多
关键词 户变关系 GIS系统 主成分分析 改进k-means聚类
下载PDF
System error iterative identification for underwater positioning based on spectral clustering
15
作者 LU Yu WANG Jiongqi +3 位作者 HE Zhangming ZHOU Haiyin XING Yao ZHOU Xuanying 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期1028-1041,共14页
The observation error model of the underwater acous-tic positioning system is an important factor to influence the positioning accuracy of the underwater target.For the position inconsistency error caused by consideri... The observation error model of the underwater acous-tic positioning system is an important factor to influence the positioning accuracy of the underwater target.For the position inconsistency error caused by considering the underwater tar-get as a mass point,as well as the observation system error,the traditional error model best estimation trajectory(EMBET)with little observed data and too many parameters can lead to the ill-condition of the parameter model.In this paper,a multi-station fusion system error model based on the optimal polynomial con-straint is constructed,and the corresponding observation sys-tem error identification based on improved spectral clustering is designed.Firstly,the reduced parameter unified modeling for the underwater target position parameters and the system error is achieved through the polynomial optimization.Then a multi-sta-tion non-oriented graph network is established,which can address the problem of the inaccurate identification for the sys-tem errors.Moreover,the similarity matrix of the spectral cluster-ing is improved,and the iterative identification for the system errors based on the improved spectral clustering is proposed.Finally,the comprehensive measured data of long baseline lake test and sea test show that the proposed method can accu-rately identify the system errors,and moreover can improve the positioning accuracy for the underwater target positioning. 展开更多
关键词 acoustic positioning reduced parameter system error identification improved spectral clustering accuracy analy-sis
下载PDF
基于改进K-Means算法的电动汽车充电负荷特性分析 被引量:1
16
作者 李俊达 陈姝敏 +2 位作者 王天安 张玎一 吴全才 《云南电力技术》 2024年第3期10-13,19,共5页
电动汽车充电行为具有较大的随机性,一定程度上影响电网的稳定运行和规划。为更准确地分析电动汽车充电负荷的特性,提出一种基于改进K-Means算法的聚类分析方法。针对K-Means算法在初始聚类中心选取上的随机性和不稳定性,首先利用Mini B... 电动汽车充电行为具有较大的随机性,一定程度上影响电网的稳定运行和规划。为更准确地分析电动汽车充电负荷的特性,提出一种基于改进K-Means算法的聚类分析方法。针对K-Means算法在初始聚类中心选取上的随机性和不稳定性,首先利用Mini Batch K-Means算法的随机抽样能力优化初始聚类中心的选择,随后结合K-Means算法进行迭代优化,有效解决K-Means算法聚类结果不稳定的问题。以云南某城市充电桩负荷数据进行算例分析,结果表明,所提算法相比传统方法相比能更加准确地对多个不同负荷特性的用户进行分类,从而更有效地指导有序用电管理策略的制定。 展开更多
关键词 k-means算法 Mini Batch k-means算法 负荷特性分析
下载PDF
基于改进k-means算法的电力负荷数据聚类方法
17
作者 吕相沅 陈安琪 +1 位作者 刘青 程昱舒 《电子设计工程》 2024年第20期121-124,129,共5页
针对现有数据聚类方法难以对电力系统负荷数据进行有效聚类的问题,该文结合改进k-means算法,完成电力负荷数据聚类方法设计。该研究基于电力负荷数据中心点生成过程,构建中心点间距与类簇距离判定函数,筛选电力负荷数据聚类中心。确定... 针对现有数据聚类方法难以对电力系统负荷数据进行有效聚类的问题,该文结合改进k-means算法,完成电力负荷数据聚类方法设计。该研究基于电力负荷数据中心点生成过程,构建中心点间距与类簇距离判定函数,筛选电力负荷数据聚类中心。确定聚类中心后,采用数据分离方法完成正常负荷数据和异常负荷数据的分离,在分离过程中应保证数据连续,以避免潜在有用数据丢失。利用改进的k-means算法分析电力负荷数据,计算不同种类数据间的欧氏距离。设定指针矩阵,融合不同类中心点,对原始数据区间规范化操作,获取不同簇的负荷数据聚类通道传输功率谱密度。将数据依次分配到不同簇上,实现电力负荷数据聚类。由实验结果可知,该方法站点1数据聚类范围为0.3~0.48 pu,站点2数据聚类范围为0.34~0.47 pu,优于对比方法,与理想聚类范围最贴近,具有良好的聚类效果。 展开更多
关键词 改进k-means算法 电力负荷 数据聚类 区间规范化操作
下载PDF
Improvement of energy resolution of x-ray transition-edge sensor using K-means algorithm and Wiener filter
18
作者 马卿效 张文 +8 位作者 李佩展 王争 冯志发 杨心开 钟家强 缪巍 任远 李婧 史生才 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期695-699,共5页
