针对场景分类问题,本文提出一种基于图像局部边缘区域的EILBP(Edge Improved Local Binary Pattern)视觉特征描述结合PLSA模型场景分类方法。EILBP视觉特征通过利用局部边缘区域的梯度、方向分布与特征的局部空间分布等信息对图像进行...针对场景分类问题,本文提出一种基于图像局部边缘区域的EILBP(Edge Improved Local Binary Pattern)视觉特征描述结合PLSA模型场景分类方法。EILBP视觉特征通过利用局部边缘区域的梯度、方向分布与特征的局部空间分布等信息对图像进行充分合理地描述。首先对场景图像边缘轮廓稠密采样,得到以稠密采样点为中心的图像局部边缘区域并提取区域的EILBP特征作为视觉词汇,对视觉词汇聚类形成视觉词汇表(码本);然后,用词袋(BOW,Bag-Of-Words)模型描述图像;最后,利用PLSA模型对图像的词袋模型进行潜在语义挖掘并用判定式KNN分类器进行场景分类,得到测试图像集合的混淆矩阵。在多类场景图像上的实验表明,本文所用的方法不需要对场景内容进行人工标注,具有较高的分类准确率,且对具有边缘轮廓的图像分类精度较高。展开更多
This paper presents a supervised learning algorithm for retinal vascular segmentation based on classification and regression tree (CART) algorithm and improved adptive bosting (AdaBoost). Local binary patterns (LBP) t...This paper presents a supervised learning algorithm for retinal vascular segmentation based on classification and regression tree (CART) algorithm and improved adptive bosting (AdaBoost). Local binary patterns (LBP) texture features and local features are extracted by extracting,reversing,dilating and enhancing the green components of retinal images to construct a 17-dimensional feature vector. A dataset is constructed by using the feature vector and the data manually marked by the experts. The feature is used to generate CART binary tree for nodes,where CART binary tree is as the AdaBoost weak classifier,and AdaBoost is improved by adding some re-judgment functions to form a strong classifier. The proposed algorithm is simulated on the digital retinal images for vessel extraction (DRIVE). The experimental results show that the proposed algorithm has higher segmentation accuracy for blood vessels,and the result basically contains complete blood vessel details. Moreover,the segmented blood vessel tree has good connectivity,which basically reflects the distribution trend of blood vessels. Compared with the traditional AdaBoost classification algorithm and the support vector machine (SVM) based classification algorithm,the proposed algorithm has higher average accuracy and reliability index,which is similar to the segmentation results of the state-of-the-art segmentation algorithm.展开更多
针对带钢表面缺陷识别率受到光照变化、纹理复杂多样以及噪声干扰而导致误识别率高的问题,提出一种新的带钢表面缺陷识别算法。首先从增加邻域联系的角度改进多块局部二值模式(MB-LBP)特征,缓解提取过程中因所选子窗口尺寸大小不同而造...针对带钢表面缺陷识别率受到光照变化、纹理复杂多样以及噪声干扰而导致误识别率高的问题,提出一种新的带钢表面缺陷识别算法。首先从增加邻域联系的角度改进多块局部二值模式(MB-LBP)特征,缓解提取过程中因所选子窗口尺寸大小不同而造成的保留图像细节与去除噪声之间的平衡性问题;其次将改进的MB-LBP特征与梯度方向直方图(HOG)特征线性加权得到融合特征,弥补MB-LBP特征没有表征缺陷边缘和方向的缺点,从而更全面地表征复杂的缺陷纹理;最后通过同时增加全局信息和监督信息改善的局部保持投影(LPP)算法将高维的融合特征非线性映射到低维的本质特征空间中,减少融合特征冗余对分类器识别率的影响。在NEU数据集上仿真实验结果表明:算法对光照变化、纹理复杂多样、以及噪声具有一定的鲁棒性,在信噪比为50 d B情况下将带钢表面缺陷识别准确率提高了5. 17%。展开更多
针对传统特征检测算法检测效率低、匹配正确率低和双目视觉测量精度不足等问题,提出一种基于局部信息熵和梯度漂移的双目视觉测量算法。首先,将图像划分成若干子区域,计算各子区域局部信息熵筛选出高熵区域,并利用oriented FAST and rot...针对传统特征检测算法检测效率低、匹配正确率低和双目视觉测量精度不足等问题,提出一种基于局部信息熵和梯度漂移的双目视觉测量算法。首先,将图像划分成若干子区域,计算各子区域局部信息熵筛选出高熵区域,并利用oriented FAST and rotated BRIEF(ORB)算法检测特征点;其次,采用圆形邻域代替像素点,并对圆形邻域内各像素梯度幅值采用二维高斯加权的方式改进旋转不变local binary patterns(LBP);然后,与rotated binary robust independent elementary features(rBRIEF)融合生成新的描述子进行特征匹配;最后,提出梯度漂移方法,引入特征点次极大响应值作为辅助因素,结合极大响应值通过坐标迭代更新计算出理想特征点的精确坐标,解决提取特征点坐标不准确的问题,提高测量精度。实验结果表明:所提算法的平均匹配正确率较传统ORB算法提高37.51%,测量最低相对误差达到0.365%。展开更多
文摘针对场景分类问题,本文提出一种基于图像局部边缘区域的EILBP(Edge Improved Local Binary Pattern)视觉特征描述结合PLSA模型场景分类方法。EILBP视觉特征通过利用局部边缘区域的梯度、方向分布与特征的局部空间分布等信息对图像进行充分合理地描述。首先对场景图像边缘轮廓稠密采样,得到以稠密采样点为中心的图像局部边缘区域并提取区域的EILBP特征作为视觉词汇,对视觉词汇聚类形成视觉词汇表(码本);然后,用词袋(BOW,Bag-Of-Words)模型描述图像;最后,利用PLSA模型对图像的词袋模型进行潜在语义挖掘并用判定式KNN分类器进行场景分类,得到测试图像集合的混淆矩阵。在多类场景图像上的实验表明,本文所用的方法不需要对场景内容进行人工标注,具有较高的分类准确率,且对具有边缘轮廓的图像分类精度较高。
基金National Natural Science Foundation of China(No.61163010)
文摘This paper presents a supervised learning algorithm for retinal vascular segmentation based on classification and regression tree (CART) algorithm and improved adptive bosting (AdaBoost). Local binary patterns (LBP) texture features and local features are extracted by extracting,reversing,dilating and enhancing the green components of retinal images to construct a 17-dimensional feature vector. A dataset is constructed by using the feature vector and the data manually marked by the experts. The feature is used to generate CART binary tree for nodes,where CART binary tree is as the AdaBoost weak classifier,and AdaBoost is improved by adding some re-judgment functions to form a strong classifier. The proposed algorithm is simulated on the digital retinal images for vessel extraction (DRIVE). The experimental results show that the proposed algorithm has higher segmentation accuracy for blood vessels,and the result basically contains complete blood vessel details. Moreover,the segmented blood vessel tree has good connectivity,which basically reflects the distribution trend of blood vessels. Compared with the traditional AdaBoost classification algorithm and the support vector machine (SVM) based classification algorithm,the proposed algorithm has higher average accuracy and reliability index,which is similar to the segmentation results of the state-of-the-art segmentation algorithm.
文摘针对带钢表面缺陷识别率受到光照变化、纹理复杂多样以及噪声干扰而导致误识别率高的问题,提出一种新的带钢表面缺陷识别算法。首先从增加邻域联系的角度改进多块局部二值模式(MB-LBP)特征,缓解提取过程中因所选子窗口尺寸大小不同而造成的保留图像细节与去除噪声之间的平衡性问题;其次将改进的MB-LBP特征与梯度方向直方图(HOG)特征线性加权得到融合特征,弥补MB-LBP特征没有表征缺陷边缘和方向的缺点,从而更全面地表征复杂的缺陷纹理;最后通过同时增加全局信息和监督信息改善的局部保持投影(LPP)算法将高维的融合特征非线性映射到低维的本质特征空间中,减少融合特征冗余对分类器识别率的影响。在NEU数据集上仿真实验结果表明:算法对光照变化、纹理复杂多样、以及噪声具有一定的鲁棒性,在信噪比为50 d B情况下将带钢表面缺陷识别准确率提高了5. 17%。