We develop an x-ray Ti/Au transition-edge sensor(TES)with an Au absorber deposited on the center of TES and improved its energy resolution using the K-means clustering algorithm in combination with Wiener filter.We fi... We develop an x-ray Ti/Au transition-edge sensor(TES)with an Au absorber deposited on the center of TES and improved its energy resolution using the K-means clustering algorithm in combination with Wiener filter.We firstly extract the main parameters of each recorded pulse trace,which are adopted to classify these traces into several clusters in the K-means clustering algorithm.Then real traces are selected for energy resolution analysis.Following the baseline correction,the Wiener filter is used to improve the signal-to-noise ratio.Although the silicon underneath the TES has not been etched to reduce the thermal conductance,the energy resolution of the developed x-ray TES is improved from 94 eV to 44 eV at 5.9 keV. 展开更多
关键词 transition-edge sensors energy resolution k-means clustering Wiener filter
下载PDF
Research on Short-Term Load Forecasting of Distribution Stations Based on the Clustering Improvement Fuzzy Time Series Algorithm
19
作者 Jipeng Gu Weijie Zhang +5 位作者 Youbing Zhang Binjie Wang Wei Lou Mingkang Ye Linhai Wang Tao Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期2221-2236,共16页
An improved fuzzy time series algorithmbased on clustering is designed in this paper.The algorithm is successfully applied to short-term load forecasting in the distribution stations.Firstly,the K-means clustering met... An improved fuzzy time series algorithmbased on clustering is designed in this paper.The algorithm is successfully applied to short-term load forecasting in the distribution stations.Firstly,the K-means clustering method is used to cluster the data,and the midpoint of two adjacent clustering centers is taken as the dividing point of domain division.On this basis,the data is fuzzed to form a fuzzy time series.Secondly,a high-order fuzzy relation with multiple antecedents is established according to the main measurement indexes of power load,which is used to predict the short-term trend change of load in the distribution stations.Matlab/Simulink simulation results show that the load forecasting errors of the typical fuzzy time series on the time scale of one day and one week are[−50,20]and[−50,30],while the load forecasting errors of the improved fuzzy time series on the time scale of one day and one week are[−20,15]and[−20,25].It shows that the fuzzy time series algorithm improved by clustering improves the prediction accuracy and can effectively predict the short-term load trend of distribution stations. 展开更多
关键词 Short-term load forecasting fuzzy time series k-means clustering distribution stations
下载PDF
An efficient enhanced k-means clustering algorithm 被引量:30
20
作者 FAHIM A.M SALEM A.M +1 位作者 TORKEY F.A RAMADAN M.A 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第10期1626-1633,共8页
In k-means clustering, we are given a set of n data points in d-dimensional space R^d and an integer k and the problem is to determine a set of k points in R^d, called centers, so as to minimize the mean squared dista... In k-means clustering, we are given a set of n data points in d-dimensional space R^d and an integer k and the problem is to determine a set of k points in R^d, called centers, so as to minimize the mean squared distance from each data point to its nearest center. In this paper, we present a simple and efficient clustering algorithm based on the k-means algorithm, which we call enhanced k-means algorithm. This algorithm is easy to implement, requiring a simple data structure to keep some information in each iteration to be used in the next iteration. Our experimental results demonstrated that our scheme can improve the computational speed of the k-means algorithm by the magnitude in the total number of distance calculations and the overall time of computation. 展开更多
关键词 clustering algorithms cluster analysis k-means algorithm Data analysis
下载PDF
上一页 1 2 50 下一页 到第
使用帮助 返回顶部